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ABSTRACT

The term ‘super enhancers’ (SE) has been widely
used to describe stretches of closely localized en-
hancers that are occupied collectively by large num-
bers of transcription factors (TFs) and co-factors,
and control the transcription of highly-expressed
genes. Through integrated analysis of >600 DNase-
seq, ChIP-seq, GRO-seq, STARR-seq, RNA-seq, Hi-C
and ChIA-PET data in five human cancer cell lines, we
identified a new class of autonomous SEs (aSEs) that
are excluded from classic SE calls by the widely used
Rank Ordering of Super-Enhancers (ROSE) method.
TF footprint analysis revealed that compared to clas-
sic SEs and regular enhancers, aSEs are tightly
bound by a dense array of master lineage TFs, which
serve as anchors to recruit additional TFs and co-
factors in trans. In addition, aSEs are preferentially
enriched for Cohesins, which likely involve in stabi-
lizing long-distance interactions between aSEs and
their distal target genes. Finally, we showed that
aSEs can be reliably predicted using a single DNase-
seq data or combined with Mediator and/or P300
ChIP-seq. Overall, our study demonstrates that aSEs
represent a unique class of functionally important en-
hancer elements that distally regulate the transcrip-
tion of highly expressed genes.

INTRODUCTION

Enhancers are short, accessible genomic loci that distally
regulate the transcription of target genes that are in some
cases located hundreds of kilobases away (1). In a highly-
regulated and motif-dependent manner, enhancers are rec-
ognized and directly bound by a myriad of TFs, which
facilitate the recruitment of additional TFs, co-activators

and/or co-suppressors to these sites in trans. Through chro-
matin looping, these enhancer-bound transcriptional com-
plexes can make physical contact with other enhancers
and/or promoters, and dynamically regulate the transcrip-
tional initiation and elongation of the target genes (1).
Highlighting the physiological importance of enhancer el-
ements, disease-associated genetic variants including well-
established cancer-predisposing alleles are frequently en-
riched within enhancer regions (2,3).

There are estimated to be thousands of active enhancers
in a given mammalian cell, many of which function co-
operatively to regulate target gene expression (4,5). Ear-
lier chromatin profiling studies described the existence of
stretches of closely located enhancers with similar chro-
matin accessibility, which were termed clusters of regulatory
elements (COREs) (6,7). Subsequent studies showed that
certain large clusters of enhancers, often spanning tens of
thousands of kilobases, collectively drive high-level expres-
sion of lineage-specific genes, and classified these groups
of enhancers as SE (8–10). Compared to regular enhancers
(rEh), SE exhibit disproportionately higher binding signals
of the mediator complex subunit MED1, the histone acetyl-
transferase p300, and the bromodomain and extra-terminal
motif (BET) family member BRD4, as well as increased lev-
els of H3K27ac, H3K4me1 and DNase I hypersensitivity
(8–11). In addition, SEs have been shown to produce high
levels of bi-directional, short-lived enhancer RNA (eRNA)
transcripts, which play active roles in maintaining enhancer
activities (12–14).

A number of seminal studies have found that SEs drive
the expression of lineage-specific master TFs, which in turn
preferentially bind to and activate SEs, forming positive
feedback loops or so-called core transcriptional networks
in a broad range of normal and cancer cells (8,9,15,16).
During cancer initiation and progression, the SE landscape
has been shown to undergo extensive remodeling (17–19),
which is further altered by drug treatments (20–22). Based
on the tendency of master oncogenic TFs to bind to and be
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regulated by SEs, a number of studies have successfully uti-
lized motif enrichment coupled with transcript proximity at
SEs to predict candidate master oncogenic TFs (11,19,23–
25).

Concerted efforts by the Encyclopedia of DNA Elements
(ENCODE) consortium, the Roadmap Epigenetic Project
and individual groups have generated chromatin immuno-
precipitation followed by sequencing (ChIP-seq) data for
hundreds of TFs in multiple widely-used cell lines. Com-
parative analysis of TF binding profiles within the same
cell lines revealed that certain genomic loci, commonly re-
ferred to as high occupancy target (HOT) sites, are bound
by dozens to hundreds of TFs and co-factors (26–31). While
some studies posited this phenomenon as technical artifacts
caused by high DNA accessibility or GC-rich sequences
(32,33), increasing evidence indicates that the HOT sites
are functional genomic loci that drive the transcription of
highly expressed, functionally important target genes (26–
30). Notably, the majority of HOT sites fall outside the
classically defined SE regions (27), suggesting that distinct
mechanisms and factors likely drive the trans-assembly of
mega transcriptional complexes at these stand-alone sites.

Through integrated analysis of >600 publicly available
DNase-seq, ChIP-seq, Global nuclear run-on sequencing
(GRO-seq) and three-dimensional (3D) chromatin interac-
tion data from five commonly used cancer cell lines, we re-
defined trans-acting high-occupancy enhancers considering
of both the numbers of factors bound and the relative signal
intensities for each factor. Our systematic analysis revealed
that the re-defined high-occupancy enhancers, while phys-
ically distinct from the classic SE, exhibit all the expected
functional characteristics of SEs. We further showed that
even without chromatin-binding data from a large num-
ber of TF and co-factors, trans-acting high-occupancy en-
hancers can be reliably identified by ranking the signals
from DNase-seq, and/or ChIP-seq of several commonly
studied transcriptional co-activators. Based on the results
of our analysis, we propose to expand the SE definition to
include trans high-occupancy enhancers, and re-divide SE
into three subclasses of cis, trans and dual SE, reflecting
their distinct modes of actions.

MATERIALS AND METHODS

ChIP-seq data collection and processing

All available TF and histone ChIP-seq processed datasets
aligned to the human reference genome (GRCh38) were
downloaded from the ENCODE data portal (see Supple-
mentary Table S1 for ENCODE experiment references).
To expand the repertoire of ChIP-seq data, Cistrome Data
Browser (34) was used to identify high quality public
ChIP-seq data for TFs, cofactors, and histone marks that
were not included in the ENCODE database. All non-
ENCODE datasets (see Supplementary Table S1 for Se-
quence Read Archive (SRA) references) were processed
using the standardized ENCODE-DCC pipeline avail-
able on Github (https://github.com/ENCODE-DCC/chip-
seq-pipeline2) according to their recommended guidelines.
Briefly, raw fastq files were aligned to GRCh38 using the
Burrows Wheeler Aligner (BWA, v0.7.17) algorithm (35).
Post-alignment filtering was conducting using Samtools

(v1.9) (36) to filter alignments using a MAPQ threshold of
30 and picard-tools-2.10.6 (https://broadinstitute.github.io/
picard/) to remove duplicates. Peak calling was then car-
ried out using the SPP algorithm, where peak rankings
and replicate consistency were determined using the irrepro-
ducible discovery rate (IDR) package (37,38). The resulting
optimal narrowpeak files or replicated peak files for TF and
histone datasets, respectively, were used for future analyses.

