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Single-cell expression and Mendelian
randomization analyses identify blood genes
associated with lifespan and chronic diseases
Arnaud Chignon1, Valentin Bon-Baret1, Marie-Chloé Boulanger1, Zhonglin Li1, Deborah Argaud1, Yohan Bossé 2,

Sébastien Thériault3, Benoit J. Arsenault4 & Patrick Mathieu 1✉

The human lifespan is a heritable trait, which is intricately linked to the development of

disorders. Here, we show that genetic associations for the parental lifespan are enriched in

open chromatin of blood cells. By using blood expression quantitative trait loci (eQTL)

derived from 31,684 samples, we identified for the lifespan 125 cis- and 559 trans-regu-

lated expressed genes (eGenes) enriched in adaptive and innate responses. Analysis of blood

single-cell expression data showed that eGenes were enriched in dendritic cells (DCs) and

the modelling of cell ligand-receptor interactions predicted crosstalk between DCs and a

cluster of monocytes with a signature of cytotoxicity. In two-sample Mendelian randomi-

zation (MR), we identified 16 blood cis-eGenes causally associated with the lifespan. In MR,

the majority of cis-eGene-disorder association pairs had concordant effects with the lifespan.

The present work underlined that the lifespan is linked with the immune response and

identifies eGenes associated with the lifespan and disorders.
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Duration of life or lifespan is a complex trait, which is
determined by environmental and genetic factors. The
heritability of the human lifespan is estimated at ~15–30%1.

A recent meta-analysis of genome-wide association data,
including more than a million parental lifespans, has identified 12
loci associated with the lifespan2. Genome-wide association stu-
dies (GWAS) in different complex traits have highlighted that
gene variants are enriched in noncoding regions with cis-reg-
ulatory activity3. These genomic regions are enriched in expres-
sion quantitative trait loci (eQTL)4,5. We hypothesized that a
better knowledge of the functional consequences of regulatory
variants on gene expression might also provide significant
insights into mechanisms of human aging. In addition, using
eQTLs to identify genetically regulated expressed genes (eGenes)
may give us the opportunity to determine whether the variants
are associated with the lifespan or directly causal by using
Mendelian randomization (MR) techniques. The main assump-
tion of MR is that the variables that are measured, referred to as
instrumental variables, only affect the outcome through the
exposure and without confounders. In other words, if the genetic
variants only affect the lifespan through their role in modifying
gene expression, then we can assess their likelihood of playing a
causal role on this outcome. This strategy of considering inde-
pendent gene variants in an allelic series as instrumental variables
is a powerful tool for causal inference. However, there are some
challenges. If a genetic variant is associated with the outcome
through an alternative mechanism (often referred to as horizontal
pleiotropy), it may lead to an inflation of type I error. However,
different statistical approaches have been developed to assess the
robustness of the association discovered by MR and mitigate false
positives. The Cochran’s Q test for heterogeneity and the inter-
cept test in Egger regression are routinely used to detect asso-
ciations where the instrumental variables provide estimates that
may violate the main assumption6. Also, the identification of
outliers with the MR-PRESSO package is another tool to identify
instrumental variables that may associate with the outcome
through an alternative exposure and to provide corrected esti-
mates7. By combining these approaches, we can perform a robust
estimate of causation.

The human lifespan is intricately intertwined with the devel-
opment of diseases. As such, the trajectory of aging is variable
throughout a person’s lifespan and may be altered by the different
risk factors and disorders. We hypothesized that some genetic
variants may exhibit antagonist pleiotropy. That is, some variants
may provide a survival advantage or reproductive success earlier
in life, but predispose to disease later in life. Rather than focusing
on the individual alleles, we were curious whether similar genetic
pathways were involved in chronic disease and lifespan potential.
Gene expression is controlled in tissue-specific dynamic net-
works, with some genes coordinating the activity of functional
modules. By using networks and causal inference, we sought to
examine if genetically determined gene expression identified for
the lifespan was also involved with the risk of several chronic
human diseases. Thus, by using a multi-pronged approach, the
objectives of this work on the lifespan were to: assess the tissue
enrichment of genetic association data, discover cis- and trans-
regulated eGenes and assess causal associations in MR, identify
loci under positive selection and showing antagonist pleiotropy,
evaluate the cellular enrichment of eGenes and infer cell com-
munication pathways by using single-cell gene expression data,
and use network as a tool to document pathways and assess the
link between lifespan-associated eGenes and disorders. In this
work, we leveraged 27 GWAS in order to map eGenes associated
with the parental lifespan and risk factors/disorders. We found
that genetic regions potentially influencing the lifespan were
enriched in open chromatin in blood cells, which regulate eGenes

