
Phylogenetics

Exploring parallel MPI fault tolerance mechanisms for

phylogenetic inference with RAxML-NG

Lukas Hübner 1,2,*, Alexey M. Kozlov 2, Demian Hespe1, Peter Sanders1 and

Alexandros Stamatakis 1,2

1Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Baden, Karlsruhe, Württemberg, Germany and 2Computational

Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Baden, Heidelberg, Württemberg, Germany

*To whom correspondence should be addressed.

Associate Editor: Russell Schwartz

Received on January 19, 2021; revised on May 10, 2021; editorial decision on May 17, 2021; accepted on May 25, 2021

Abstract

Abstract: Motivation: Phylogenetic trees are now routinely inferred on large scale high performance computing sys-
tems with thousands of cores as the parallel scalability of phylogenetic inference tools has improved over the past
years to cope with the molecular data avalanche. Thus, the parallel fault tolerance of phylogenetic inference tools has
become a relevant challenge. To this end, we explore parallel fault tolerance mechanisms and algorithms, the software
modifications required and the performance penalties induced via enabling parallel fault tolerance by example of
RAxML-NG, the successor of the widely used RAxML tool for maximum likelihood-based phylogenetic tree inference.
Results: We find that the slowdown induced by the necessary additional recovery mechanisms in RAxML-NG is on
average 1.00 6 0.04. The overall slowdown by using these recovery mechanisms in conjunction with a fault-tolerant
Message Passing Interface implementation amounts to on average 1.7 6 0.6 for large empirical datasets. Via failure
simulations, we show that RAxML-NG can successfully recover from multiple simultaneous failures, subsequent fail-
ures, failures during recovery and failures during checkpointing. Recoveries are automatic and transparent to the user.
Availability and implementation: The modified fault-tolerant RAxML-NG code is available under GNU GPL at https://
github.com/lukashuebner/ft-raxml-ng.
Contact: lukas.huebner@kit.edu or lukas.huebner@h-its.org
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Failing hardware is projected to be one of the main challenges in fu-
ture exascale systems (Shalf et al., 2011). In fact, one may expect
that a hardware failure will occur in exascale-systems every 30–
60 min (Cappello et al., 2014; Dongarra et al., 2015; Snir et al.,
2014). High Performance Computing (HPC) systems can fail due to
core hangs, kernel panics, file system errors, file server failures, cor-
rupted memories or interconnects, network outages, air conditioning
failures, or power halts (Gupta et al., 2017; Lu, 2013). Common
metrics to characterize the resilience of hardware are the mean time
between failure (MTBF) for repairable components and the mean
time to failure (MTTF) for non-repairable components. Both de-
scribe the expected average time for which a system will fully func-
tion after repair or replacement (Lu, 2013). For the sake of
simplicity, we will henceforth subsume MTBF and MTTF under the
term MTTF and assume negligible repair and replacement time.

Currently, most message passing interface (MPI) implementations
will terminate upon the failure of a rank (a rank is a process that com-
municates with other ranks running in parallel using explicit messaging
calls). Regarding the failure frequency, we can therefore consider the

entire set of MPI ranks as a number of serially connected single systems
which will all fail if one single component fails. The MTTF of an MPI
program running on processing elements (PEs) n1; n2; . . . ;nj with inde-
pendent failure probabilities are therefore:

mttfðn1; n2; . . . ; njÞ ¼
X

nj

1

mttfðnjÞ

 !�1

As the number of cores that can be used by scientific software
increases, the MTTF decreases rapidly. Gupta et al. (2017) report the
MTTF of four systems in the petaflops range containing up to 18 688
nodes (Table 1). Currently, most compute jobs only use a fraction of
these petascale systems. Thus, current HPC jobs are not constantly
aborted due to rank failures. In the not so distant future, on the by then
commonly available exascale systems, scientific codes will run on hun-
dreds to thousands of nodes and therefore experience a core failure
every few hours (Cappello et al., 2014; Dongarra et al., 2015; Snir
et al., 2014). We can therefore no longer ignore compute node or net-
work failures, and require failure mitigating codes. To this end, we

VC The Author(s) 2021. Published by Oxford University Press. 4056

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 37(22), 2021, 4056–4063

doi: 10.1093/bioinformatics/btab399

Advance Access Publication Date: 26 May 2021

Original Paper

https://orcid.org/0000-0001-9213-7597
https://orcid.org/0000-0001-7394-2718
https://orcid.org/0000-0003-0353-0691
https://github.com/lukashuebner/ft-raxml-ng
https://github.com/lukashuebner/ft-raxml-ng
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab399#supplementary-data
https://academic.oup.com/


explore the current state of MPI failure detection technology and assess
the amount of work required to make a massively parallel application
fault tolerant by example of our RAxML-NG software (Kozlov et al.,
2019), the successor of the widely used RAxML tool for phylogenetic
inference (Stamatakis, 2014).

The remainder of this paper is structured as follows: In Section 2,
we briefly discuss related work on fault-tolerant scientific software
in general and in Bioinformatics in particular. In Sections 3.1 and
3.2, we discuss the most common techniques and tools
for implementing fault tolerance in parallel programs. We then de-
scribe the specific implementation in RAxML-NG in more detail in
Section 3.3 as well as Section 3.4 and present experimental results in
Section 4. We conclude in Section 5 and discuss future directions of
work.

2 Related work

There already exist some fault-tolerant scientific applications. For
example, Ali et al. (2016) implemented a fault-tolerant numeric lin-
ear equation and partial equation solver. Obersteiner et al. (2017)
extended a plasma simulation, Laguna et al. (2016) a molecular dy-
namics simulation and Engelmann et al. (2003) a Fast Fourier
Transformation that gracefully handle hardware faults. Kohl et al.
(2017) implemented a checkpoint-recovery system for a material sci-
ence simulation. After a failure, the system initially assigns the work
of the failed PEs to a single PE. The respective load-distribution algo-
rithm (Schornbaum et al., 2018) then recalculates the data distribu-
tion for the reduced number of PEs. Next, the PEs exchange the data
residing on the wrong (i.e. overloaded) PE over the network via
point-to-point communication.

