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Background-—Vitamin D deficiency is associated with cardiovascular events among adults, but it is unclear whether early-life
vitamin D deficiency influences cardiovascular risk factors in children.

Methods and Results-—We measured total and bioavailable 25-dihydroxyvitamin D (25OHD) in cord blood and in blood from 4- to
6-year-old children, and we assessed cardiovascular risk factors (blood pressure, arterial stiffness, body size, and adiposity) at 4 to
6 years. We tested for racial/ethnic differences in total and bioavailable 25OHD (n=715) and modeled the adjusted association
between cord blood 25OHD and childhood cardiovascular risk factors (n=171). We observed racial/ethnic differences in total and
bioavailable 25OHD levels in both cord and child blood samples (all P<0.05). Each 25-nmol/L increase in cord blood total 25OHD
was associated with a 2.5–mm Hg (SE 0.8) decrease in systolic blood pressure (P=0.002) and a 1.7–mm Hg (SE 0.6) decrease in
diastolic blood pressure (P=0.01), independent of childhood 25OHD levels, race/ethnicity, and other covariates. There was no
association between cord blood total 25OHD and any other cardiovascular risk factors. Cord blood levels of bioavailable and free
25OHD were not associated with any cardiovascular risk factor in childhood.

Conclusions-—In this diverse prebirth cohort, we observed lower systolic and diastolic blood pressure among children with higher
total 25OHD levels at birth. Our findings suggest that intrauterine exposure to vitamin D may contribute to early-life programming
of offspring blood pressure. Intervention studies are needed to determine whether increasing fetal vitamin D exposure can reduce
the risk of elevated blood pressure in childhood. ( J Am Heart Assoc. 2019;8:e011485. DOI: 10.1161/JAHA.118.011485.)
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C ardiovascular disease risk factors, such as overweight/
obesity, dyslipidemia, and elevated blood pressure, are

increasingly being observed in children.1–6 The manifestation
of these previously adult concerns in pediatric populations
suggests that exposures very early in life, even before birth,
may be contributing to cardiovascular risk factor develop-
ment.7 Intrauterine exposures, including micronutrient defi-
ciencies, have been shown to alter fetal development and
trigger changes in organ structure, physiology, and metabo-
lism that increase risk for chronic disease later in life.8,9

Vitamin D is relevant to cardiovascular health because of its
role in regulating vascular smooth muscle cell proliferation
and the renin-angiotensin system.10,11 Numerous longitudinal
studies have reported a significantly increased risk of future
cardiovascular events among adults with low vitamin D
levels.12–15 However, the degree to which intrauterine vitamin
D deficiency may increase cardiovascular risk in children is
not well understood.

Intrauterine vitamin D deficiency results from inadequate
maternal intake of vitamin D from foods or exposure to
ultraviolet B (sunshine) during pregnancy.16 Maternal vitamin
D is metabolized into 25-dihydroxyvitamin D (25OHD), freely
crosses the placental barrier, and is the only source of vitamin
D available to the developing fetus.17 One-third of pregnant
women in the United States are vitamin D deficient, despite
high use of vitamin D–containing prenatal supplements,18 and
thus a high proportion of infants are vitamin D deficient at
birth.19,20 Experimental animal studies have shown that low
maternal vitamin D intake in pregnancy is associated with
increased blood pressure and endothelial dysfunction in
adolescent-aged offspring.21 Observational human studies
have reported that higher maternal 25OHD in mid-late
pregnancy is associated with lower offspring systolic blood
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pressure22 and fat mass23 in childhood, although other
studies reported no association of maternal 25OHD with
offspring blood pressure, adiposity, or arterial stiffness in
childhood.24–26 The null studies did not account for childhood
25OHD, which may modify the association between early-life
vitamin D intake and cardiovascular risk. Moreover, none of
these studies measured bioavailable 25OHD, which is the
amount of circulating vitamin D that is not bound tightly to
vitamin D binding protein (VDBP).27 Bioavailable 25OHD is
more strongly related to several health outcomes than total
circulating 25OHD,27–30 including endothelial dysfunction in
adolescent females.31 However, the relative significance of
total versus bioavailable 25OHD levels at birth and in early
childhood in terms of future cardiovascular health is not clear.

The purpose of this study was to (1) describe the relative
concentrations of total and bioavailable 25OHD in cord blood
and early childhood samples in a racial/ethnically diverse
population and (2) evaluate the association of each form of
vitamin D in cord blood with early-childhood cardiovascular
risk factors. We hypothesized that there would be racial/
ethnic differences in vitamin D levels at each time point, and
that low cord blood levels would be associated with cardio-
vascular risk factors in childhood, independent of vitamin D
levels in childhood.