involved in the control of immunity. Analysis of blood single-cell
expression data showed that eGenes were enriched in dendritic
cells (DCs) and the modelling of cell ligand–receptor interactions
predicted crosstalk between eGenes expressed in DCs and a
cluster of monocytes with a signature of cytotoxicity. Three loci
under positive selection had antagonist pleiotropy with the life-
span. In MR, we identified blood eGenes associated with the
lifespan and a long-livedness. Lifespan-associated eGenes were
linked to different disorders and causal inference showed that a
majority of relationships were concordant (e.g., eGenes negatively
associated with the lifespan were positively associated with the
risk of disorders).

Results
Mapping and annotation of lifespan genetic association data.
Supplementary Fig. 1 presents an overview schematic of the ana-
lysis pipeline. The parental lifespan GWAS is enriched in non-
coding intergenic and intronic genomic regions (Supplementary
Fig. 2). We were interested in understanding what tissues might be
enriched in genetic association data for the parental lifespan. We
implemented GARFIELD8, which uses summary statistics data to
generate linkage disequilibrium (LD)-corrected annotations based
on data from the Roadmap Epigenomics9 and the Encyclopedia of
DNA Elements (ENCODE) projects10. Implementation of GAR-
FIELD on summary statistics of genetic association data totaling
1,012,240 parental lifespans2 identified significant enrichments in
CD19+ primary cells (marker of B cells) (P= 3.41 × 10−7) and
GM12892 (a B cell line) (P= 1.59 × 10−5) (Fig. 1a and Supple-
mentary Data 1). Considering the strong enrichment of lifespan
genetic association data in immune cells, we leveraged summary
statistics of blood cis-eQTL data derived from 31,684 samples to
map genetically cis-regulated eGenes11 associated with the parental
lifespan by using the Functional Mapping and Annotation of
GWAS (FUMA) tool. In lifespan loci, individual significant single-
nucleotide polymorphisms (SNPs) (PGWAS < 5 × 10−8, r2 < 0.6)
and SNPs in LD (see Methods) were mapped to blood cis-eQTLs.
SNP–gene pairs were filtered for multiple testing correction at false
discovery rate (FDR) (PFDR < 0.05). In total, 4042 SNP–gene pairs
(PFDR < 0.05) tagging 125 blood cis-regulated eGenes were mapped
to lifespan genetic association data (Supplementary Data 2). By
using EnrichR, we found that blood eGenes were enriched in gene
ontology (GO) for T cell receptor (TCR)- (P= 5.65 × 10−10),
antigen receptor- (P= 1.98 × 10−7), and interferon γ-mediated
signaling pathways (P= 9.94 × 10−7) (Fig. 1b and Supplementary
Data 3). Among the blood eGenes, 18 were listed in the database of
Online Gene Essentiality12 (fold enrichment= 1.94, P= 0.009,
hypergeometric test) (Supplementary Data 4). In the Open Targets
database13, 13 drugs/antibodies targeting 8 eGenes (Supplementary
Data 5) are/were evaluated in different phases of development
(phases I–IV), whereas 19 eGenes are predicted to be tractable for
the development of small molecules (Supplementary Data 6). As
cis-regulation involves chromatin interactions, we also used FUMA
to analyze chromatin contact between lifespan loci and genes by
using chromatin conformation capture (Hi-C) data in GM12878
(B cell line). Lifespan loci were mapped to genes within a window
region (250 and 50 bp upstream and downstream of the tran-
scription start site (TSS), respectively). There were 56 individual
significant SNPs located in 46 genomic regions involved in 205
intra-chromosomal loopings with distant regions. Among the
distant regions interacting with the individual significant SNPs,
124 genes were mapped (Supplementary Data 7) and were enri-
ched in GO for nucleosome (P= 5.44 × 10−10) and chromosome
(P= 6.80 × 10−10) assemblies (Supplementary Data 8). Overall, 36
genes were mapped by both blood eQTLs and chromatin inter-
actions (Supplementary Data 9). Figure 1c shows zoomed-in circos
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Fig. 1 Mapping and annotation of parental lifespan GWAS. a Lifespan gene variant enrichment showed by radial lines (numbers correspond to fold
enrichment value) at two GWAS P value thresholds (P < 1 × 10−5 in blue and P < 1 × 10−8 in black) in different tissues and cell types. Significant
enrichments are represented by dots in the outer circle. b Gene ontology for 125 blood cis-regulated eGenes mapped from lifespan; graph showing the
seven GO terms with the lowest P values. c Zoomed-in circos plots of genetic association data and chromatin interactions in the extended histone locus in
chromosome 6 and in the 15q25.1 locus. Names of the genes are in orange for genes mapped only by chromatin interactions, in green for genes mapped
only by eQTL, and in red for genes mapped by both chromatin interactions and eQTLs.
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plots of genetic association data along with chromatin interactions
in the extended histone locus in chromosome 6 and the 15q25.1
locus.