In the field of Bioinformatics, some research into automatically
restarting failed sub-jobs exists (Smith et al., 2006; Varghese et al.,
2014). These methods require each job to be divisible into several
sub-jobs and are not based on the checkpointing and restart
paradigm.

Finally, we are not aware of related work on assessing or imple-
menting fault tolerance mechanisms in any other likelihood-based
(i.e. maximum likelihood (ML) or Bayesian inference) phylogenetic
tree inference tool.

3 Fault tolerance techniques and tools

Despite the currently limited support in MPI for mitigating hardware
failures, some research on handling faults at the application level has
been conducted. In the following, we will outline our approach and
the respective design rationales in comparison with other fault-toler-
ant scientific software.

3.1 Design rationales and implementation
The three main techniques for making programs fault tolerant are
Algorithm-Based Fault Tolerance, restarting failed sub-jobs and
checkpointing/restart. Algorithm-Based Fault Tolerance is used pre-
dominantly in numerical applications (Bosilca et al., 2009; Vijay
et al., 1997), but requires the algorithm in question to be extensible
such as to include redundancy. The RAxML-NG tree search strategy
is a rather involved algorithm. For example, it comprises a hill
climbing heuristic, Subtree Pruning and Regrafting (SPR)-rounds as

well as Newton–Raphson, BGFS and Brent numerical optimization
routines. The tree topology, branch lengths, substitution model
parameters and base frequencies are optimized. Individual ranks typ-
ically work on different models and parameters (on distinct parti-
tions of the dataset). We were, therefore, not able to devise an
Algorithm-Based Fault-Tolerant solution that would exhibit a rea-
sonable and manageable degree of software complexity.

Restarting failed sub-jobs as failure mitigation strategy is feasible
when the program at hand can be split up into separate small and
well-defined work packages which can easily be redistributed among
nodes and managed via a (possibly distributed) work queue.
RAxML-NG, however, applies a tightly coupled parallel iterative
optimization strategy which cannot easily be split up this way, if at
all. Finally, for deploying a checkpointing and restart strategy as pre-
sented here for RAxML-NG, the program has to regularly save its
state to disk or memory.

Checkpoint/restart approaches can be further classified into sys-
tem-level and application-level approaches. System-level approaches
are (almost) transparent to the application, but are agnostic of the
memory state subsets that can easily be recomputed at low computa-
tional cost (Hargrove et al., 2006; Roman, 2002). For instance, in
any tree inference program that conducts phylogenetic likelihood
calculations, the so-called conditional likelihood vectors (CLVs,
which store intermediate results of likelihood computations) domin-
ate the memory requirements of the program and can require tera-
bytes of memory in large-scale analyses (Jarvis et al., 2014; Misof
et al., 2014). However, as these CLVs can be efficiently recomputed,
they should not be saved in a checkpoint. We, therefore, chose to
substantially extend the existing application-level checkpointing that
was already implemented in RAxML-NG (Section 3.3.1) to be more
fine-granular as well as decentralized and therefore more scalable.
Further, we use a fault-tolerant MPI implementation to make user
interaction for restarts obsolete and lose substantially less work in
case of failure. This removes a major hurdle for scaling to Exascale
systems.

In general, we need to store the model parameters, branch
lengths and tree topology in a checkpoint. Typically, this data only
needs a few megabytes (Supplementary Material) and can be repli-
cated in the local main memory of each rank. We can, therefore,
store a full RAxML-NG checkpoint in the main memory of each
rank. This approach is called diskless checkpointing and has the ad-
vantage of being substantially faster than writing checkpoints to disk
(Plank et al., 1998).

In so-called coordinated checkpointing, all ranks of the program
write their checkpoints at the same time which comes at the cost of
additional synchronization. Gavaskar and Subbarao recommend
coordinated checkpointing for high-bandwidth, low-latency inter-
connections as they are common in modern HPC systems (Gavaskar
et al., 2013). Since the ranks in RAxML-NG are synchronizing thou-
sands of times per second anyway (Kozlov et al., 2015), we chose to
conduct coordinated instead of uncoordinated checkpointing.

The final design decision that needs to be taken, is whether to ei-
ther use spare cores for replacing failed nodes or to simply reduce
the number of nodes the job runs on upon failure. For example,
Teranishi et al. (2014) describe a framework for recovering from
failures by relying on available replacement processors. Making suf-
ficient replacement processors available, however, would constitute
a waste of resources in case there is no failure. Ashraf et al. (2018)
study the performance implications of replacing failed nodes versus
reducing the set of nodes. For their application they observed that
shrinking represents a viable alternative to replacement. The overall
CPU time required increased by a smaller degree when reducing the
number of nodes. This is because the failed nodes were available for
computations until the failure. We, therefore, redistribute the calcu-
lations to the remaining nodes upon failure in RAxML-NG.

We implemented fault tolerance for the most frequently used exe-
cution mode of RAxML-NG, that is, a phylogenetic tree search under
ML. In addition, we focus on the fine-grained tightly coupled MPI
parallelization scheme for supercomputers. Under this parallelization
scheme, all sites of a large whole genome or multi-gene alignment are
distributed via an appropriate load balancing algorithm (Kobert et al.,

Table 1. MTTF of petascale systems as reported by Gupta et al.

(2017)

System Nodes Cores MTTF

Jaguar XT4 (quad-core) 7832 31 328 36.91 h

Jaguar XT5 (four socket dual-core) 18 688 149 504 22.67 h

Jaguar XT6 (two socket 16-core) 18 688 298 592 8.93 h

Titan XK7 (16-core þ GPU) 18 688 560 640 14.51 h

MPI fault-tolerance mechanisms for phylogenetic inference 4057

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab399#supplementary-data


2014) to distinct MPI ranks, each running on a distinct physical core.
In the following, we describe our implementation of the diskless
checkpointing in Section 3.3 and the corresponding recovery mecha-
nisms in Section 3.4. We call the resulting modified code FT-RAxML-
NG (Fault Tolerant RAxML-NG).