ChIP-seq data enhancer classification

Enhancer identification. To identify active enhancers in
each cell line, we first subsetted DNase-seq peaks that
overlapped with H3K27ac ChIP-seq peaks using findOver-
lapsOfPeaks from the ChIPpeakAnno R package (39,40).
The resulting H3K27ac + DNase peaks were further ex-
cluded for promoters by removing any peaks located within
+/−2.5 kb from any transcription start site (TSS), calcu-
lated using annotatePeakInBatch from the ChIPseeker R
package (41). The DNase peaks that passed both steps of
filtering were defined as active enhancers and used for all
downstream analysis (see Supplementary Table S2 for de-
tailed statistics of peaks retained throughout all the steps of
filtering).

Identification of super high occupancy enhancers. To assess
the binding occupancy and strength of all TF, cofactors,
and histone marks at all active enhancer regions, we used
ChIPpeakAnno R package (39,40) to overlap all ChIP-seq
peaks with the active enhancer peaks resulting in a final ma-
trix displaying the active enhancer regions (rows) and the
corresponding signal value of each factor (columns) at that
enhancer peak. For all enhancer regions where a factor did
not have an overlapping peak the signal value was assigned
to zero. Signal values for each factor were normalized using
min-max normalization, resulting in a signal value range
for all factors between 0 and 1. To calculate the occupancy
score (OS) only TF and cofactor ChIP-seq data was con-
sidered (histone data was excluded). The OS was calculated
using the following formula:

OS(E) = NEx
∑

f

SignalE

where N is the number of factors, f, bound at enhancer, E.
The calculated OS for each enhancer is dependent on the
number of factors bound and the signal strength of each
bound factor, as indicated by the sum of the factor signal
values. By adapting the ROSE R script (https://bitbucket.
org/young computation/rose/src/master/), enhancers were
ranked according to their OS values and plotted. The OS
score at the curve’s inflection point was deemed the cutoff
and all enhancers with an OS score greater than the cutoff
were classified as high occupancy enhancers.

Defining aSE, cSE and dSE. The ROSE algorithm
(8,10) was utilized to identify classic SE regions using
H3K27ac ChIP-seq data under default settings (stitch-
ing distance: 12.5 kb; tss exclusion zone size: 0). Next,
H3K27ac + DNase peaks that overlapped with the classi-
cally defined SE regions were extracted. Those also meeting
the cutoff of super high occupancy enhancers from above
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were classified as dSE, and the rest were named cSE. Fi-
nally, the super high occupancy enhancers did not overlap
with the classically defined SE regions were renamed as aSE.
Of note, as substantially fewer TF and cofactor ChIP-seq
datasets are available for A549 and HCT116, super high oc-
cupancy enhancer classifications are less definitive in these
two cell lines relative to HepG2 and MCF7.

DNase-seq footprinting and motif analysis

To identify high-confidence cell line-specific TF footprints,
we filtered cell line-specific footprints (with a false discovery
rate of 0.01) for footprints present in the ENCODE con-
sensus footprint dataset, a high-confidence dataset identi-
fied by analyzing DNase-seq profiles across 243 human cell
and tissue types (42). Consensus cell type-specific footprints
were then overlapped with enhancer class peaks to calcu-
late the number of TF footprints per enhancer peak, foot-
print width, motif bitscore, and distance between footprints
within the same enhancer peak. To eliminate redundancy
within motifs, motifs were classified based on their DNA
binding domain (DBD) family. Footprints with multiple
matched DBD family motifs were assigned to one DBD
family based on the highest motif bitscore value. To de-
termine direct TF binding, all enhancer class peaks were
annotated with the DBD families present in the overlap-
ping footprints. For all TF ChIP-seq peaks that overlap
enhancer peaks, if the corresponding enhancer peak was
annotated with a matching DBD family footprint, the TF
was considered to bind directly to that enhancer peak, oth-
erwise the TF was marked as binding indirectly. All bar
and scatter plots were generated using the R package gg-
plots2 (43). To generate the DNase-seq signal profile plots
for individual motif footprints, we utilized the Hmm-based
IdeNtification of Transcription factor footprints (HINT)
software (44).

GC, CpG, and conservation score analyses

Homer (v4.11) software was used to calculate GC and CpG
percentages for enhancer class peaks. Vertebrate phastCon
scores for the GRCh38 genome were downloaded from
UCSC table browser (45,46). All plots were generated us-
ing the R package ggplot2 (43).

DNase-seq peak width calculation

To calculate the unrestricted peak width for all DNase-seq
regions, we re-called DNase-seq peaks to permit peaks of
variable widths using the findpeaks -region option from
the Homer peak-calling software (47). The newly-called
variable-width DNase-seq peaks were overlapped with all
enhancer groups and the distribution of peak widths was
plotted using the R package ggplot2 (43).

Identification of 3D chromatin clusters using Hi-C or ChIA-
PET data

Hi-C or POLR2A ChIA-PET BED files containing signifi-
cant 3D interactions loops from HepG2, A549 and MCF7

cells were downloaded from GEO (Supplementary Table
S1). Left and right arms of the chromosomal loops were
separately intersected with active enhancers and TSSs us-
ing bedtools window under the default setting of 1 kb gap.
Loops overlapping with the same enhancers or TSSs on ei-
ther arm were further grouped into ‘clusters’, which were
used in all the comparisons unless stated otherwise. For
classification of clusters by enhancers, clusters were named
non-exclusively as cSE-, dSE-, aSE- or rEh- containing clus-
ters, respectively, as long as they overlap with at least one
cSE, dSE, aSE or rEh. For each cluster, all the expressed
genes (FPKM > 2) (48) whose TSSs overlap with that clus-
ter were considered target genes of all the enhancers that
overlap with the same cluster. Enhancer counts per clus-
ter represented the number of unique enhancers within each
cluster; Contacts per cluster represented the sum of all con-
tacts detected from all the loops assigned to each cluster;
Cluster span was calculated by subtracting max(end) by
min(start) of all the loops for each cluster.