Network and regulons associated with cis-regulated eGenes. To
identify cis-regulated eGenes with central functions, we used a
network approach by assessing blood-specific co-expression
data14. We extracted eGene co-expression networks in whole
blood from the database of tissue and cancer specific biological
networks. This resulted in a network with 4453 nodes and 7321
edges. For visualization purpose, Fig. 2a shows a reduced network
topology of key central nodes and interactions. In this network,
several eGenes had elevated central betweenness (Supplementary
Data 10), which is a measure of nodes with the shortest path
acting as bottlenecks between gene modules. The co-expression
network in the blood was analyzed for pathway enrichment by
using Reactome15. The network was enriched in gene expression
(P= 8.08 × 10−23), immune system (P= 1.47 × 10−10), and RNA
polymerase II transcription (P= 1.55 × 10−10) (Supplementary
Data 11). Transcription factors (TFs) and their target genes
(regulons) are involved in the control of cell fate16. We investi-
gated the regulons of blood eGenes associated with the lifespan by
using ChIP-X Enrichment Analysis 3 (ChEA317), which provides
TF enrichment for genes by using an expanded list of different
sources such as TF–gene co-expression, TF–gene co-occurence,
and chromatin immunoprecipitation-sequencing (ChIP-seq)
data. TFs were ranked according to their associations with cis-
regulated eGenes. Most highly ranked TFs were: SP140, inter-
feron regulatory factor (IRF) family and BATF3, an AP-1
member involved in DC differentiation18 (Supplementary
Table 12). A list of blood eGene-derived regulons for SP140,
IRF5, IRF8, and BATF3 is provided in Supplementary Data 13.
We next wanted to identify immune cells that expressed BATF3
and if they were enriched with lifespan eGenes. Analysis of single-
cell RNA-sequencing data of monocytes and DCs (GEO accession
number GSE94820) showed that a cluster expressing CLEC9A, a
marker for a subset of conventional DC (cDC1), was enriched in
differentially eGenes including BATF3, as well as 21 cis-eGenes
(fold enrichment= 2.8, P= 8.74 × 10−5, hypergeometric test)
(Fig. 2b–d and Supplementary Data 14). Consistently, pathway
analysis with Reactome showed that these eGenes were enriched
for major histocompatibility complex class II antigen presentation
(P= 6.55 × 10−9) (Supplementary Data 15). These data suggest
that lifespan eGene-associated regulon may be involved in DC
function, including the sensing of dead cell antigens and may thus
bridge the innate with the adaptive immune responses.