3.2 The new MPI standard and user level failure

mitigation
The upcoming MPI standard 4.0 will support mechanisms to miti-
gate failures of ranks or network components. Currently, there exist
two actively developed MPI implementations which already support
failure mitigation: MPI Chameleon (Gropp, 2002) starting with ver-
sion 3.1 and User Level Failure Mitigation (ULFM) (Bland et al.,
2013). We chose ULFM as the MPI implementation to develop a
failure-mitigating version of RAxML-NG because the authors are
also working on the standardization of MPI 4.0 and ULFM’s failure
mitigation code has been merged into OpenMPI. We thereby hope
to be as forward compatible as possible. Researchers have already
used ULFM for other scientific software (Ali et al., 2016;
Engelmann et al., 2003; Kohl et al., 2017; Laguna et al., 2016;
Obersteiner et al., 2017).

ULFM reports failures by returning an error on at least one rank
which participated in the failed communication. This rank then
propagates the failure notification to the other ranks via a dedicated
MPI call. The next time a rank calls an MPI operation it will be noti-
fied that another rank revoked the communicator. Different ranks
can, therefore, be in different parts of the code when they detect the
failure. Next, all surviving ranks collectively create a new communi-
cator excluding the failed ranks (ULFM Specification, 2017).

ULFM detects hardware failures via several mechanisms, de-
pending, for example, on the interconnection type. One of the funda-
mental mechanisms to achieve this are regular heartbeat signals:
Ranks send messages called heartbeat signals at regular intervals to
each other in order to indicate that they are still alive. If a rank has
not sent any heartbeat signal for a specified amount of time—the
heartbeat timeout—its observer will report that it failed. The MPI
standard only mandates progress during MPI calls. For ULFM this
means that, for the failure detection to work, at least one thread per
rank has to enter an MPI function at regular intervals. If this is not
the case, a rank cannot guarantee to respond to multiple consecutive
heartbeat intervals. This would cause the rank to be falsely reported
as being dead. We observed this behavior when testing ULFM with
the unmodified (i.e. non-failure-mitigating) version of RAxML-NG
in preliminary tests. All runs aborted because of false-positive failure
reports. After consultation with the authors of ULFM, we adjusted
some ULFM runtime settings. We increased the heartbeat interval,
the heartbeat timeout and enabled a separate dedicated heartbeat
thread on each rank: a dedicated separate thread that executes on
each MPI rank and is solely responsible for sending heartbeat sig-
nals, that is, it is not conducting likelihood computations and does
only use a negligible fraction of the hardware resources on the core.
Dedicated heartbeat threads ensure MPI progress at all times. This is
because they are only responsible for sending heartbeats and can
therefore enter the MPI runtime at all times without having to wait
for the application to invoke an MPI function. In response to our dis-
cussion on the ULFM mailing list, the ULFM team published a tutor-
ial on this topic on the ULFM website (https://fault-tolerance.org/
2020/01/21/spurious-errors-lack-of-mpi-progress-and-failure-detec
tion/). After incorporating these changes into our configuration, we
observed a substantial reduction of false-positive failure reports. In
theory, these modifications come at the cost of performance. ULFM
will require more time to detect failures because of the increased
heartbeat timeout. The latency will also increase because multiple
threads are now invoking MPI calls. However, in our experiments,
the performance impact seems to be negligible (Fig. 2).

3.3 Fine-grained checkpointing
3.3.1 Modifications of original checkpointing in RAxML-NG

RAxML-NG already supports checkpointing. Thus, if a failure
occurs, one can restart the program from the last checkpoint.

However, these checkpoints are only written infrequently during the
tree search and model parameter optimization procedures (i.e. sev-
eral hours can pass between two checkpoints). To devise an efficient
fault-tolerant version of RAxML-NG we thus need to substantially
increase the checkpointing frequency. We assess the impact of differ-
ent checkpointing-frequencies on the runtime of FT-RAxML-NG in
the Supplementary Material.

The tree search state of RAxML-NG consists of the model par-
ameter values, the tree topology and the branch lengths of the cur-
rently best tree (i.e. the tree with the currently highest likelihood
score). The model parameters include the stationary frequencies, the
nucleotide transition rates and the rate heterogeneity model parame-
ters. By design of the parallelization (Kozlov et al., 2015), the tree
topology (including the branch lengths) being evaluated by the pro-
cessors is identical and consistent across all ranks at all times.
However, the currently best tree is not directly stored in memory.
We, therefore, need to implement mechanisms to recover this cur-
rently best tree. Furthermore, large-scale phylogenetic analyses are
typically partitioned, that is, different parts of the genome or indi-
vidual genes are assumed to evolve under distinct models. Thus, for
each partition, RAxML-NG estimates a separate, independent set of
model parameters (stationary frequencies, transition rates, etc.). The
model parameters of a partition are stored only at those ranks that
have been assigned at least one multiple sequence alignment (MSA)
column of the respective partition. Therefore, the model parameters
for a specific partition may only be saved by a single rank and can be
lost if that rank fails.

3.3.2 Mini-checkpointing

Our goal is to support failure mitigation for any set of ranks.
Therefore, a simple solution consists in storing the model parameters
of each partition at all ranks. Together with the copy of the current
best tree topology (below), we call this procedure ‘mini-checkpoint-
ing’. FT-RAxML-NG stores a copy of the most recent mini-check-
point in the main memory of each rank.

Each time a numerical optimization procedure (e.g. branch
length optimization, substitution rates optimization, etc.) updates
the model parameters of any partition, one dedicated rank per model
broadcast the updated model. All other ranks then save these param-
eters to memory, too. We experimentally assess the overhead
induced by introducing mini-checkpoints for model parameters and
mechanisms for restoring the tree search state in Section 4.2.2.