Super high occupancy enhancer prediction

To determine factor signals that best predict super-high-
occupancy enhancers (aSEs and dSEs), we first ranked all
active enhancer peaks according to the factor signal value
(highest to lowest). For any active enhancers where fac-
tor peaks were not present, the signal value was assigned
zero. Ranked enhancer peaks were then annotated based on
their enhancer class and a receiver-operating characteristic
(ROC) curve was plotted to evaluate the factor signal rank-
ing for its predictive performance in identifying aSEs and
dSEs. To calculate the optimal, factor-specific signal cutoff
for predicting aSEs and dSEs, we implemented the follow-
ing: Active enhancers were ranked according to the factor
signal value at that peak (lowest to highest), with enhancers
lacking overlapping factor peaks assigned a signal value of
zero. The ranked signal value was plotted and the global
inflection point was defined as the value where a line tan-
gent to that point has a slope equal to the maximum signal
value minus the minimum signal value divided by the total
number of peaks: (Signalmax – Signalmin)/# peaks, similar
to the ROSE method but without stitching. Next, we cal-
culated a local inflection point for the lower portion of the
curve, using the global inflection point as the new maximum
value. Using this newly-defined cutoff, the true positive
and false positive rates were calculated for each indicated
factor.

Visualization and statistical analysis

Individual ChIP-seq, GRO-seq, and STARR-seq signal
profile plots and corresponding heatmaps were generated
using the computeMatrix and plotHeatmap from the deep-
Tools suite (49). Heatmaps depicting the normalized fac-
tor signal values for all factors across all individual en-
hancer peaks or summarized across all enhancer class peaks
was generated using the ComplexHeatmap R package (50)
and GraphPad Prism, respectively. Individual factor signal
value normalization was conducted using min-max normal-
ization. P values for all boxplots and violin plots were calcu-
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lated based on the Wilcoxon signed-rank test using the pair-
wise.wilcox.test function from the R stats package. Graph-
Pad Prism and BedTools2 were used to generate heatmaps.

RESULTS

Identification of enhancers bound by exceptionally high levels
of transcription factors and co-regulatory proteins

Inspired by the Ranking Of Super Enhancer (ROSE)
method (9), which is commonly used to define classic SEs
by stitching together long stretches of enhancers followed
by ranking the ChIP-seq signal intensities from one of the
active enhancer markers (i.e. H3K27ac, H3K4m1, BRD4,
p300 or MED1), we sought to unbiasedly identify super-
high-occupancy enhancers by ranking all enhancers ac-
cording to the combined signal intensity and genomic oc-
cupancy levels of all high-quality DNase-seq and ChIP-
seq data from TFs and co-factors available through GEO
in five widely-studied human cancer cell lines represent-
ing five different tumor types: HEPG2 (hepatocellular car-
cinoma cells), HCT116 (colorectal adenocarcinoma cells),
A549 (non-small cell lung cancer adenocarcinoma cells),
SK-N-SH (bone-marrow metastatic cells from a patient
with neuroblastoma), and MCF7 (luminal breast cancer
cells). To ensure uniformity, all non-ENCODE data were
re-processed according to the highly stringent ENCODE
pipeline and removed if they did not pass quality con-
trol measures (Supplementary Table S1, see methods). We
called DNase-seq peaks demarcated by H3K27ac and lo-
cated more than 2.5 kb from TSS as active enhancers (Fig-
ure 1A). To quantify the co-occupancy level of TFs and
co-factors, we calculated the occupancy score (OS) by mul-
tiplying the number (N) of factors bound at each active
enhancer (E) by the sum of normalized peak signals of
these factors (f). By ranking the active enhancers by their
OS values, we identified a subset of enhancers with excep-
tionally high levels of factor binding, which represent be-
tween 5.7% and 11.3% of all active enhancers in the five cell
lines examined (Figure 1B, C, Supplementary Figure S1A,
Table S2).

Notably, in the five cell lines examined only 14–34% of
the newly defined super-high-occupancy enhancers identi-
fied by our algorithm qualify as classic SEs based on the
standard ROSE method (9) (Figure 1C). We hypothesized
that these newly defined enhancers may represent a distinct
class of SEs that function in parallel with classically de-
fined SE to maintain oncogenic transcription. To enable
head-to-head comparisons between super-high-occupancy
enhancers and the classic SEs, we re-categorized all ac-
tive enhancers into four classes: We termed super-high-
occupancy enhancers not captured by the standard ROSE
method as autonomous SEs (aSEs) to reflect their ability
to recruit exceptionally high levels of factors independently,
and conversely renamed classic SE that did not qualify as
super-high-occupancy enhancers as constituent SEs (cSEs)
given their proximal locations to one another and their co-
operative nature in regulating transcription (8–10). Finally,
we refer to SEs called by both methods as dual SEs (dSEs),
and the remaining enhancers as rEhs. By this classification
system, aSEs, cSEs, dSEs and rEhs represent 3.6–8.8%, 7.9–

16.5%, 1.3–2.6% and 75.9–82.1% of all active enhancers, re-
spectively (Supplementary Table S2).

Notably, compared to cSEs and rEhs, aSEs and dSEs are
not only co-bound by significantly higher numbers of dif-
ferent factors, but the average signal values for most fac-
tors present at these sites are also significantly higher (Fig-
ure 1D, Supplementary Figure S1B, C), implying increased
copies and/or binding affinity of individual factors. Consid-
ering the majority of super-high-high-occupancy enhancers
were excluded from classic SE regions (i.e. aSEs) in all five
cell lines (Figure 1C), we set out to compare the functional
characteristics underlying the four subtypes of reclassified
enhancers.