MR for the lifespan. The lifespan GWAS combined fathers and
mothers into one parental survival. Effect sizes were reported as
the −loge(Cox hazard ratio), from which years gained or lost
could be estimated (see Methods). Causal inference in MR was
performed for the blood cis-regulated eGenes on the parental
lifespan. Independent gene variants (r2 < 0.1) located within ±500
kb from the TSS and associated with the blood expression (P <
0.001 corresponds to ~F statistics > 10) were selected as instru-
mental variables19 (Supplementary Data 16). The strategy to
perform MR analyses is illustrated in Fig. 3a. Enough instru-
mental variables (minimum 3) to perform MR were available for
116 genes (mean instrumental variables per gene 26) (Supple-
mentary Data 16). After a correction for multiple testing (Bon-
ferroni correction, Pcausal < 4.3 × 10−4, 0.05/116), 23 eGenes were
significantly associated in inverse variance-weighted (IVW) MR
with the lifespan (Supplementary Data 17). Among these eGenes,
ten did not show heterogeneity on the Cochran’s Q test and were
considered as lifespan causally associated eGenes (Supplementary

Data 17). For the eGenes significant in IVW but with significant
heterogeneity, we used the MR-PRESSO package, which tests for
the presence of outliers and provides corrected analyses (see
Methods). Using this strategy, MR-PRESSO identified six eGenes,
for which outliers were detected and provided estimates without
distortion after the removal of these outliers (Supplementary
Data 18). Hence, by using IVW MR and MR-PRESSO we iden-
tified 16 blood eGenes (PTPN22, ARPC3, GPN3, HECTD4,
DHX58, BECN1, CABLES2, SLAIN2, OCIAD1, HIST1H2BF,
HIST1H4E, SH2B3, IREB2, FES, DHX38, HSD17B1), which were
considered causally associated with the lifespan (Fig. 3b). Lifespan
causally associated eGenes were located on chromosomes 1, 4, 6,
12, 15, 16, 17, and 20 (Fig. 3c). Among these eGenes, only FES
and SH2B3 were previously mapped to the lifespan2. In model
organisms, the deletions of BECN1 and OCIAD1 have been pre-
viously associated with increased and decreased lifespans,
respectively20,21. These data including the directional effects are
concordant with the present findings in human as the blood
expression of BECN1 and OCIAD1 were negatively and positively
associated with the lifespan, respectively. For IREB2 (Pcausal=
9.56 × 10−23), which was also mapped by chromatin interaction
(Fig. 1c), an increase of 1 SD in the expression was associated
with a gain of 0.75 year (9 months) across the lifespan (see
Methods) (Fig. 3b). In the blood co-expression network, a kernel
density function analysis showed that lifespan causally associated
cis-eGenes were distributed along a positive gradient for the
degree (hubness) and central betweenness (bottleneck), two
metrics indicating prominence in network22 (Fig. 3d). Of the 16
causally associated eGenes, 10 genes including IREB2, OCIAD1,
BECN1, and PTPN22 were among the top percentile (>99 per-
centile) nodes with highest betweenness centrality (fold enrich-
ment= 61.7, P= 1.43 × 10−13, hypergeometric test)
(Supplementary Data 10). In sensitivity analyses, we tested the 16
blood eGenes in Egger MR, which provides the intercept test as a
mean to evaluate horizontal pleiotropy. In Egger MR for the
lifespan, we found that PTPN22, DHX58, CABLES2, SLAIN2,
OCIAD1, IREB2, FES, and BECN1 remained significant and
without horizontal pleiotropy on the intercept test (Supplemen-
tary Data 19). The direction of the effect was consistent in IVW
and Egger regressions. As an additional measure of sensitivity, we
performed Bayesian colocalization analyses between blood cis-
eQTLs and lifespan genetic association data. This analysis showed
that BECN1 had a strong posterior probability (PP= 0.98) of
shared genetic signal between gene expression and the lifespan.
For BECN1, the colocalization signal is illustrated in Fig. 3e–g by
using LocusCompare23 and shows that rs1011157 is the gene
variant with the lowest P values for both cis-eQTL and lifespan
genetic association data.