The model parameters of typical empirical datasets require a few
MiB in size (Supplementary Material). Thus, we expect the number of
partitions m to have a negligible impact on the runtime of a single
broadcast. It does, however, have an impact on the number of broad-
casts that FT-RAxML-NG needs to execute. The time required for
checkpointing model parameters is thus in Oðminðp;mÞ � TbcastðpÞÞ,
where p is the number of ranks.

As already mentioned, we perform mini-checkpointing each time
an optimization procedure updates the model parameters (Fig. 1).
The mini-checkpoints are, therefore, also consistent across all ranks
when we write a regular checkpoint to disk. Hence, we do not need
to collect the model parameters for regular checkpointing as restor-
ing them only constitutes a local operation that does not require any
additional communication.

3.3.2.1 Saving the currently best tree topology. All changes to the
tree topology are applied across all ranks simultaneously and con-
sistently. Hence, we do not need to broadcast them. RAxML-NG
does not explicitly store the currently best tree topology. A SPR
round modifies this tree topology and saves the moves needed to re-
store the best tree topology in a rollback list. Modifying this rollback
data structures to support restoring the best topology at the time of
the last mini-checkpoint would be overly complex. To simplify re-
covery, we thus chose to copy the currently best tree to a separate
rollback data structures each time this currently best tree changes.
As we do not need to broadcast the model parameters in this case,
this merely constitutes a local operation on each rank.

4058 L.Hübner et al.

https://fault-tolerance.org/2020/01/21/spurious-errors-lack-of-mpi-progress-and-failure-detection/
https://fault-tolerance.org/2020/01/21/spurious-errors-lack-of-mpi-progress-and-failure-detection/
https://fault-tolerance.org/2020/01/21/spurious-errors-lack-of-mpi-progress-and-failure-detection/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab399#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab399#supplementary-data


3.4 Failure recovery
If FT-RAxML-NG detects a failure during one of the model param-
eter optimization procedures or during an SPR-round that modifies
the tree topology, it will restart the computation from the last mini-
checkpoint. First, the surviving ranks need to agree on the ranks that
are still alive and restore the search to a valid state. Evidently, as lit-
tle computational work as possible should be lost because of a fail-
ure. FT-RAxML-NG thus needs to mitigate the failure, restore the
search state and resume the tree search without user intervention.

After ULFM has established a new communicator that contains
only the surviving ranks, the search is still in an invalid state as no
data has been redistributed or reloaded. Also, no rank is yet respon-
sible for calculating the likelihood scores of the alignment sites
assigned to the failed ranks. To simplify search state recovery, we
implement this as a local operation, that is, no communication be-
tween ranks is required until search state restoration has completed.

To restart the tree search, we re-execute RAxML-NGs load bal-
ancer (Kobert et al., 2014) that strives to determine an even distribu-
tion of the likelihood computation workload (the alignment sites
and/or partitions) across the MPI ranks. Then, we reload the MSA
data and finally, restore the search state. The load balancer redistrib-
utes the MSA sites to the reduced set of ranks. Each rank then loads
its respective MSA sites using partial loading. In partial loading,
each rank selectively reads only those parts of the MSA file from
disk that it requires for its fraction of the likelihood computations.
To restore the search state, we locally copy over the model parame-
ters from the last successful mini-checkpoint and the currently best
tree from the local backup copy. Additionally, we need to invalidate
and recompute internal caches, for example, the CLVs at the inner
nodes of the tree.

Note, that the now changed number of nodes – among for ex-
ample compiler optimizations or available hardware instructions–
may hinder the bit-wise reproducibility of the result (Shen et al.,
2020). We further elaborate on this in the Supplementary Material.

3.5 Failures during checkpointing or recovery
If FT-RAxML-NG detects a failure during mini-checkpointing, it will
restart from the preceding mini-checkpoint. Upon broadcasting of the
model parameters, the ranks gather the received models in a tempor-
ary copy. All ranks then determine if a node failed during these broad-
casts using MPI_Comm_agree(), which consists of three consecutive
collective operations. If a failure occurred during checkpointing or the
first two of these collective operations, a failure will be reported at all
ranks. In this case, we discard the temporary checkpoint copies and
start over from the preceding checkpoint that is still valid and stored
in the working copy. If a failure occurs during the last collective oper-
ation which is part of MPI_Comm_agree(), all ranks defer reporting
this failure to the next MPI call. At this point, all ranks are aware of
the failure and can subsequently report it. As the first two collective
operations of MPI_Comm_agree() did not report an error, the check-
points stored in the temporary copies are valid and consistent across
all ranks. Mini-checkpointing the tree topology is a local operation, if
a rank fails during this step, the created mini-checkpoints is still valid
on all other ranks. The surviving ranks can then restart the computa-
tion after detecting the failure.

The checkpoint-to-disk procedure will only fail if the master
rank fails while writing the checkpoint to disk. In this case, the last
checkpoint will still be valid and can be used to restart the search. If
any other rank fails while the master rank writes the checkpoint, we
will detect this failure at the beginning of the next optimization
round. In this case, we can restart the computation from the check-
point that was just written.

As recovery is a local operation, it completes on each rank that
does not crash. If additional ranks fail during the recovery, all sur-
viving ranks will first complete the restoration process and subse-
quently handle the additional failure(s).

4 Results

4.1 Experimental setup
We conduct our experiments on the ForHLR II (https://www.scc.kit.
edu/en/services/10835.php) and SuperMUC-NG (https://doku.lrz.de/
display/PUBLIC/SuperMUC-NG) supercomputers. The ForHLR II
comprises 1178 worker nodes. Each node is equipped with two
sockets of Intel Xeon E5-2660 v3 (Haswell) Deca-Core CPUs. All
nodes are connected via an InfiniBand 4X EDR interconnection

Fig. 2. Violin plot of the time required by ULFM to detect and recover from a node

failure. This includes the time for all ranks to agree on which nodes have failed

(handled by ULFM) and creating the new communicator. We measured 2 heartbeat

timeouts: 300 ms (default and false-positives) and 1000 ms (no false-positives).