Methods

Participants
This study included a subset of participants from Healthy
Start, which is an ongoing, longitudinal prebirth cohort of
1410 ethnically diverse pregnant women and their offspring in
Colorado. From 2009 to 2014, women were recruited from
the obstetric clinic at the University of Colorado Anschutz
Medical Campus. Women were eligible if they were pregnant
with a single fetus, were aged ≥16 years, and had no history
of chronic disease (diabetes mellitus, cancer, psychiatric

conditions, or steroid-dependent asthma) or obstetric com-
plications (previous delivery <25 weeks, previous stillbirth).
Participants completed research visits in early pregnancy
(median 17 weeks’ gestation), mid-pregnancy (median
27 weeks’ gestation), at delivery (median 1 day after birth),
and in early infancy (median 5 months), late infancy (median
22 months), and early childhood (median 5 years as of
October 1, 2018). The study protocol was approved by the
Colorado Multiple Institutional Review Board. Maternal par-
ticipants provided written informed consent, and offspring
participants aged ≥7 years provided written assent. The data
that support the findings of this study are available from the
corresponding author upon reasonable request.

Blood Sample Collection
Cord blood samples were obtained at delivery, stored on ice
for up to 20 minutes, and processed by centrifugation. Serum
aliquots were stored at 4°C for up to 24 hours before being
transported (on ice) to an �80°C freezer for long-term
storage. Childhood blood samples were obtained at the
childhood visit, allowed to clot for 15 to 30 minutes, and
processed by centrifugation. Serum aliquots were immedi-
ately stored in an �80°C freezer. Cord blood and childhood
serum samples were stored for up to 6.4 (mean, 4.8�0.6) and
3.0 years (mean, 1.9�0.6), respectively, before analysis of
vitamin D. Funds were available to measure vitamin D in a
subset of cord blood samples (n=660) and childhood samples
(n=275), which were selected based on stored sample
volume.

Vitamin D Measurements
According to the free-hormone hypothesis, biological activity
of a hormone depends on the concentration of the hormone
that is free, or unbound to a protein, in the blood.32

Approximately 90% of 25OHD is bound tightly to VDBP,
whereas the remaining 10% is bound loosely to albumin or
completely unbound (free) in the circulation.33 Estimation of
bioavailable 25OHD requires calculating total 25OHD and the
relative amounts bound to VDBP, bound to albumin, and
unbound. Given the low binding affinity of 25OHD to albumin,
both free and albumin-bound 25OHD are considered to be
bioavailable.

Assays were performed by the University of Colorado
Clinical and Translational Sciences Institute Core Laboratory.
Total 25OHD was measured with the iSYS 25OHD assay
(ImmunoDiagnostic Systems, Tyne & Wear, UK). This assay is
US Food and Drug Administration approved, certified in the
Vitamin D Standardization Program,34,35 and has been
validated against liquid chromatography/tandem mass spec-
trometry methods.36,37 It has 100% cross-reactivity with

Clinical Perspective

What Is New?

• Higher vitamin D levels in cord blood are associated with
lower systolic and diastolic blood pressure at 4 to 6 years of
age.

What Are the Clinical Implications?

• Intrauterine exposure to vitamin D may contribute to early-
life programming of offspring blood pressure.

• Increasing fetal vitamin D exposure may reduce the risk of
elevated blood pressure in childhood.
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25OHD2 and 25OHD3.
38 VDBP was measured with the Human

Vitamin D BP Quantikine ELISA (R&D Systems, Minneapolis,
MN). Albumin was measured on the Beckman/Coulter AU480
chemistry analyzer using Beckman Coulter reagents (Beck-
man Coulter, Brea, CA). Published equations were used to
estimate free and bioavailable vitamin D.27,39 Free 25OHD
was calculated as total 25OHD/((albumin binding coeffi-
cient9[albumin])+(VDBP binding coefficient9[VDBP]), using
genotype-nonspecific binding affinity coefficients for VDBP
(0.79109 M�1) and albumin (69105 M�1).27 Albumin-bound
25OHD was calculated as [free 25OHD]9albumin binding
coefficient9[albumin]. Free and albumin bound 25OHD are
summed to calculate bioavailable 25OHD. Total and bioavail-
able 25OHD are reported in nmol/L, and free 25OHD is
reported in pmol/L.