The newly-identified autonomous super enhancers bear the
functional hallmarks of classic super enhancers

Classic SEs are known to exhibit exceptionally high levels of
enrichment for P300, H3K27ac, BRD4, the mediator com-
plex, and RNA Pol II (9–11). Indeed, all three newly classi-
fied SE subtypes exhibit significantly elevated MED1, P300,
BRD4, H3K27ac and RNA Pol II signals compared to
rEhs across all five cell lines examined (MED1: 2.4–15-fold;
P300: 1.4–8.4-fold; BRD4: 1.3–2.7-fold; H3K27ac: 2.6–7.3-
fold; RNA Pol II: 1.8–5.5-fold; P < 10–10 for all; Figure 2A
and Supplementary Figure S2A).

Another key feature associated with classic SEs is their
heightened ability to transcribe bi-directional, short-lived
eRNA, which can be detected by GRO-seq (12,14). Analysis
of GRO-seq data available for four of the cell lines included
in our study revealed consistently elevated eRNA expres-
sion levels in both directions of the three newly classified SE
subtypes relative to rEh (aSE: 1.4–1.7-fold; dSE: 1.1–2.5-
fold; cSE: 1.7–2.1-fold; P < 10–23 for all; Figure 2B). Inter-
estingly, although the eRNA signals sharply drop off to the
baseline level within 1–2 kb from aSE, the decline in eRNA
signals from cSE and dSE is much more gradual (Figure
2B), likely due to the accumulative eRNA signal from ad-
jacent cSE and/or dSE. In agreement with this, aSE are lo-
cated on average >1 kb from the most adjacent enhancer
of any kind and >1 Mb from the closest classic SE regions,
while cSE and dSE, which be definition exist within classic
SE regions, are typically present within <1 kb of the closest
enhancer (Supplementary Figures S2B, C).

High-throughput reporter assays such as self-
transcribing active regulatory region sequencing (STARR-
seq) have enabled quantification of individual enhancer
activities across the entire genome (51). Comparison of
STARR-seq signals among the four enhancer classes
showed that relative to rEhs, individual aSEs and dSEs but
not cSEs drive dramatically higher levels of transcription
across the four cell lines examined (aSE: 1.6–2.3-fold,
P < 10–11 for all lines; dSE: 1.7–2.6-fold, P < 10–7 for all
lines except HCT116; cSE: 0.8–1.0-fold, P = 0.9–0.03;
Figure 2B). There results re-enforce the notion that while
cSEs require cooperation of adjacent enhancers to main-
tain heightened transcriptional activities that are lost when
individual cSEs are placed in isolation in STARR reporter
constructs, aSEs and dSEs are capable of establishing
highly active, stand-alone transcriptional complexes at
individual enhancer sites.
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Figure 1. Re-classification of enhancers according to the overall occupancy levels of TFs and co-regulatory proteins. (A) Approach to calculate Occupancy
Score (OS). For each active enhancer, an OS was calculated by multiplying the number of factors bound and the sum of factor signal values. (B) Plot of OS
values and rankings across all active enhancers in HepG2 cells. All enhancers that surpass the cut-off for super-high occupancy enhancers are highlighted
in red. (C) Venn diagrams comparing the overlaps between super-high occupancy enhancers defined by OS values in (B) and classic SEs defined by the
standard ROSE method for the indicated cell lines. aSE: Super-high occupancy enhancers outside the classic SE regions; cSE: Enhancers within the classic
SE regions but do not qualify as super-high occupancy enhancers; dSE: Super-high occupancy enhancers within classic SE regions; rEh: Enhancers outside
the classic SE regions and do not qualify as super-high occupancy enhancers. (D) Heatmap displaying the normalized signal values for the indicated factors
across all four re-classified active enhancer types in HepG2 cells.
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Figure 2. The newly-defined aSEs exhibit the functional hallmarks of super enhancers. (A) Heatmaps and density plots comparing DNase-seq and ChIP-
seq signals from the indicated transcriptional co-activators and H3K27ac within ±1.5 kb of all four classes of enhancers in HepG2 cells. Values represent
SE group signal fold enrichment over rEh. (B) Density plots of average GRO-seq (top) and STARR-seq (bottom) signals within ±2 kb of all four classes
of enhancers in the indicated cell lines. Values represent SE group signal fold enrichment over rEh.
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Autonomous and dual super enhancers are anchored by a
dense array of tightly-bound lineage-specific master tran-
scription factors

Next, we investigated potential mechanisms that could ex-
plain how individual aSEs are able to anchor such a large
number of TFs and co-activators. Previous analysis of HOT
loci in individual cell lines suggest that higher GC contents
may contribute to the increase in TF binding affinity at
these sites (26,27,32). However, we did not detect a consis-
tent increase in GC contents or CpG islands in aSE and dSE
peaks compared to those for cSEs and rEhs (Supplementary
Figure S3A-B), even though aSEs and dSEs associate with
significantly broader and stronger DNase-seq peaks com-
pared to cSEs and rEhs across the five cell lines (Figure 2A,
Supplementary Figures S2A, S3C).

TFs making direct contacts with DNA are known to
protect their bound-motifs from DNase cleavage, leav-
ing so-called footprints within DNase hypersensitive peaks
(44,52). Taking advantage of the newly published high-
resolution TF footprint maps for HepG2, MCF7 and A549
cells by ENCODE (53,54), we compared the abundance,
distribution and specificity of all of the identified TF foot-
prints within the four types of enhancers. Even though there
is no distinct difference in the overall number of known
TF motifs per peak among the enhancer classes (Supple-
mentary Figure S3D), aSE and dSE peaks on average con-
tain significantly more footprints than cSE and rEh peaks
(Figure 3A, Supplementary Figure S4A), indicating higher
numbers of TFs directly binding to aSE and dSE compared
to cSE and rEh. Moreover, the average width of the TF foot-
prints within aSE and dSE peaks are considerably larger
than those within cSE and rEh peaks (Figure 3B, Supple-
mentary Figure S4B), whereas the distances between adja-
cent footprints are significantly smaller within aSE and dSE
peaks relative to those within cSE and rEh peaks (Figure
3C, Supplementary Figure S4C). Finally, the TF footprints
within aSEs and dSEs matched significantly better to their
canonical DNA-binding motifs than those within cSEs and
rEhs (Supplementary Figures 3D, S4D), which may also
contribute to the increased binding specificity of anchoring
TF at these sites.