Measurements marked with a * had additional nodes allocated which our code did

not use, leaving them free for ULFM. The hbt (heartbeat thread) symbol indicates

whether we enabled a thread responsible solely for sending heartbeat signals. Each

measurement was performed at least 49 times

Fig. 1. Frequency of checkpointing. On the left, an overview of the RAxML-NG tree

search mode is given. RAxML-NG writes checkpoints to disk before each step of the

optimization procedure and when optimization is completed. These are the regular

to-disk-checkpoints which were already implemented. To obtain up-to-date model

parameters, the master rank has to collect them first. Depending on the dataset and

number of ranks used, each of these steps can take multiple hours to complete. By

introducing mini-checkpointing, we increase the frequency at which model parame-

ters are shared. The ranks now broadcast them after each sub-step, denoted by the re-

spective model symbol. Additionally, the tree is saved each time it is changed, that is,

after adjusting the branch lengths and during SPR rounds. Regular checkpoints are

still written do disk, but do not need to collect and contain the model parameters, as

these are already consistent across all ranks. This is a simplified representation of the

procedure. All branch lengths are, in fact, also optimized during each of the model

parameter optimization steps. In addition, branch lengths are also being optimized

during the SPR-rounds. The a-parameter is the shape parameter of the Gamma distri-

bution that models among site rate heterogeneity (Yang, 1994)

MPI fault-tolerance mechanisms for phylogenetic inference 4059

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab399#supplementary-data
https://www.scc.kit.edu/en/services/10835.php
https://www.scc.kit.edu/en/services/10835.php
https://doku.lrz.de/display/PUBLIC/SuperMUC-NG
https://doku.lrz.de/display/PUBLIC/SuperMUC-NG


(Steinbruch Center for Computing (SCC), 2020). The files are served
by two file server nodes from a DDN ES7K RAID with 14 volumes.
The SuperMUC-NG comprises 6336 worker nodes. Each node is
equipped with 2 sockets of Intel Xeon Platinum 8174 (Skylake)
CPUs. All nodes are connected via a 100 Gbit s–1 OmniPath
interconnect.

We use OpenMPI v4.0, ULFM v4.0.2u1, and GCC 9.2 for our
experiments where not mentioned otherwise. FT-RAxML-NG is
based upon RAxML-NG c2af275ae6 on branch coarse released on
March 5, 2020. See Supplementary Material for more details on the
hardware and software setup as well as the RAxML-NG/FT-
RAxML-NG invocations.

4.1.1 Datasets used

For our experiments, we use empirical protein [amino acid (AA)]
and desoxyribonucleic acid (DNA) datasets with a varying number
of taxa (36 up to 815 species/sequences), alignment lengths (20 364
up to 21 410 970 sites) and partition counts (1 to 4116) [see
the Supplementary Material for a description; all datasets are
available Supplementary Material (https://figshare.com/s/
6123932e0a43280095ef)].

4.1.2 Failure simulation

We simulate failures by sending the SIGKILL signal to the respective
MPI processes when using ULFM v4.0.2u1 and by splitting the com-
municator when using OpenMPI v4.0 (see Supplementary Material
for options and a respective rationale).

4.2 Experimental results
4.2.1 ULFM overhead

We determined the impact of the heartbeat timeout and heartbeat
thread settings on the failure recovery time of ULFM by repeatedly
simulating failures and measuring the time until a new communica-
tor is created. (Fig. 2). First, we measured the time required for fail-
ure recovery under the default configuration (300 ms no heartbeat
thread) on 4 nodes on the ForHLR II. Enabling the heartbeat thread
decreased detection time from 8 s (median) to 900 ms (median). As
the heartbeat thread also decreases the probability of false-positive
failures, we therefore decided to keep this setting for all subsequent
experiments. Next, we investigated the impact on failure detection
speed when setting the timeout to 1000 ms. Contrary to our expecta-
tions, increasing the heartbeat interval did not change the result sig-
nificantly (effect below standard deviation). We also investigated if
slow failure detection is related to the computational load on the
cores. For this, we executed three runs with different heartbeat
thread and timeout settings. In these experiments, we did not use all
available cores for phylogenetic likelihood computations to exclu-
sively reserve some for the ULFM runtime. This did however not
change the ULFM failure recovery times. We also performed one ex-
periment with 400 ranks to assess failure detection scalability. With
the heartbeat thread enabled and a 300 ms timeout, 11.4% of the
recoveries required more than 2 s and 8.9% of the recoveries
required more than 90 s. These results are probably highly depend-
ent on the specific HPC system used and should, therefore, not be
generalized. Laguna et al. (2016) reported that ULFM required 11 s
to recover when using 260 ranks on another system. These delays
are induced by the underlying fault-tolerant MPI implementations.
When more optimized fault-tolerant MPI implementations become
available, FT-RAxML-NG will recover from failures faster.

To evaluate the slowdown induced by using a fault-tolerant MPI
implementation, we also compare the runtimes of unmodified
RAxML-NG using ULFM with heartbeat threads enabled and dis-
abled versus OpenMPI v4.0 as a baseline on three different datasets
and PE counts (Table 2). We chose OpenMPI v4.0 as reference be-
cause ULFM v4.0.2u1 is based upon OpenMPI v4.0. The slowdown
induced by ULFM ranges between –0.6% and 8.6% of the reference
runtime. The additional slowdown induced by using a separate
heartbeat thread compared to not using one ranges between –0.7%
and 2.2%-points of the reference runtime. The ULFM run that is

faster than the OpenMPI reference run might be due to measurement
fluctuations, but we did not further investigate this.