Cardiovascular Risk Factor Assessments
Blood pressure, arterial stiffness, body size, and body
composition were measured in offspring at the childhood
visit. Systolic and diastolic blood pressure (mm Hg) were
measured in a seated position, after 5 minutes of rest, with an
automated blood pressure monitor (Dinamap V100, GE
Carescape; GE Healthcare, Waukesha, WI). Three readings
were taken, with the average used for analysis. Offspring
carotid-femoral pulse wave velocity was measured while
supine by tonometry (SphgymoCor CPVH; AtCor Medical Pty
Ltd, Sydney, New South Wales, Australia). Spot ECG was used
to record heart rhythms, and the distance between the
suprasternal notch and the carotid and femoral artery
measurement sites was measured. Tonometry was used to
obtain waveforms at each site, which are gated by the R-wave
on the ECG. Carotid-femoral pulse wave velocity was calcu-
lated by the distance between the carotid and femoral sites
(in meters) divided by the difference in time that the foot of
the R-wave is recorded at each site (in seconds). Greater
velocity (m/s) indicates greater arterial stiffness. Height was
measured to the nearest 0.1 cm with a stadiometer and
weight to the nearest 0.1 kg using an electronic scale, while
the child was dressed in light indoor clothing and no shoes.
Age- and sex-specific body mass index (BMI) z-scores were
calculated using the Centers for Disease Control and Preven-
tion standards40,41 and used as an assessment of body size.
Offspring body composition was measured by whole-body air
displacement plethysmography (BOD POD with Pediatric
Option; COSMED, Rome, Italy). This device uses a 2-
compartment model to estimate fat mass (adipose tissue; g
and percent of total mass) and fat-free mass (water, bone, etc;
g and percent of total mass). Trained personnel took 2
measurements on each child, with a third measurement taken
if the percent fat mass differed by >2%. The average of the 2
closest readings was used for analysis.

Covariates
Maternal age at delivery was calculated from the self-reported
date of maternal birth and date of delivery. Maternal race/
ethnicity, education, household income, and number of
previous term pregnancies (gravidity) were obtained from
self-report at enrollment. Prepregnant weight, gestational
weight gain, and gestational diabetes mellitus were obtained
from medical records. Smoking in pregnancy (including
frequency and number of cigarettes) was assessed by self-
report at the prenatal and delivery research visits. Physical
activity in pregnancy was assessed at the prenatal and
delivery research visits with the Pregnancy Physical Activity
Questionnaire.42 Maternal average daily kilocalories was
estimated from up to 8 days of 24-hour recall data processed
with the National Cancer Institute’s measurement error
model,43,44 as described previously.45 Offspring gestational
age at birth was estimated by prenatal ultrasound measure-
ments and/or self-reported first day of last menstrual period.
Offspring sex was obtained from maternal report at the
delivery visit. Offspring age was calculated from the date of
birth recorded at the delivery visit and offspring age at the
childhood study visit.

Statistical Analyses
We calculated unadjusted means (SDs) of total, bioavailable,
and free 25OHD among all eligible participants and by racial/
ethnic groups (Hispanic [all races], non-Hispanic white, non-
Hispanic black, and other). Because the majority of vitamin D
is synthesized by sun exposure and influenced by skin
pigmentation (ie, melanin), we used maternal race/ethnicity
for cord blood analyses, and child race/ethnicity for childhood
blood analyses. We used a general linear univariate model to
determine whether there were racial/ethnic differences in
vitamin D levels, using separate models for each time point.
Cord blood analyses were adjusted for sex, gestational age at
birth, and maternal race/ethnicity. Childhood analyses were
adjusted for sex, child age, and child race/ethnicity. When the
main effect of race was significant, we used Tukey-adjusted P
values to determine significant differences between each pair
of racial/ethnic groups.

We also examined the association between cord blood
vitamin D levels with childhood cardiovascular risk factors. We
used separate general linear univariate models for each type
of vitamin D (total, bioavailable, and free) and each cardio-
vascular outcome. Given our interest in racial/ethnic differ-
ences, we tested for an interaction between cord blood
vitamin D levels and race/ethnicity. When nonsignificant, this
interaction was removed from the model, and only main
effects were interpreted. Models were sequentially adjusted
for potential confounders identified from published litera-
ture.22,24–26 Model 1 was adjusted for child sex and childhood
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values of age, the relevant 25OHD (eg, when total 25OHD in
cord blood was the predictor, total 25OHD in childhood was
included as a covariate), and (for blood pressure and pulse
wave velocity outcomes only) childhood BMI z-score. Model 2
included the model 1 covariates plus maternal race/ethnicity,
prepregnant BMI, gestational weight gain, and gestational
diabetes mellitus. Model 3 included the model 2 covariates
plus maternal prenatal smoking, physical activity, daily
kilocalories, age at delivery, education, income, gravidity,
and offspring gestational age at birth.

Healthy Start participants were included in the descriptive
analysis if they had cord blood or childhood blood samples
available for vitamin D analyses as of January 30, 2018.
Participants were included in the regression analysis if they
had vitamin D measured in both cord blood and childhood
blood samples, had at least 1 cardiovascular risk factor
measured at the childhood visit, and complete data on
covariates. All analyses were conducted in SAS software
(version v9.4; SAS Institute Inc, Cary, NC). A 2-sided P<0.05
was considered statistically significant.