Identification of trans-eQTL genes. We next sought to identify
trans-regulated genes11 (>5Mb from risk loci and/or on a dif-
ferent chromosome) at lifespan causally associated cis-regulated
blood eGenes loci. The identification of trans-regulated genes may
provide insights about downstream pathways regulated by cis-
eGenes. From the individual significant SNPs and variant in LD
associated with the lifespan, 4641 SNP–gene pairs (PFDR < 0.05)
tagging 567 trans-regulated blood genes were identified. In
total, 559 trans-regulated genes were mapped to five lifespan
loci, in which causally associated cis-regulated eGenes were
identified (Supplementary Data 20). Lifespan sentinel variant
rs597808 (PGWAS= 7.32 × 10−13), which is a cis-eQTL for SH2B3
(Pcis-eQTL= 7.48 × 10−68), was associated with 462 trans-eQTL
genes. Overall, at SH2B3 locus, 548 trans-eQTL genes were
mapped and enriched in GO for cytokine-mediated signaling
(P= 2.66 × 10−9), which is consistent with the function of the

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-0937-x

4 COMMUNICATIONS BIOLOGY |           (2020) 3:206 | https://doi.org/10.1038/s42003-020-0937-x | www.nature.com/commsbio

www.nature.com/commsbio


Fig. 2 Blood eGenes network and cell enrichment. a Reduced network topology of key central nodes and interactions. b–d Analysis of single-cell RNA-
sequencing data of monocytes and dendritic cells (GEO accession number GSE94820). b t-SNE graphs showing a cell cluster expressing CLEC9A.
c Heatmap of gene enrichment in CLEC9A− and CLEC9A+ cell clusters. d Violin plots showing data distribution (vertical bars illustrate median and 95%
CI) and comparing expression in CLEC9A− and CLEC9A+ cell clusters.
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Fig. 3 Causal inference on lifespan cis-eQTL genes. a Scheme of Mendelian randomization analysis strategy. b Forest plots indicating the effects (in years)
on lifespan of the 16 blood eGenes considered to be causal. c Chromosomal ideograms for the genomic locations of the lifespan causally associated
eGenes. d Kernel density plots between the degree and the betweenness of the 16 causally associated eGenes, Pearson’s and Spearman’s correlations. e–g
Bayesian colocalization analysis between blood cis-eQTLs and lifespan genetic association data. e LocusCompare showing colocalization signal for BECN1,
with rs1011157 having the lowest P value for both cis-eQTL and lifespan genetic association. f Genetic association signal for the GWAS (parental lifespan). g
Genetic association signal for the blood cis-eQTL.
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cis-regulated eGene SH2B3, an adapter molecule for immune
signaling24 (Supplementary Data 21). The trans-eQTL genes
mapped by SNPs associated with the cis-expression of SH2B3
included 41 TFs curated in TFCheckpoint data25 for the human
(fold enrichment= 1.42, P= 0.02, hypergeometric test) and
included several regulators of the immune response, such as
members of AP-1, STAT, and IRF signaling pathways (Supple-
mentary Data 22). Also, trans-eQTL genes associated with the
lifespan SNPs at SH2B3 were enriched in ligand–receptor
encoding genes26 (fold enrichment= 2.27, P= 1.43 × 10−7,
hypergeometric test) (Supplementary Data 23). In total, 57
ligand–receptor encoding genes were trans-eQTLs associated with
the SH2B3 locus and were enriched in Reactome pathway for
cytokine signaling in the immune system (P= 8.18 × 10−9)
(Supplementary Data 24). Gene variant rs1230666 (lifespan
PGWAS= 6.44 × 10−9) is a cis-eQTL for the lifespan causally
associated eGene PTPN22 (Pcis-eQTL= 1.06 × 10−41) and also
a trans-eQTL for seven genes (Supplementary Data 20).
Among these trans-eQTL genes, CD6 (Ptrans-eQTL= 5.17 × 10−7),
CTLA4 (Ptrans-eQTL= 5.33 × 10−7) and IL2RA (Ptrans-eQTL= 2.55 ×
10−8) are involved in T cell activation, whereas ARID5B (Ptrans-
eQTL= 3.21 × 0−6) is a transcriptional cofactor involved in B cell
differentiation27. The trans-eQTL genes mapped by the lifespan
variant rs1230666 were enriched in ARCHS4 for T lymphocyte (P
= 0.001) (Supplementary Data 25), which is consistent with the
high level and function of the cis-regulated eGene PTPN22 in these
cells28–30. Next, we evaluated if the genetic signal between cis- and
trans-eQTLs was shared by using colocalization analyses. We
found strong evidence of shared genetic signal (PP > 0.8) between
the region of cis-regulated eGene SH2B3 and trans-regulated genes
YWHAH, RAB11A, PRSS33, CLC, NCAM1, IFI44L, RHOB, and
INPP1 (Fig. 4a and Supplementary Data 26). PRSS33 is a serine
protease with an immune function in eosinophils31, whereas
IFI44L is involved in interferon type I response32. NCAM1 (also
known as CD56) is aberrantly expressed in different malignancies
and is a marker of natural killer (NK) cells33. Recently, NCAM1
was found to be expressed by a novel cluster of monocytes
(Mono4) with a gene signature of cytotoxicity34. Figure 4b shows
predicted ligand–receptor interactions derived from single-cell
gene expression of peripheral blood mononuclear cells (GEO
accession number GSE94820) where monocytes are predicted to
interact with DCs through NCAM1 and different chemokines and
immunomodulatory signals for cytotoxicity. Among the
ligand–receptor interactions illustrated in Fig. 4b, there are five
other lifespan trans-eQTL genes associated with the SH2B3 locus,
which are expressed by DCs (ADRB2, TNFRSF14, CCR1, CD58)
and Mono4 (KLRB1) (Supplementary Data 20). Also, we identified
a colocalization signal between the cis-regulation of IREB2 and the
trans-regulation of PRDM8, which encodes for a histone methyl-
transferase (Fig. 4a and Supplementary Data 26). Finally, the
genetic signal for the cis-regulation of FES was shared with trans-
regulated genes SPARC and CTTN (Fig. 4a and Supplementary
Data 26). SPARC encodes for a cysteine-rich matrix protein
involved the control of cell growth35–37, whereas CTTN is involved
in the organization of actin38,39.