Finally, we observed that ULFM sometimes reported a single
rank failure but ULFM’s MPI_Comm_shrink() did not return the
same communicator on all ranks. Multiple ranks reported their rank
id as being 0 and a world size of 1. We reported this behavior on the
ULFM mailing list and the authors of ULFM reproduced and con-
firmed the bug (Bosilca, 2020). There is no patched version available
yet (As of 2020-11-30). For this reason, we use OpenMPI v4.0 as de-
fault MPI implementation and simulate failures as described in the
Supplementary Material for all performance evaluation experiments
where we need to simulate failures.

4.2.2 Overhead of mini-checkpointing

We also assess the slowdown induced by mini-checkpointing
(model-parameter updates and updates of the best known tree) as a
function of the number of models (partitions) and ranks used. We
perform these experiments on the ForHLR II supercomputer.

As the number of model-parameter updates and tree updates per-
formed during a tree search is not the same, we show the overall
amount of time spent performing either of those two in relation to
the overall runtime of the tree search itself (Fig. 3). For all test data-
sets mini-checkpointing requires <0.3% of overall runtime. In the
tree searches we executed, RAxML-NG performed 29 to 5814
model parameter updates and 242 to 14 203 updates of the currently
best known tree.

4.2.2.1 Time required for restoring the search state. We further pro-
file the different phases of the recovery procedure on the ForHLR II
and show the results in Figure 4. For this, we simulate failures as
described in Section 4.1.2 and measure the time required for distinct
phases of the recovery procedure. For each run with 20 ranks, we
simulate 19 rank failures; for each run with at least 40 ranks, we
simulate at least 39 rank failures.

We expect the time required for reloading the MSA data to in-
crease with the product over the total number of sites and the num-
ber of taxa. On the ForHLR II, two file servers (Supplementary
Material) handle disk accesses. This holds independently of the num-
ber of ranks used for the run. Thus, we expect the time for loading
the MSA data to be independent of the number of ranks used. We
further expect the time required for invalidating and recomputing
the caches (e.g. CLVs) to increase with the number of sites allocated
to each rank.

The time required for restoring the search state is below 100 ms
in 5 out of 8 runs, including 1 with 400 ranks. The remaining three
runs are on datasets with more than 500 000 sites as well as at least
95 taxa, and required up to 532 ms. The restoring times depend on
the number of sites and the number of taxa. Considering DNA and
AA datasets separately, the total restoring times required show a per-
fect rank correlation with the product of the number of taxa times
the number of sites. That is, if a dataset A has more number of taxa
times number of sites than a dataset B, A required more time to re-
cover than B. The number of sites assigned to each rank directly

Table 2. Influence of ULFM on the runtime of unmodified RAxML-

NG

Slowdown [%]

Dataset Nodes Ranks OpenMPI ULFM ULFM

[s] hbt: ON hbt: OFF

ChenA4 8 160 5582 0.1 –0.6

SoltD10 18 360 1437 1.9 2.5

ShiD9 1 20 20 911 6.4 8.6

Notes: We show the runtime using OpenMPI v4.0 and ULFM v4.0.2u1

with heartbeat thread (hbt, a dedicated thread for sending heartbeat signals)

enabled and disabled. The slowdown is calculated relative to OpenMPI v4.0.

4060 L.Hübner et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab399#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab399#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab399#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab399#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab399#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab399#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab399#supplementary-data


influences the time required for updating the caches. For example,
updating the CLVs of the MisoD2a dataset (Section 4.1.1) which
has over 62 000 sites per rank required 258 ms.

4.2.2.2 Time required for reloading the MSA data. We also investi-

gate the time required to (re-)load MSA data from disk on the
ForHLR II in a separate experiment as the MSA is (re-)loaded from
a central disk array. Therefore, reloading these data can constitute a

bottleneck. We measure the MSA loading time required for different
datasets on ForHLR II. We distinguish between the initial (first time

a rank loads data) load operation and further load operations (a
rank loads data it has not previously loaded).

In each experiment, the load balancer decides which rank loads
which part of the MSA. This is the initial load operation. Next, the

load balancer shifts the data destination ranks by one, that is, rank 2
now loads the data of rank 1, rank 3 the data of rank 2 etc. We re-
peat this process until each rank has loaded each part of the MSA

exactly once. We call all data loading operations after the initial one
‘further load operations’. Figure 5 shows the average time and stand-

ard deviation required to load a rank’s part of the MSA. The
ForHLR II system has two separate file server nodes connected to
the compute nodes via an EDR InfiniBand network. The initial load

operation represents an upper bound for the loading operation as
the cache of the file system does not contain any copy of the data
yet. The repeated loading of parts of the MSA, albeit from different
ranks, is representative of the subsequent read performance as the
file system cache already contains a copy of the data.

We provide the file sizes of the corresponding MSA files in the
Supplementary Material. For example, the DNA dataset PeteD8 has
3 011 000 sites and 174 taxa and a size of 500 MiB. This file size cor-
responds to the expected encoding size of 8 bit per site and per taxon.

In case of frequent failures, the cluster’s file system will cache the
MSA data. This reduces the potential performance gain by an alter-
native approach that would store the data redundantly in the main
memory of the compute nodes. If few failures occur, the MSA data
will be accessed infrequently. In this case, the 1.2 s overhead for
reloading the data can be amortized. As we performed these meas-
urements on ForHLR II only, they cannot be generalized.

With the goal of avoiding these disk accesses, we also imple-
mented and tested a technique for tree-based compression of MSAs
described by Ané et al. (2005). This would allow to store a com-
pressed copy of the entire MSA on each rank and could thus yield
reloading the MSA from disk upon failure obsolete. Unfortunately,
we found that the compression ratio (l ¼ 6; r ¼ 7, not normally dis-
tributed) varies substantially across different empirical datasets.
Thus, we conclude that this dedicated phylogeny-aware compression
scheme is impractical for addressing the problem at hand (see
Supplementary Material for further details).