Results
The final analyses included data from 715 of the 1410 Healthy
Start participants (Figure 1), with 632 and 258 contributing
data to the descriptive analysis of 25OHD levels in cord blood
and childhood, respectively. Of these, 175 were included in
the childhood cardiovascular outcomes analysis. Participant

characteristics for the full Healthy Start cohort (n=1410) and
the 2 analytical subsets (n=715 and 171) are reported in
Table 1.

Unadjusted means and SDs of total, free, and bioavailable
25OHD are reported in Table 2, overall and by racial/ethnic
groups at each time point. After adjustment for age and sex,
we observed significant racial/ethnic differences for all
vitamin D types and time points (Figure 2, all P<0.05). In
cord blood samples, non-Hispanic whites had significantly
higher levels of total 25OHD compared with all other groups
(all Tukey, P<0.0001). Non-Hispanic blacks had significantly
higher levels of bioavailable and free 25OHD compared with
Hispanics (all Tukey, P<0.02), whereas non-Hispanic whites
and other races had intermediate levels that were not
significantly different from any other group. In childhood
blood samples, non-Hispanic whites had significantly higher
levels of total, bioavailable, and free 25OHD compared with
Hispanics and non-Hispanic blacks (all Tukey, P<0.001).
Participants of other races had significantly higher free
25OHD compared with non-Hispanic blacks (Tukey, P=0.04).

In terms of the association between cord blood vitamin D
levels and childhood cardiovascular outcomes, we did not
observe any significant interaction between vitamin D levels
and race/ethnicity; thus, only main effects are reported. We
observed significant inverse associations of cord blood levels
of total 25OHD with childhood systolic (P<0.01 in all models)
and diastolic blood pressure (P=0.01 in all models; Table 3).
Each 25-nmol/L increase in total 25OHD at birth was

Figure 1. Participant flow diagram. 25OHD indicates 25-dihydroxyvitamin D.
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Table 1. Participant Characteristics

Full Healthy Start Cohort Vitamin D Type Analysis Childhood Outcome Analysis

n Mean (SD) or n (%) n Mean (SD) or n (%) n Mean (SD) or n (%)

Maternal characteristics

Age, y 1410 27.8 (6.2) 715 27.6 (6.2) 171 27.8 (6.1)

Race, n 1410 715 171

Hispanic 351 (25%) 180 (25%) 40 (23%)

Non-Hispanic white 751 (53%) 387 (54%) 88 (51%)

Black 219 (16%) 109 (15%) 34 (20%)

Other 89 (6%) 39 (5%) 9 (5%)

Education, n 1410 715 171

<High school degree 204 (14%) 109 (15%) 30 (18%)

High school degree 259 (18%) 131 (18%) 23 (13%)

Some college or 2-y degree 334 (24%) 173 (24%) 41 (24%)

4-y degree 309 (22%) 149 (21%) 40 (23%)

Graduate degree 304 (22%) 153 (21%) 37 (22%)

Household income, n 1410 715 171

<$40 000 414 (29%) 217 (30%) 51 (30%)

$40 000 to $70 000 260 (18%) 138 (19%) 27 (16%)

>$70 000 460 (33%) 225 (31%) 63 (37%)

Missing/do not know 276 (20%) 135 (19%) 30 (18%)

Gravidity (live births), n 1410 1.4 (1.5) 715 1.3 (1.5) 171 1.2 (1.3)

Prepregnant BMI, kg/m2 1406 25.7 (6.2) 715 26.2 (6.6) 171 27.2 (7.8)

Gestational weight gain, kg 1404 13.2 (6.9) 715 14.1 (6.6) 171 13.6 (6.4)

Gestational diabetes mellitus, n 1270 55 (4%) 688 30 (4%) 171 9 (5%)

Prenatal smoking, n 1410 124 (9%) 715 66 (9%) 171 13 (8%)

Daily oral vitamin D intake
during pregnancy (IU)

1363 641 (497) 696 645 (476) 169 602 (421)

Daily energy intake in pregnancy, kcal 1363 2062 (387) 697 2058 (385) 171 2076 (381)

Maternal physical activity in
late pregnancy (METS)

1311 166.8 (90.8) 704 166.4 (86.5) 171 168.4 (90.2)

Offspring characteristics

Female, n 1342 646 (48%) 715 341 (48%) 171 79 (46%)

Race, n 1410 715

Hispanic 394 (28%) 208 (29%) 49 (29%)

Non-Hispanic white 724 (51%) 370 (52%) 83 (49%)

Black 210 (15%) 102 (14%) 30 (18%)

Other 82 (6%) 35 (5%) 9 (5%)

Gestational age at birth, weeks 1331 39.2 (1.9) 715 39.6 (1.1) 171 39.5 (1.1)