Master lineage and oncogenic TF are known to be highly
enriched at classic SEs (8,9,15,16). To test whether these
TFs also contribute to the formation of stand-alone aSEs,
we plotted the percentage of aSE peaks bound by each TF
(as shown by ChIP-seq) against the percent of binding by
the same TF at its canonical motif (as predicated by DNase
footprinting) in HepG2 cells, which have the most available
TF ChIP-seq data. Strikingly, among 151 TFs examined,
100 were detected at >50% of all aSEs peaks, with 26 bind-
ing to >95% of aSE peaks (Figure 3E, Supplementary Ta-
ble S3). Importantly, bona fide hepatic lineage-specific TFs
including members of the nuclear hormone receptor (NR)
family (55), are not only among the most enriched TFs but
also exhibit the highest percent of binding to their canoni-
cal motifs (Figure 3E-F, Supplementary Table S3), indica-
tive their roles as anchoring TFs at aSEs. While very simi-
lar enrichment patterns were observed at dSE sites (Figure
3E), not a single TF is associated either directly or indirectly
with >50% of cSEs or rEhs and meets the threshold of 50%
binding to its canonical sites (Figure 3E).

To verify whether lineage-specific TFs are also respon-
sible for anchoring aSEs and dSEs in other cell lines, we
compared the frequency of DNASE footprints detected at
each enhancer class in MCF7 and A549 cells. Similar to
HepG2 cells, the C2H2 and NR motif families are the top
most differentially enriched footprints at aSEs and dSEs
compared to rEhs in MCF7 cells (Supplementary Figure
S4E). In contrast, in KRAS mutant A549 cells, the bZIP
motif family is the most differentially enriched footprint at
aSEs and dSEs compared to cSEs and rEhs (Supplementary
Figure S4E-F). Consistent with this observation, analysis of
available A549 ChIP-seq data for several AP-1 TFs showed
that together they occupy >99% of aSE and dSE, but only
are present in <50% of cSE or rEh (Supplementary Figure
S4G). Given the well-established role of the AP-1 transcrip-
tional machinery as a core downstream effector of MAPK
signaling (9,56–58), our results highlight the potential key
involvement of aSEs and dSEs in KRAS-driven tumorige-
nesis.

In light of the lineage-specific footprint enrichment sig-
natures at the three SE subtypes, we compared the speci-
ficity of enhancer classification across cell lines. Consistent
with previous reports (59–62), large fractions of enhancers
that met the criteria of cSEs in one cell line were either
completely inactive or not classified as either cSEs or dSEs
in other cell lines (Supplementary Figure S4H). Similarly,
the majority of enhancers qualified as aSEs or dSEs in one
cell line did not reach the cutoff of aSEs or dSEs in other
cell lines, although, generally higher percentages of aSEs
and dSEs remain at least as active enhancers in other cell
lines as compared to cSEs and rEhs (aSE: 63%; dSE: 69%;
cSE: 40%; rEh: 39%; Supplementary Figure S4H), consis-
tent with an increased conservation PhastCon score at these
sites (Supplementary Figure S4I).

Together, our analysis suggests that while all three SE
subtypes likely operate in a lineage-specific manner, the
highly conserved aSE and dSE sites tend to be directly and
strongly bound by a dense array of master lineage TFs,
which serve as anchors for subsequent recruitment of a large
number of additional TFs and co-factors in trans (Figure
3G).

Autonomous and dual super enhancers are enriched for both
transcriptional co-activators and co-repressors

To gain further insights into the differences among the
newly defined SE subtypes, we analyzed the binding fre-
quency and signal strength of a broad spectrum of tran-
scriptional co-factors and chromatin remodelers. Com-
pared to cSEs, aSEs and dSEs exhibited significantly higher
binding by MED1, P300 and other transcriptional co-
activators in terms of both overall percentages and signal
intensity (MED1: 1.9–2.8-fold enrichment over cSE; P300:
4.3–5.4-fold enrichment over cSE; Supplementary Figures
S5A, B). In HepG2 cells, the co-activators H3K27 demethy-
lase KDM6A, H3K16 acetyltransferase KAT7, H4K16
acetyltransferase KAT8, and H3K4 methyltransferase com-
plex subunit ASH2L were detected at over 89%, 60%,
90% and 95% of aSE and dSE regions compared to <22%,
19%, 32% and 38% of cSEs, respectively (Supplementary
Figure S5A). Similarly, in HCT116 cells the H3K4 methyl-
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Figure 3. aSEs and dSEs are densely occupied by lineage-specific anchoring TFs. (A) Percent of enhancers within each enhancer class that contain the
indicated number of DNase footprints per enhancer peak in HepG2 cells. (B−D) Box plot showing average DNase footprint width (B), distance between
footprints (C), or motif bitscore (D) across all HepG2 enhancer classes. ns: not significant; *P < 0.05; ***P < 0.0005. All P-values determined using
Wilcoxon rank sum test. (E) Plots showing percent of enhancer peaks bound by individual TFs as determined by ChIP-seq and percent of occupied peaks
that contain DNase footprints matching to their canonical motif(s) at each enhancer class in HepG2 cells. Any TFs that bind to >50% of all peaks within the
enhancer class AND whose motif are present more than 50% of the occupied peaks (upper right quadrant of blue dotted lines) are classified as anchoring
TFs. Pink dots circled by grey dotted line all belong to C2H2 Zinc Finger family. Red dots circled by grey dotted line are all nuclear receptors (NR). Two
representative anchoring (HNF4A) and non-anchoring (ELF3) TFs are marked in blue. (F) Density plots of average bias-corrected DNase-seq signals at
±100 bp from the center of the HNF4A (top) and ELF3 (bottom) footprints across all enhancer classes in HepG2 cells. (G) Schematic summarizing the
differences in factor binding and eRNA transcription at aSE/dSE compared to rEh.



12204 Nucleic Acids Research, 2021, Vol. 49, No. 21

transferase KMT2D is present in 90% of aSE and 93% of
dSEs versus 49% of cSEs (Supplementary Figure S5B). In-
terestingly, transcriptional co-repressors, including compo-
nents of the SIN3A and NCoR co-repressor complexes,
are also enriched at aSEs and dSEs relative to cSEs and
rEhs in all five cell lines (Supplementary Figures S5A, B).
The heightened co-occupancy by both transcriptional co-
activators and co-repressors at aSEs and dSEs indicate that
their transcriptional activities are subjected to complex reg-
ulation. In agreement with this theory, despite the clear
increase in occupancy by multiple acetyltransferases and
H3K4 methyltransferases at aSEs and dSEs compared to
cSEs (Supplementary Figures S5A, B), all three SE sub-
types displayed similar signal values for activating his-
tone marks such as H3K4me1, H3K9ac, H3K4me2 and
H3K27ac (Supplementary Figure S5C). These results high-
light the importance of dissecting how the dynamic inter-
actions between individual co-activator and co-repressor
complexes modulate overall SE activity.