4.2.2.3 Overall runtime overhead. We measure the runtime over-
head of FT-RAxML-NG running under OpenMPI v4.0 and ULFM
v4.0.2u1 compared to unmodified RAxML-NG running under
OpenMPI v4.0. We use the SuperMUC-NG supercomputer and up
to 4000 ranks for these experiments. If no failure occurs, that is the
only additional work is the creation of mini-checkpoints, FT-
RAxML-NG is 1.00 6 0.04 times slower when using OpenMPI v4.0
and 1.7 6 0.6 times slower when using ULFM v4.0.2u1. We also
measure the runtime overhead for 10 (simulated) failures. We use
OpenMPI v4.0 for these measurements and do not reduce the num-
ber of compute ranks following simulated failures. This way we can
measure the overhead induced by the recovery procedure. In our
measurements, FT-RAxML-NG with 10 (simulated failures) was
1.4 6 0.3 times slower than unmodified RAxML-NG. For an in
depth discussion of these results as well as an assessment of the nu-
merical stability of the results, see Supplementary Material.

5 Discussion and future work

We present the, to the best of our knowledge, first study on
fault-tolerant parallel phylogenetic inference and one of the

Fig. 4. Time required for recovery from a checkpoint. ‘LoadAssignmentData’ is the

time required to load the MSA data from disk for which a rank is responsible.

‘RedoPartitionAssignment’ is the time required for re-running the load balancer.

‘TreeinfoInit’ is the time required for updating the TreeInfo data structure, including

hundreds of memory allocations. ‘TreeinfoUpdatePartialsAndCLVs’ is the time

required for updating cached likelihoods. ‘Other’ includes, for example, the time

required for memory management and updating the data structures for mini-

checkpointing

Fig. 5. Time required for reloading the MSA from disk on the ForHLR II. Blue dots

and error bars (‘initial load op.’) indicate the time required to load the rank’s part of

the MSA the first time these data are accessed by any rank, that is, on program start-

up. The red dots and error bars (‘further load op.’) represent the time it took a rank

to load a part of the MSA it had never loaded before, but that had already been

loaded by other ranks. These data can be assumed to be cached by the file servers

Fig. 3. Proportion of overall runtime required for model parameter broadcasting and

tree updates (‘mini-checkpointing’). The mean (dots) and standard deviation (error

bars) of the fraction of overall runtime required for mini-checkpointing across all

ranks is shown. Each node has 20 CPU cores and executes 20 MPI ranks. The empir-

ical datasets are described in the Supplementary Material. Only if the number of

models and the number of ranks increases, the time required for redistributing model

parameters also increases

MPI fault-tolerance mechanisms for phylogenetic inference 4061

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab399#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab399#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab399#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab399#supplementary-data


first studies on fault tolerance for Bioinformatics applications
in general. It required approximately three person-months to
design the fault-tolerant version of RAxML-NG. We estimate
that it would have required two person-months if the first au-
thor had been familiar with the RAxML-NG code beforehand.
We demonstrate that our fault-tolerant implementation can
successfully handle and recover from multiple successive fail-
ures, including during critical parts of the program (e.g. during
checkpointing and recovery). It can indeed also handle failures
of rank 0 and has no limit regarding the number of ranks that
can fail simultaneously or successively. As long as there is at
least one rank still alive, the tree inference will terminate. In add-
ition, we provide a detailed study of the associated overheads for
using a fault-tolerant MPI version, executing the additional check-
pointing mechanisms, re-loading and redistributing data from disk
etc. With the goal of avoiding the disk-access when reloading the
alignment data during recovery, we implemented MSA compres-
sion. As the compression ratio was not as good as expected, we
might explore other options to accelerate data reloading in the fu-
ture. The program slowdown due to the additional checkpointing
machinery amounts to 1.00 6 0.04 on average, while the overall
slowdown including the deployment of ULFM amounts to
1.7 6 0.6 on average.

Given a sufficiently high frequency of job failures, we believe
that a slowdown of 1.00 6 0.04 is alleviated by the corresponding
savings in man hours and a shorter walltime-to-completion as man-
ual job re-submissions are not required any more. The failure recov-
ery time of but a few seconds is negligible assuming an MTTF of at
least a few hours. Overall, the runtime overhead induced by check-
pointing as well as the recovery times scale well with an increasing
number of ranks. Nonetheless, the ULFM overhead of 70% 6 60%
is unacceptably high. As ULFM is still in its beta version, we are con-
fident that this overhead will be reduced in future versions as it is
critical for designing fault-tolerant parallel production-level
applications.

Future work will focus on implementing and assessing alterna-
tive data redistribution and redundant storage mechanisms.

Funding

This work was partly supported by the Klaus Tschira Foundation. This pro-

ject has received funding from the European Research Council (ERC) under

the European Union’s Horizon 2020 research and innovation program (Grant

agreement No. 882500).

The authors gratefully acknowledge the Gauss Center for Supercomputing

e. V. (www.gauss-center.eu) for funding this project by providing computing

time on the GCS Supercomputer SuperMUC-NG at Leibniz Supercomputing

Center (www.lrz.de). This work was supported by a grant from the Ministry of

Science, Research and the Arts of Baden-Württemberg (Az: 33-7533.-9-10/20/

2 to P.S. and A.S.) to Peter Sanders and Alexandros Stamatakis.

Conflict of Interest: none declared.

References

Ali,M.M. et al. (2016) Complex scientific applications made fault-tolerant

with the sparse grid combination technique. Int. J. High Perform. Comput.

Appl., 30, 335–359.

Ané,C. et al. (2005) Missing the forest for the trees: phylogenetic compression

and its implications for inferring complex evolutionary histories. Syst. Biol.,

54, 146–157.

Ashraf,R.A. et al. (2018) Shrink or substitute: handling process failures in

HPC systems using in-situ recovery. In: 26th Euromicro International

Conference on Parallel, Distributed and Network-based Processing (PDP),

Cambridge, UK, 21-23 March 2018.

Bland,W. et al. (2013) Post-failure recovery of MPI communication capability.

Int. J. High Perform. Comput. Appl., 27, 244–254.

Bosilca,G. (2020) Post pbSToy94RhI/xUrFBx_1DAAJ on the ULFM mailing list.