Positive selection at cis-regulated eGene loci. Among the dif-
ferent risk loci associated with the cis-regulated eGenes, three
overlapped with genomic regions under positive selection in a
genome-wide scan (PopHumanScan40). Among these loci, two are
well-documented regions under selective sweep: the human leu-
kocyte antigen locus in chromosome 6, which has many blood cis-
eQTLs, is under a balanced selection41, whereas the SH2B3 locus
has been previously highlighted to be under positive selection42.
The derived allele for the lifespan sentinel variant rs597808, which

is a blood cis-eQTL for SH2B3 (Pcis-eQTL= 7.48 × 10−68), has an
elevated prevalence in population with a European ancestry (fre-
quency in CEU= 0.45) and is associated with a decreased lifespan
(−0.28 year per allele, PGWAS= 7.32 × 10−13). Gene variant
rs597808 is in strong LD with rs3184504 (r2= 0.98), a coding
variant previously associated at genome-wide level with cardio-
metabolic traits/disorders43,44 and autoimmune diseases45,46. The
other region under positive selection in PopHumanScan is located
at 17q21.31 where the lifespan index gene variant rs1011157
(PGWAS= 3.58 × 10−8) (Fig. 5a) is a strong cis-eQTL in the blood
(Pcis-eQTL= 5.76 × 10−305) for the expression of BECN1, a gene
involved in autophagy47. At this locus, the derived allele T is
positively associated with the expression of BECN1 in the blood
and negatively with the lifespan (−0.33 year per allele, PGWAS=
3.58 × 10−8). In the blood, an increase of 1 SD in genetically
determined expression of BECN1 was associated with a reduction
of 0.5 year (6 months) (Pcausal= 2.71 × 10−8) across the lifespan.
The derived allele at rs1011157 is absent in African populations,
whereas it is present in other populations with frequencies varying
from 14% in CEU to 35% in Japanese in Tokyo, Japan.