Autonomous and dual super enhancers engage in cohesin-
mediated long-distance interactions and promote the high ex-
pression of distal target genes

Cohesin is a conserved, ring-like complex whose core com-
ponents consist of SMC1A, SMC3, RAD21 and STAG1/2,
and is recruited to accessible genomic loci by the NIPBL-
MAU2 cohesin-loading complex (9,63–65). Through inter-
actions with mediator and master TF at non-CTCF sites,
cohesin has also been shown to stabilize chromatin looping
and long-distance enhancer-promoter interactions at highly
transcribed genes (19,66–70). Strikingly, in all the cell lines
with cohesin data available, aSEs and dSEs were prefer-
entially bound by the cohesin-loading factor NIPBL and
other core cohesin subunits such as RAD21, SMC1A, and
SMC3, while simultaneously replete of CTCF (SMC3: 4.5–
5.1-fold enrichment over rEh; SMC1A: 3.3–3.9-fold enrich-
ment over rEh; RAD21: 2.8–3-fold enrichment over rEh;
NIPBL: 13.4–18.1-fold enrichment over rEh; CTCF: 0.9–
1.6-fold enrichment over rEh; Figure 4A, Supplementary
Figure S6A). In contrast, cSEs and rEhs displayed much
less binding by NIBPL and other cohesion subunits (Fig-
ure 4A, Supplementary Figure S6A).

This intriguing observation prompted us to examine how
individual types of enhancers make contacts with other ge-
nomic loci utilizing existing 3D chromatin interaction data.
Recent studies indicate that chromatin loops often form
hyper-connected clusters, and enhancers within the same
clusters tend to function in unison to co-regulate target
genes located within the same clusters (71,72). Based on
these reports, we first identified high-confidence chromatin
loops detected by either high throughput chromatin con-
formation capture (Hi-C: HepG2 and A549) or POL2RA
chromatin interaction analysis with paired-end tag sequenc-
ing (ChIA-PET: MCF7), and grouped together any chro-
matin loops with one or both arms located within 1 kb of a
common set of TSS and/or enhancers, essentially collaps-
ing a network of inter-connected chromatin loops into a
single cluster (see methods). Strikingly, even though aSEs
and dSEs combined represent <8% of all enhancers, they

are present in nearly half of all enhancer-containing clus-
ters (Figure 4B, Supplementary Figure S6B). In contrast,
cSEs, which encompasses 13–17% of all enhancers, are only
present in 25–32% of all clusters (Figure 4B, Supplementary
Figure S6B). Another major difference is how frequently
each enhancer class co-occurs with enhancers of the same
type in each cluster that they belong to: Whereas a large
majority of aSEs and dSEs are present in clusters with very
low aSE or dSE enhancer counts, respectively, cSEs are en-
riched in clusters with very high cSE enhancer counts (Fig-
ure 4C, Supplementary Figure S6C). Nevertheless, similar
to clusters that contain cSEs and/or dSEs, aSE-occupied
clusters span significantly longer distance, contain signifi-
cantly more loops per cluster, and form significantly more
contacts per cluster than clusters occupied by rEhs (Figure
4D−F, Supplementary Figure S6D-F). At the individual
loop level, SE-occupied loop arms, regardless of subtypes,
also consistently make stronger contacts with the opposite
arms (Figure 4G, Supplementary Figure S6G). Intriguingly,
among cSE-occupied clusters or loops, the major also con-
tain aSEs or dSEs and form significantly more contacts than
those without aSEs or dSEs (Supplementary Figure S6H-I),
suggesting that aSEs and dSEs may play dominant roles in
stabilizing long-range chromatin interactions.

Comparisons POL2RA ChIA-PET signal at enhancer
sites revealed that all SE subtypes, exhibit substantially
more POL2-associated interactions compared to rEh sites
in MCF7 cells (Supplementary Figure S7A). Correspond-
ingly, genes located within the same clusters as any of the
three SE subtypes are expressed at significantly higher lev-
els than genes clustered with rEhs or no distal enhancers
in all the cell lines examined (Figure 4H, Supplementary
Figure S7B, C). Among genes regulated by cSE-containing
clusters, expression levels are generally higher when the
clusters are co-occupied by aSEs and/or dSEs compared
to those without aSEs and dSEs (Supplementary Figure
S7D−F), suggesting that the presence of aSEs and dSEs
further boosts the transcription activities of cSE clusters.
Finally, RAD21-depletion significantly reduced the tran-
scriptional output from genes that cluster with cSEs, dSEs
or aSEs but had no or opposite effects on the transcrip-
tion of genes associated with rEhs or no enhancers, and on
eRNA production at enhancer sites (Supplementary Figure
S7G).

Together, these results strongly support the notion that
whereas cSE require the cooperative actions of proximally
located other cSEs or dSEs to establish long-distance con-
tacts, stand-alone aSE are capable of anchoring a large
number of TFs, co-factors and the cohesin complex in trans,
through which engage in highly robust, focal long-range ge-
nomic interactions to sustain the transcription of distal tar-
get genes (Figure 5B).