Bosilca,G. et al. (2009) Algorithmic based fault tolerance applied to high per-

formance computing. J. Parallel Distributed Comput. 69: 410–416.

Cappello,F. et al. (2014) Toward exascale resilience: 2014 update.

Supercomput. Front. Innovations, 1, 5–28.

Dongarra,J. et al. (2015) Fault tolerance techniques for high-performance

computing. In Fault-Tolerance Techniques for High-Performance

Computing (pp. 3-85). Springer, Cham.

Engelmann,C. et al. (2003) A diskless checkpointing algorithm for super-scale

architectures applied to the Fast Fourier Transform. In: Proceedings of the 1st

International Workshop on Challenges of Large Applications in Distributed

Environments, CLADE ’03, IEEE Computer Society, USA, pp. 47.

Gavaskar,S.P. et al. (2013) A survey of distributed fault tolerance strategies.

Int. J. Adv. Res. Comput. Commun. Eng., 2., 4323–4327.

Gropp,W. (2002) MPICH2: a new start for MPI implementations. In:

Proceedings of the 9th European PVM/MPI Users’ Group Meeting on

Recent Advances in Parallel Virtual Machine and Message Passing Interface,

Springer-Verlag, Berlin, Heidelberg 7.

Gupta,S. et al. (2017) Failures in large scale systems. In: Proceedings of the

International Conference for High Performance Computing, Networking,

Storage and Analysis, Association for Computing Machinery, New York,

NY, USA, Article 44, pp. 1–12.

Hargrove,P.H. et al. (2006) Berkeley lab checkpoint/restart (BLCR) for Linux

clusters. J. Phys. Conference Ser., 46, 494–499.

Jarvis,E.D. et al. (2014) Whole-genome analyses resolve early branches in the

tree of life of modern birds. Science, 346, 1320–1331.

Kobert,K. et al. (2014) The divisible load balance problem and its application

to phylogenetic inference. In: Lecture Notes in Computer Science. Springer,

Berlin Heidelberg, pp. 204–216.

Kohl,N. et al. (2017) A scalable and extensible checkpointing scheme for mas-

sively parallel simulations. Int. J. High Perform. Comput. Appl. 33, 571–589.

Kozlov,A.M. et al. (2015) ExaML version 3 a tool for phylogenomic analyses

on supercomputers. Bioinformatics, 31, 2577–2579.

Kozlov,A.M. et al. (2019) RAxML-NG: a fast, scalable and user-friendly tool for

maximum likelihood phylogenetic inference. Bioinformatics, 35, 4453–4455.

Laguna,I. et al. (2016) Evaluating and extending user-level fault tolerance in

MPI applications. Int. J. High Perform. Comput. Appl., 30, 305–319.

Lu,C.-D. (2013) Failure data analysis of HPC systems. Comput. Sci. arXiv pre-

print arXiv:1302.4779.

ULFM Specification. (2017) http://fault-tolerance.org/wp-content/uploads/

2012/10/20170221-ft.pdf (21 February 2017, date last accessed).

Misof,B. et al. (2014) Phylogenomics resolves the timing and pattern of insect

evolution. Science, 346, 763–767.

Obersteiner,M. et al. (2017) A highly scalable, algorithm-based fault-tolerant

solver for gyrokinetic plasma simulations. In: Proceedings of the 8th

Workshop on Latest Advances in Scalable Algorithms for Large-Scale

Systems–ScalA 2017. ACM Press., New York, NY, USA

Plank,J.S. et al. (1998) Diskless checkpointing. IEEE Trans. Parallel Distrib.

Syst., 9, 972–986.

Roman,E. (2002) A survey of checkpoint/restart implementations. Technical

Report. Lawrence Berkeley National Laboratory.

Schornbaum,F. et al. (2018) Extreme-scale block-structured adaptive mesh re-

finement. SIAM J. Sci. Comput. (SISC), 40, C358–C387.

Shalf,J. et al. (2011) Exascale computing technology challenges. In: Lecture

Notes in Computer Science. Springer, Berlin Heidelberg, pp. 1–25.

Shen,X.-X. et al. (2020) An investigation of irreproducibility in maximum like-

lihood phylogenetic inference. Nat. Commun., 11, 1–14.

Smith,A. et al. (2006) Andy: a general, fault-tolerant tool for database search-

ing on computer clusters. Bioinformatics, 22, 618–620.

Snir,M. et al. (2014) Addressing failures in exascale computing. Int. J. High

Perform. Comput. Appl., 28, 129–173.

Stamatakis,A. (2014) RAxML version 8: a tool for phylogenetic analysis and

post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313.

Steinbruch Center for Computing (SCC). (2020) Konfiguration des ForHLR II.

https://www.scc.kit.edu/dienste/forhlr2.php (21 February 2017, date last

accessed).

4062 L.Hübner et al.

http://fault-tolerance.org/wp-content/uploads/2012/10/20170221-ft.pdf
http://fault-tolerance.org/wp-content/uploads/2012/10/20170221-ft.pdf
https://www.scc.kit.edu/dienste/forhlr2.php
https://www.scc.kit.edu/dienste/forhlr2.php


Teranishi,K. et al. (2014) Toward local failure local recovery resilience model

using MPI-ULFM. In: Proceedings of the 21st European MPI Users’ Group

Meeting on–EuroMPI/ASIA 2014. ACM Press, New York, NY, USA

Varghese,B. et al. (2014) Automating fault tolerance in high-performance com-

putational biological jobs using multi-agent approaches. Comput. Biol.

Med., 48, 28–41.

Vijay,M. et al. (1997) Algorithm-based fault tolerance: a review.

Microprocessors Microsyst., 21, 151–161.

Yang,Z. (1994) Maximum likelihood phylogenetic estimation from DNA

sequences with variable rates over sites: approximate methods. J. Mol.

Evol., 39, 306–314.

MPI fault-tolerance mechanisms for phylogenetic inference 4063


	l
	l
	tblfn1