Season of birth, n 1363 715 171

Summer (June, July, August) 405 (30%) 222 (31%) 62 (36%)

Fall (September, October, November) 328 (24%) 167 (23%) 40 (23%)

Winter (December, January, February) 305 (22%) 148 (21%) 22 (13%)

Spring (March, April, May) 325 (24%) 178 (25%) 47 (27%)

Continued
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associated with a 2.5–mm Hg decrease in systolic blood
pressure and 1.7–mm Hg decrease in diastolic blood pressure
at a mean age of 4.7 years (SD, 0.6). There was no significant
association between cord blood total 25OHD with any other
cardiovascular risk factors. Cord blood levels of bioavailable
and free 25OHD were not significantly associated with any
cardiovascular risk factor in childhood (data not shown).

Discussion
In this diverse prebirth cohort, we observed lower systolic and
diastolic blood pressure among children with higher total
25OHD levels at birth. This association was independent of
25OHD levels in childhood and did not differ by race/ethnicity.
We did not observe any association between cord blood total
25OHD and childhood arterial stiffness or body size and
composition, nor any relationship of bioavailable 25OHD with
any cardiovascular risk factor. Our findings suggest that
intrauterine exposure to vitamin D may contribute to early-life
programming of offspring blood pressure, and that optimizing
prenatal vitamin D may be a potential strategy for reducing the
risk of elevated blood pressure in childhood.

Our blood pressure findings are consistent with previous
studies: The ALSPAC (Avon Longitudinal Study of Parents and
Children) reported lower systolic blood pressure at 9.9 years

among children born to mothers with higher total 25OHD
levels at 25 weeks’ gestation,22 and the Odense Child Cohort
study reported lower systolic and diastolic blood pressure in
3-year-old female children who had higher total 25OHD in
cord blood.46 The ALSPAC results were also independent of
childhood 25OHD levels, again demonstrating that low
intrauterine vitamin D levels may have effects on offspring
blood pressure that persist after the exposure period ends. In
vitro studies provide a plausible biological pathway for this
effect: 1a,25-dihydroxyvitamin D (1,25OHD), the active vita-
min D hormone, has been shown to suppress renin gene
expression47,48 and regulate both vascular smooth muscle
cell proliferation11 and cardiomyocyte development.49 Higher
levels of active vitamin D also inhibit parathyroid hormone
secretion and therefore may be able to help prevent the
increases in blood pressure, vascular tone, and vascular
stiffness that result from elevations in parathyroid hormone.50

These studies suggest that low 25OHD levels during critical
periods of fetal development may alter cardiovascular struc-
ture and function with lasting effects on blood pressure. We
note that our effect estimates did not noticeably change upon
further adjustment for potential covariates, which suggests
that there is minimal confounding and adds credence to the
above biological pathway. Randomized clinical trials are now
needed to conclusively determine whether increasing fetal

Table 1. Continued

Full Healthy Start Cohort Vitamin D Type Analysis Childhood Outcome Analysis

n Mean (SD) or n (%) n Mean (SD) or n (%) n Mean (SD) or n (%)

Cord blood 25OHD

Total, nmol/L 660 55.8 (21.2) 632 55.8 (21.1) 171 54.9 (21.4)

Bioavailable, nmol/L 625 9.0 (4.7) 599 9.0 (4.7) 161 9.0 (5.1)

Free, pmol/L 625 25.5 (13.4) 599 25.4 (12.8) 161 24.8 (13.0)

Childhood 25OHD

Total, nmol/L 275 77.9 (21.5) 258 77.7 (21.5) 171 78.0 (21.4)

Bioavailable, nmol/L 275 10.0 (2.7) 258 10.0 (2.7) 171 10.0 (2.7)

Free, pmol/L 275 25.2 (6.5) 258 25.2 (6.5) 171 25.3 (6.5)

Age at childhood visit, y 516 4.7 (0.6) 351 4.7 (0.7) 171 4.7 (0.6)

Systolic blood pressure, mm Hg 512 97.7 (9.2) 348 97.7 (8.7) 170 98.1 (8.1)

Diastolic blood pressure, mm Hg 512 56.8 (6.0) 348 57.0 (6.1) 170 57.1 (6.3)

Pulse wave velocity, m/s 340 4.4 (0.9) 225 4.4 (0.8) 125 4.4 (0.9)

BMI z-score 511 0.16 (1.09) 349 0.21 (1.13) 171 0.23 (1.07)

Waist-to-height ratio 511 0.48 (0.04) 348 0.48 (0.04) 170 0.48 (0.04)

Total mass, kg 442 18.0 (3.2) 309 18.4 (3.3) 153 18.4 (3.6)

Fat-free mass, kg 442 14.1 (2.4) 309 14.3 (2.4) 153 14.4 (2.4)

Fat mass, kg 442 3.9 (1.6) 309 4.0 (1.7) 153 4.0 (1.7)

Adiposity, % 442 21.6 (6.2) 309 21.6 (6.3) 153 21.4 (5.7)

25OHD indicates 25-dihydroxyvitamin D; BMI, body mass index; METS, metabolic equivalents.
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vitamin D exposure can reduce offspring blood pressure in
humans.