Autonomous and dual super enhancers can be reliably pre-
dicted using DNase-seq and ChIP-seq data from Mediator
and P300

By integrating a large number of chromatin accessibility,
ChIP-seq and other types of genomic datasets, we have
identified a new class of super-high-occupancy enhancers
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Figure 4. aSEs and dSEs engage in cohesin-mediated long-distance interactions and promote the high expression of distal target genes. (A) Density plots
of ChIP-seq signals from the indicated cohesin-associated factors at all enhancer classes in HepG2 cells. Values represent SE group signal fold enrichment
over rEh. (B) Pie chart (left) displaying the percent of active enhancers belonging to each SE subtype from Figure 1C, euler diagram (middle) displaying
the percent of 3D chromatin clusters containing each SE subtype based on Hi-C data, and lollipop plot (right) displaying the ratio of 3D cluster count to
enhancer count for each SE subtype in HepG2 cells. (C−G) Corresponding density (left) and box (right) plots of indicated parameters of 3D chromatin
clusters containing each SE class based on Hi-C data from HepG2 cells. ns: not significant; *P < 0.05; **P < 0.005. ***P < 0.0005. All P-values determined
using Wilcoxon rank sum test. (H) Violin plots of the expression levels of all genes (left) or the highest expressed gene (right) within each Hi-C cluster
across all Hi-C clusters containing each SE class in HepG2 cells. Bars represent mean value. ns: not significant; **P < 0.005. ***P < 0.0005. All P-values
determined using Wilcoxon rank sum test.
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Figure 5. DNase, Mediator, and P300 Signals are highly effective predictive marks for aSEs and dSEs. (A) Receiver Operating Characteristic (ROC)
curves displaying the predictive sensitivity and specificity (left) and scatter plot showing the true positive and false positive rates of predictions based on
signal rankings (right) of the indicated chromatin accessibility data or ChIP-seq data from transcriptional co-activators and histone marks alone or in
combination. Cutoff values for enhancer predictions were determined by ranking all active enhancers by the signal values to calculate the first inflection
point of the curve, followed by calculating a second inflection point (cutoff value) of the bottom half of the curve using the first inflection point as the
maximum value. (B) Working model displaying unique features in the 3D chromatin clusters associated with aSE and dSE. Our analysis suggests that aSE
and dSE are broad accessible regions that serve as major anchoring points for lineage TFs, cohesin complexes and other co-factors, through which engage
in extensive long-distance interactions with other enhancer and promoters and promote the transcription of highly-expressed genes.
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that possess all the functional hallmarks of SEs but falls
outside the classically defined SE regions. Given that the
availability of chromatin accessibility or ChIP-seq datasets
is limited for most cell lines and tissues, it is important to de-
velop a new prediction method for super-high-occupancy
SEs that does not require a large number of datasets. To
this end, we ranked all four types of enhancers from HepG2
cells according to their signals in DNase-seq, ATAC-seq or
ChIP-seq from several commonly studied factors, assessed
the sensitivity and specificity of each dataset in predicting
aSEs and dSEs. Area Under the Curve (AUC) analysis re-
vealed that signals from DNase-seq or ChIP-seq of P300 or
MED1 achieved an AUC >0.89, corresponding to a >90%
true positive rate for identifying aSEs and dSEs (Figure
5A). In contrast, CTCF, which has minimal overlap with
aSE and dSE peaks, showed a poor predictive value with an
AUC of 0.52 and <10% true positive rate (Figure 5A). Ad-
ditionally, ranking active enhancers by ATAC-seq signals
or active enhancer histone marks H3K27ac and H3K4me1
also proved to be less predictive of aSEs and dSEs compared
to DNase, P300 and MED1 signals (Figure 5A). These find-
ings are consistent with our earlier observation of specific
enrichment of DNase, P300, and MED1 but not active his-
tone marks at aSEs and dSEs relative to cSEs and rEhs (Fig-
ure 2A, Supplementary Figure S2A). Finally, we showed
that combining DNase with MED1 or P300 further reduced
the false discovery rate from >30% to ∼20% (Figure 5A),
suggesting that in cells or tissues where the numbers of
ChIP-seq data are limited, at aSEs and dSEs can be reli-
ably identified using DNase-seq data combined with a sin-
gle ChIP-seq data against MED1 or P300.

DISCUSSION

First proposed in 2012, the concept of SE has become
widely adopted into the scientific community, with roughly
400 publications and counting implicating SE in regula-
tion of many important biological processes including em-
bryonic development, cell differentiation, tumorigenesis,
and therapy resistance. SE are classically defined as long
stretches of active enhancers that are physically tethered
together by multivalent, mega transcriptional complexes
composed of numerous TFs and co-factors, which promote
the transcription of distally localized lineage-specific genes
through chromatin looping. Taking advantage of the large
number of published ChIP-seq data from five commonly-
used cancer cell of distinct lineages, we ranked enhancers
based on both the numbers of factors bound and the rel-
ative signal intensities from each factor, and identified a
set of enhancers meet all the functional criteria of SEs but
are not captured by the widely adopted ROSE method. We
termed these enhancers aSEs based on their ability to in-
dependently recruit many TFs and assemble mega tran-
scriptional complexes in trans. Among classic SEs identi-
fied by the ROSE method, we re-classified those that also
met the criteria of aSEs as dSE, while renaming the rest as
cSE. Notably, as dSEs represent overlaps between our newly
identified super-high-occupancy enhancers and the classi-
cally defined SEs, they were considered a separate enhancer
class for comparison purposes in this initial study. However,
given that dSEs share most if not all the physical and func-

tional characteristics of aSEs, they could be considered a
subset of aSEs in future studies.

Our in-depth analysis revealed that compared to cSEs
and rEhs, aSEs and dSEs display dramatically higher lev-
els of chromatin accessibility, as well as binding by TFs,
MED1, P300 and other co-activators (Figure 2, Supple-
mentary Figure S2). Among the three subtypes of SEs, dSEs
exhibit the highest levels of chromatin accessibility and co-
activator bindings (Figures 2, Supplementary Figure S2),
suggesting that their proximity to other cSEs and/or dSEs
could further boost the assembly of mega transcriptional
complexes at these sites. Interestingly, relative to cSEs, aSEs
and dSEs also exhibit increased binding by transcriptional
co-repressors including several HDAC-containing histone
deacetylase complexes (Supplementary Figure S5). A re-
cent study by Gryder et al. showed that the recruitment of
HDACs to SE is necessary for preventing aberrant ‘spread-
ing’ of H3K27ac to adjacent loci, which is critical for main-
taining proper 3D chromatin architecture and enhancer-
promoter contacts(1,73–77). Additionally, we observed in-
creased enrichment of chromatin remodeling proteins at
aSE and dSE regions (Supplementary Figure S5). In par-
ticular, multiple components of the cohesin complexes are
strongly enriched at aSE and dSE sites (Figure 4, Sup-
plementary Figure S5). As cohesin has a well-established
role in chromatin organization through DNA loop extru-
sion, it is plausible to assume cohesin complexes enriched
at aSEs and dSEs play a direct role in facilitating their long-
distance interactions. Indeed, we found that despite repre-
senting < 8% percentage of all enhancers, aSEs and dSEs
are disproportionally involved in nearly 50% of all chro-
matin interactions (Figure 4B, Supplementary Figure S6B).
Moreover, cSE-containing chromatin clusters that include
dSEs or aSEs make significantly stronger contacts com-
pared to those without dSE/aSE and are associated with
higher target gene expression (Supplementary Figures S6I,
S7D−F), suggesting that dSE/aSE may serve primary an-
choring sites for long-distance interactions that involve cSE.
Finally, we showed that silencing of RAD21 significantly
reduced the transcriptional outputs from genes contacted
by all three SE subtypes (Supplementary Figure S7G), im-
plying a functional role of the cohesin complex in pro-
moting transcription of SE-regulated genes. While further
study is necessary to determine how cohesin is recruited
and trapped at dSE/aSE, a recent study showed that the
yeast cohesin complexes undergo phase separation in the
presence of long-stretches of DNA (69), hinting that the
cohesin complexes may be attracted and retained through
multi-valent interactions with the large accessible clusters of
DNA tethered together by mega transcriptional complexes
assembled at SE sites.