Lifespan cis-regulated eGenes and disorders. To assess how
eGenes related to the lifespan are potentially connected to dif-
ferent disorders, we interrogated DisGenet48, which provides an
expanded and curated database of gene–disease associations.
Lifespan blood cis-eGenes were significantly enriched in cere-
brovascular accident (fold enrichment= 2.16, P= 0.006, hyper-
geometric test), cardiovascular diseases (fold enrichment= 1.91,
P= 0.01, hypergeometric test) and chronic kidney disease (CKD)
(fold enrichment= 2.49, P= 0.01, hypergeometric test) (Fig. 6a).
We generated a disease network using the DisGenet data, which
showed that cerebrovascular accident and cardiovascular diseases
were linked to different group disorders, such as lymphoma,
hypertensive disease, CKD, autoimmune diseases, and neoplasms
(Fig. 6b). We next examined whether blood cis-eGenes related to
the lifespan were enriched in primary immunodeficiency dis-
orders and cancer. Among the listed primary immunodeficiency
disorder genes, we identified five blood cis-eGenes (fold enrich-
ment= 3.01, P= 0.02, hypergeometric test) (TAP2, CIB1, ACP5,
DCLRE1B, and SKIV2L) that were associated with the lifespan. In
PhenoScanner49, TAP2, DCLRE1B, and SKIV2L have been pre-
viously mapped in GWAS to autoimmune disorders such as
rheumatoid arthritis (RA) (Supplementary Data 27). Among the
genes listed in the COSMIC50 database for cancer, seven blood
lifespan cis-eGenes (ALDH2, BCL3, CDKN2A, FES, HIST1H3B,
SH2B3, and SMARCA4) were identified (fold enrichment= 1.4,
P= 0.22, hypergeometric test). Thus, these findings suggest that
lifespan cis-regulated eGenes may be involved in different disease-
related outcomes. To assess the role of lifespan causally associated
cis-eGenes on different risk factors and diseases, we performed
MR analyses. In total, causal inference using MR was performed
by using summary statistics from 25 GWAS for risk factors/dis-
eases englobing cardiometabolic diseases/traits, autoimmune
disorders, atopic disorders, cancer, and neuropsychiatric-
behavioral traits/diseases (Supplementary Data 28). Figure 6c
illustrates the risk factors/diseases related with the lifespan cau-
sally associated cis-eGenes. In MR, 117 risk factors/disorders were
associated with lifespan causally associated cis-eGenes (P < 0.05),
whereas 28 associations remained significant after a Bonferroni
correction (P < 1.27 × 10−4, 0.05/392 traits). Figure 6c provides a
color chart for the consistency in the directional effect of the cis-
regulation on risk factors/disorders and the lifespan. When
considering associations remaining significant after the Bonfer-
roni correction, 75% of eGene–disorder association pairs were
concordant with the lifespan (e.g., the cis-regulated eGene that
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Fig. 4 Trans-eQTLs genes. a Circos illustrating shared genetic signal between cis- and trans-regulated genes; trans-regulated genes showing shared genetic
signal with cis-regulated SH2B3 (cyan), IREB2 (yellow), and FES (red). b Single-cell gene expression (GEO accession number GSE94820) analysis showing
CellPhoneDB predicted ligand–receptor interactions between monocytes and dendritic cells (DCs); on the y-axis, molecules identified as lifespan trans-
QTLs are underlined; molecules expressed by monocytes and DCs are represented in yellow and blue, respectively. c Graphic representation of predicted
molecular interactions between monocytes and DCs and including lifespan trans-eQTLs.
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decreased the risk of disorder/risk factor increased the lifespan).
Some cis-eGenes, such as SH2B3 and FES, showed both con-
cordant and non-concordant associations between the lifespan
and disorders/risk factors. On the other hand, eGenes such as
BECN1, DHX58, SLAIN2, and PTPN22 were largely concordant
in the direction for different risk factor/disease associations with
the lifespan. A gain-of-function variant that change an amino
acid (R620W) in PTPN22 (allele T at rs2476601) has been pre-
viously associated with several autoimmune disorders51,52. With
regard to the lifespan, gain-of-function variant rs2476601 in
PTPN22 was associated with a reduced lifespan (−0.27 year per
allele, PGWAS= 1.63 × 10−5). For the expression, the data are
consistent with these observations as MR-based causal inference
showed that the expression of PTPN22 in the blood was nega-
tively associated with the lifespan (−0.51 year per 1 SD, Pcausal=
2.08 × 10−5) and positively associated with the risk of RA (per 1
SD odds ratio (OR): 2.62, 95% CI: 2.25–3.06, Pcausal= 3.37 ×
10−9) (Fig. 6c). Other causal associations with the cis-expression
are in line with previous mapping in GWAS. For instance,
genetically determined expression of FES was strongly associated
with coronary artery disease (per 1 SD OR: 0.90, 95% CI:
0.88–0.92, Pcausal= 1.09 × 10−15), which is consistent with the
genetic signal in GWAS by the tag SNP rs17514846 (PGWAS=
9.85 × 10−27) at the FURIN/FES locus. However, other strong
relationships in MR, such as the associations between the cis-
regulation of OCIAD1 with stroke (per 1 SD OR: 0.87, 95% CI:
0.82–0.91, Pcausal= 1.54 × 10−7) and breast cancer (per 1 SD OR:
0.78, 95% CI: 0.71–0.86, Pcausal= 1.25 × 10−6), were not mapped
by previous GWAS. These data are in line with a recent study
highlighting that a significant proportion of causal associations
between cis-expression and traits/disorders have no genome-wide
significant SNPs in GWAS53.