We note variation in the reported magnitude of the
association between 25OHD and systolic blood pressure:
we observed a 2.6–mm Hg decrease with every 25-nmol/L
increase in cord blood 25OHD, whereas the Odense study
reported a 0.7–mm Hg decrease with every 10-nmol/L
increase in cord blood 25OHD,46 and the ALSPAC study
reported only a 0.48–mm Hg decrease with every 50-nmol/L

increase in mid-gestational 25OHD.22 These differences may
be attributed to measurement timing for the exposure and
outcome; indeed, 3 other studies found no association
between maternal 25OHD in early-mid pregnancy with
offspring blood pressure at 5 to 9 years of age.24–26,51 It is
possible that cord blood 25OHD levels, which reflect neonatal
status at birth, are more relevant to future blood pressure
than maternal 25OHD status earlier in gestation, but this can
only be confirmed in future studies that include multiple

Table 2. Vitamin D Levels Among All Participants and by Racial/Ethnic Groups

All Participants Hispanic Non-Hispanic White Non-Hispanic Black Other

n Mean (SD) n Mean (SD) n Mean (SD) n Mean (SD) n Mean (SD)

Cord blood levels

Total 25OHD, nmol/L 632 55.8 (21.1) 163 48.4 (19.4) 343 63.4 (19.7) 90 43.5 (18.7) 36 48.4 (19.5)

Bioavailable 25OHD, nmol/L 599 9.0 (4.7) 155 8.3 (4.9) 326 9.2 (4.1) 87 10.1 (6.0) 31 8.4 (4.4)

Free 25OHD, pmol/L 599 25.4 (12.8) 155 23.0 (13.4) 326 25.9 (11.4) 87 28.5 (15.6) 31 23.3 (12.5)

Childhood levels

Total 25OHD, nmol/L 258 77.7 (21.5) 75 70.2 (16.6) 125 85.1 (22.8) 48 70.2 (17.2) 10 78.3 (25.8)

Bioavailable 25OHD, nmol/L 258 10.0 (2.7) 75 9.1 (2.2) 125 10.9 (2.8) 48 8.7 (1.9) 10 11.0 (3.5)

Free 25OHD, pmol/L 258 25.2 (6.5) 75 22.9 (4.9) 125 27.5 (6.8) 48 22.4 (5.3) 10 26.2 (8.1)

Data are unadjusted means (SDs), stratified by maternal race/ethnicity for cord blood samples and child race/ethnicity for childhood samples. 25OHD indicates 25-dihydroxyvitamin D.

Figure 2. Age- and sex-adjusted levels of 25OHD, stratified by maternal race/ethnicity for cord blood
measurements and child race/ethnicity for childhood measurements. 25OHD indicates 25-dihydroxyvita-
min D; NHB, non-Hispanic black; NHW, non-Hispanic white. *Tukey, P<0.05 between denoted race/
ethnicity groups.
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assessments throughout pregnancy to determine the critical
window(s) of exposure. Although the 2.6–mm Hg difference
we observed is modest and of questionable clinical relevance,
it has the potential to be clinically relevant. For children aged
4 to 6 years, the difference in diagnostic thresholds for
elevated systolic blood pressure (90th percentile) versus
hypertension (95th percentile) is only 4 mm Hg.52 Further-
more, our results suggest that increasing cord blood 25OHD
from the minimum to the maximum observed in our sample
(15 versus 120 nmol/L) would result in a reduction of systolic
blood pressure of >10 mm Hg, which approaches the 14–
mm Hg difference between the 90th and 50th percentiles at
this age. This indicates that increases in neonatal 25OHD
could be clinically meaningful for an individual child. At a
population level, a 5–mm Hg decrease in systolic blood
pressure among adults is projected to reduce cardiovascular
and all-cause mortality by 7% to 14%, saving up to 28 000
lives per year.53 Given that blood pressure tends to increase
with age,54 understanding and targeting factors that raise
blood pressure levels early in life is important for preventing
hypertension and related comorbidities later in life.