Phase-separation has been increasingly recognized as a
key mechanism in concentrating a large number of SE
and co-factors and facilitating in long-distance interac-
tions at classically defined SE sites (16,66,78). Transient
phase-separated 1–2 MDa transcriptional complexes have
been shown to assemble in trans at specific chromatin ‘hot
spot’ regions in response to certain stimuli (79–81). The
phenomenon has been elegantly demonstrated in estrogen-
stimulated MCF7 breast cancer cells, where DNA-bound
estrogen receptor � (ER�) initiates the assembly of the so-
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called MegaTrans complexes comprised of a large number
of TF, co-activators, RNA Pol II, eRNA, and ribonucleo-
proteins, all bound in trans (66,80). Given the extraordinar-
ily high density of factors present at aSE (Figures 1 and 2,
Supplementary Figures S1−S3), it is reasonable to postu-
late that concentration-driven phase separation may occur
at aSEs, similar to what has been observed at classic SE and
MegaTrans sites (16,66). Indeed, aSE/dSE-enriched fac-
tors including MED1, RNA Pol II and cohesin have been
shown to form concentration-dependent phase separated
droplets in vitro or in vivo (69,80,82,83). Interestingly, in
MCF7 cells where MegaTrans complexes were mostly stud-
ied, aSEs share very little overlap with MegaTrans hotspots
(not shown), consistent with the fact that unlike MegaTrans
complexes, aSE peaks are stable, conserved, highly accessi-
ble genomic regions typically anchored by more than three
lineage TF as shown through DNase footprinting (Figure
3, Supplementary Figure S4). It is worth noting, however,
ChIP-seq experiments capture the average signals of the
entire cell population. Further studies using single cell ge-
nomics and other advanced imaging techniques will be ex-
tremely useful in establishing cellular heterogeneity and the
dynamics of the transcriptional complex assembly and dis-
assembly at aSE and dSE sites.

By integrating 3D chromatin interaction data with
RNAseq, we showed that similar to cSEs and dSEs, aSEs
are involved in extensive, highly robust long-distance inter-
actions with highly transcribed genes (Figure 4, Supplemen-
tary Figure S6). Additionally, cSE-containing clusters may
depend on the presence of aSEs and/or dSEs to sustain
long-distance interactions and high transcriptional activity
at target genes (Supplementary Figures S6, S7), strength-
ening the evidence that aSEs and dSEs are critical compo-
nents of the regulatory architecture and therefore may play
important roles in cancer cell survival. Classic SEs, which
are highly enriched for BRD4, show heightened sensitiv-
ity to BET inhibitors (34). In contrast, aSEs show variable
BRD4 binding (Supplementary Figure S2A) and therefore
may not exhibit the same levels of sensitivity to BET in-
hibitors. Therefore, it could be of high therapeutic relevance
to identify means to either co-target all SEs or selectively
disrupt transcription programs driven by aSEs.

In summary, this study provides evidentiary support for
expanding the classification of SEs to include stand-alone
aSE and exposes a number of unique traits associated with
this newly defined SE subclass. We demonstrate that aSE
can be reliably identified by ranking the signal levels from
DNase-seq alone or in combination with ChIP-seq data for
MED1 or p300 (Figure 5A). Moving forward, this strategy
can be combined with the classic ROSE method to better
catalogue highly active, functionally dominant enhancers.
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Sigova,A.A., Hoke,H.A. and Young,R.A. (2013) Super-enhancers in
the control of cell identity and disease. Cell, 155, 934.

10. Whyte,W.A., Orlando,D.A., Hnisz,D., Abraham,B.J., Lin,C.Y.,
Kagey,M.H., Rahl,P.B., Lee,T.I. and Young,R.A. (2013) Master
transcription factors and mediator establish super-enhancers at key
cell identity genes. Cell, 153, 307–319.

11. Chapuy,B., McKeown,M.R., Lin,C.Y., Monti,S., Roemer,M.G.M.,
Qi,J., Rahl,P.B., Sun,H.H., Yeda,K.T., Doench,J.G. et al. (2013)
Discovery and characterization of super-enhancer-associated
dependencies in diffuse large B cell lymphoma. Cancer Cell, 24,
777–790.

12. Hah,N., Benner,C., Chong,L.W., Yu,R.T., Downes,M. and
Evansa,R.M. (2015) Inflammation-sensitive super enhancers form

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkab1105#supplementary-data


Nucleic Acids Research, 2021, Vol. 49, No. 21 12209

domains of coordinately regulated enhancer RNAs. Proc. Natl. Acad.
Sci. U.S.A., 112, E297–E302.

13. Chen,H. and Liang,H. (2020) A high-resolution map of human
enhancer RNA loci characterizes super-enhancer activities in cancer.
Cancer Cell, 38, 701–715.

14. Rahnamoun,H., Lee,J., Sun,Z., Lu,H., Ramsey,K.M., Komives,E.A.
and Lauberth,S.M. (2018) RNAs interact with BRD4 to promote
enhanced chromatin engagement and transcription activation. Nat.
Struct. Mol. Biol., 25, 687–697.
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