We did not observe any association between cord blood
25OHD levels and childhood arterial stiffness, body size, or
body composition. Some studies in Europe and India have
also reported no association between mid-gestational or
cord blood 25OHD levels and arterial stiffness or adiposity
at 5 to 9 years of age.24–26,55 Other cross-sectional studies
in pediatric populations have reported inconsistent results
with regard to the association between 25OHD and arterial
stiffness,31,56–59 although clearer associations tend to be
observed among participants with chronic health conditions
(diabetes mellitus57,58 or chronic kidney disease56). It is
possible that healthy children do not have sufficient
variability or subclinical impairment in arterial stiffness to

detect an association with pulse wave velocity, especially in
relatively small samples such as ours (n=125). In terms of
adiposity, the Southampton Women’s Study, Generation R,
and Screening for Pregnancy Endpoints studies have all
reported that higher maternal levels of 25OHD at 15 to
34 weeks’ gestation were associated with significantly lower
adiposity at 5 to 6 years of age.23,51,60 Heterogeneity in
study methods may account for the inconsistent results, as
well as latitude-driven differences in background vitamin D
levels. In vitro studies demonstrate that low levels of 25OHD
promote adipogenesis61–63 and limit lipolysis,64 resulting in
increased adiposity, and corroborating in vivo evidence
would be helpful for understanding why past results have
varied between populations. A meta-analysis could also be
useful for synthesizing and systematic drawing conclusions
from the accumulating observational evidence.

Despite previous reports that bioavailable 25OHD is a
better predictor of health outcomes than total 25OHD,28–30,39

we found no association between bioavailable 25OHD and any
childhood cardiovascular risk factors. In a cross-sectional
analysis of 47 adolescent females, low bioavailable 25OHD
was significantly associated with greater endothelial dysfunc-
tion, although this relationship was attenuated after adjust-
ment for potential confounders.31 Other reports demonstrate
the significance of bioavailable 25OHD in terms of bone
mineral density,28,39 osteoporotic fractures,30 and end-stage
renal disease.29 However, at least 1 study has shown that
total 25OHD is significantly correlated with 1,25OHD (the
active vitamin D metabolite), whereas free 25OHD is not.65

Other studies have reported that total 25OHD is more
affected by disease states (liver disease,66 obesity,67 and
multiple sclerosis68) and factors such as race/ethnicity27,31,65

compared with free or bioavailable 25OHD, suggesting that
the pathways underlying the associations between vitamin D

Table 3. Association Between Cord Blood Total 25OHD (Per 25 nmol/L) and Cardiovascular Risk Factors at 4 to 6 Years

n

Model 1 Model 2 Model 3

Estimate (SE) P Value Estimate (SE) P Value Estimate (SE) P Value

Systolic blood pressure, mm Hg 170 �2.6 (0.7) 0.0003 �2.5 (0.7) 0.001 �2.5 (0.8) 0.002

Diastolic blood pressure, mm Hg 170 �1.5 (0.6) 0.01 �1.6 (0.6) 0.01 �1.7 (0.6) 0.01

Pulse wave velocity, m/s 125 �0.02 (0.10) 0.80 0.06 (0.10) 0.52 0.04 (0.11) 0.69

BMI z-score 171 0.05 (0.09) 0.63 0.13 (0.09) 0.14 0.13 (0.10) 0.21

Waist-to-height ratio 170 0.002 (0.004) 0.55 0.004 (0.004) 0.26 0.005 (0.004) 0.25

Total mass, g 153 148 (279) 0.60 343 (279) 0.22 351 (304) 0.25

Fat-free mass, g 153 32 (170) 0.85 139 (175) 0.43 102 (188) 0.59

Fat mass, g 153 116 (162) 0.47 205 (161) 0.21 249 (172) 0.15

Adiposity (%) 153 0.42 (0.55) 0.45 0.58 (0.56) 0.30 0.74 (0.59) 0.21

Model 1: adjusted for child sex and childhood (4–6 years) visit age, total 25OHD, and (for blood pressure and pulse wave velocity only) BMI z-score. Model 2: model 1 covariates+maternal
race/ethnicity, prepregnant BMI, gestational weight gain, and gestational diabetes mellitus. Model 3: model 2 covariates+maternal prenatal smoking, prenatal physical activity, prenatal
daily kilocalories, age at delivery, education, income, gravidity, and offspring gestational age at birth. 25OHD indicates 25-dihydroxyvitamin D; BMI, body mass index.

DOI: 10.1161/JAHA.118.011485 Journal of the American Heart Association 8

Cord Blood Vitamin D and Childhood Blood Pressure Sauder et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H



and health outcomes may not be specifically dependent upon
vitamin D bioavailability. Alternatively, our null findings could
be attributed to nonspecificity in VDBP affinity: We used a
genotype-nonspecific binding affinity27 because genetic infor-
mation was not available. Polymorphisms in VDBP genes,
which are often observed between racial/ethnic groups, have
been noted to affect concentrations of bioavailable 25OHD.27

Previous studies have also shown that measured free 25OHD
has better precision than calculated 25OHD,69–71 which could
have limited our ability to detect associations. It is well
recognized that vitamin D concentrations are affected by
factors such as genetics, liver function, kidney disease, and
pregnancy.72 Because previous studies of prenatal vitamin D
and offspring outcomes have not included free or bioavailable
25OHD,73–77 additional studies in diverse populations are
needed to understand the relative importance of each form of
25OHD in early life for offspring health.

We do provide novel evidence that there are racial/ethnic
differences in total, bioavailable, and free 25OHD that varied
between birth and 4- to 6-year measurements. Non-Hispanic
whites had the highest levels of total 25OHD at birth and all
25OHD types in childhood. Non-Hispanic blacks had the
highest levels of bioavailable and free 25OHD at birth, but the
lowest levels of bioavailable and free 25OHD by 4 to 6 years
of age. It is well known that vitamin D deficiency is more
common among blacks than whites; however, previous
reports indicate that blacks also have less VDBP, resulting
in similar amounts of circulating 25OHD that is unbound or
loosely bound to albumin (ie, similar bioavailable 25OHD).27

Thus, we expected to see differences between whites and
blacks in total 25OHD at both time points, as well as whites
and the other racial/ethnic groups because of melanin-driven
differences in vitamin D synthesis from sunshine exposure.
But we did not expect to see differences in bioavailable
25OHD, particularly in divergent directions across the 2 time
points. We confirmed that these results are not attributed to
racial/ethnic misclassification by repeating the cord blood
analysis with child race/ethnicity in place of maternal race/
ethnicity; this replacement affected classification for only 3%
of participants and did not change the results. We also
confirmed, in an exploratory analysis, that these results were
not attributed to differences in intake of vitamin D from food
and/or dietary supplements. Rather, we hypothesize that
these time-varying differences in 25OHD fractions are
attributed to genotype-specific binding affinities (which was
not measured in this study as noted above) or real differences
in vitamin D exposure from dietary intake and sun exposure.
Reports of bioavailable and free 25OHD in pediatric popula-
tions are sparse; thus, our work provides early contributions
to our understanding of vitamin D availability in children.
Importantly, the inverse association we observed between
cord blood total 25OHD and childhood blood pressure was

not modified by race/ethnicity, indicating its potential as a
prevention strategy for all subpopulations.

Our study has strengths and limitations. We included a
diverse sample with longitudinal assessments of total,
bioavailable, and free 25OHD, which has not previously been
reported. The use of cord blood samples allowed us to
evaluate neonatal status at birth rather than using maternal
status during pregnancy as a proxy. We measured body
composition using the gold standard for offspring at birth and
during childhood to obtain more-direct assessments of
adiposity risk than weight or BMI alone. Our analysis was
limited to the subset of participants with complete data,
which was largely attributed to the cost and required sample
volume for the vitamin D blood measurements. However, the
analytical samples of 715 and 171 were similar to the total
Healthy Start sample of 1410 in terms of maternal/child
sociodemographics (age, sex, race/ethnicity, and education),
prenatal exposures (maternal obesity, gestational diabetes
mellitus, smoking, diet, and physical activity), offspring
vitamin D levels (total, free, and bioavailable in cord blood
and childhood blood), and offspring cardiovascular risk factors
(blood pressure, pulse wave velocity, BMI, and body compo-
sition). This suggests that the subsets were representative of
the larger sample and reduces concerns about selection bias.
The sample size for some racial/ethnic groups was particu-
larly small, which may have reduced power to detect
interactions or obtain more-precise effect estimates. We did
not include childhood physical activity or dietary intake as
covariates in our analysis because of missing data for these
variables, which would have reduced our analytical sample
further. However, exploratory analyses of the smaller subsets
with complete data for physical activity and diet resulted in
similar findings, suggesting that our results are not con-
founded by these health behaviors. We did not adjust for
multiple comparisons, and thus our blood pressure findings
could be type 1 error, highlighting the need for replication in
larger samples. However, we note that the significance of
systolic blood pressure result would have persisted even if we
had used a Bonferroni correction to adjust the threshold for
significance (0.002 in the fully adjusted analysis compared
with 0.05/9 outcomes=0.005). Furthermore, the finding is in
agreement with previous studies.22,46 Last, our use of
genotype-nonspecific binding coeffecients for the calculation
of bioavailable and free 25OHD may have resulted in
measurement error.

In conclusion, we have shown that higher 25OHD levels at
birth is associated with lower blood pressure at 4 to 6 years
of age, independent of childhood 25OHD levels, race/
ethnicity, and child BMI. Our study provides further evidence
in support of the developmental origins of health and disease
theory and highlights the importance of optimizing intrauter-
ine nutritional exposures to improve for offspring health.
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Continued follow-up of the Healthy Start cohort and confir-
mation of our findings in other studies, including clinical trials,
will clarify the role of early-life vitamin D exposure on
cardiovascular health as children enter adolescence and
adulthood.
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