Causal inference for long-livedness. Longevity as assessed by the
parental lifespan does not address whether gene variants and cis-
regulated eGenes are associated with long-livedness. We thus
leveraged and imputed GWAS summary statistics totaling 9793

individuals and examining associations with a long-livedness54

(≥90 years) (methods) in order to perform MR analyses. Among
the 16 blood cis-eGenes causally associated with the lifespan, we
could perform MR analyses for long-livedness for 15 genes. In
this small series, there were no eGenes significant at a Bonferroni
threshold level. However, this analysis showed at an FDR sig-
nificance level (PFDR < 0.05) that genetically determined expres-
sions of PTPN22 (per 1 SD OR: 0.87, 95% CI: 0.78–0.96, Pcausal=
0.04), ARPC3 (per 1 SD OR: 0.92, 95% CI: 0.86–0.98, Pcausal=
0.04), GPN3 (per 1 SD OR: 0.94, 95% CI: 0.89–0.99, Pcausal=
0.03), HIST1H4E (per 1 SD OR: 0.85, 95% CI: 0.75–0.97, Pcausal=
0.04), and HSD17B1 (per 1 SD OR: 1.16, 95% CI: 1.07–1.27,
Pcausal= 0.01) were causally associated with a long-livedness (≥90
years) (Fig. 6d). These association data for long-livedness were
consistent with the directional effects of these eGenes on the
lifespan.

Discussion
By using a multi-level approach, which integrated mapping of
GWAS, eQTLs, pathway and cell enrichment, MR, and network
analyses (Supplementary Fig. 1), we provide evidence that cis-
and trans-regulated blood eGenes are linking the human lifespan
with the immune response. Functional annotations of parental
lifespan GWAS were enriched in the blood. In total, 16 blood
eGenes were causally associated with the lifespan. In a co-
expression network, causally associated cis-regulated blood
eGenes with the lifespan were enriched in nodes with elevated
central betweenness, which are shortest path nodes referred to as
bottlenecks that link different expressed gene modules. Lifespan-
associated eGenes were enriched in cardiovascular disorders,
which were linked in a network to CKD, autoimmune disorders,
and cancer. In MR, several lifespan-associated eGenes were also
associated with the risk of disorders.

Analysis of genetic association data for the lifespan showed a
strong enrichment of gene variants in the blood. We found a
strong enrichment for TCR- and interferon γ-mediated signaling
pathways for the blood eGenes mapped to the lifespan GWAS.

Fig. 5 Positive selection at cis-regulated eGene loci. Locus zoom of the region surrounding rs1011157, indicated to be under positive selection in
PopHumanScan.
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Fig. 6 Lifespan cis-regulated eGenes and disorders. a Venn diagram of blood cis-eGenes associated with cerebrovascular accident, cardiovascular
diseases, and chronic kidney diseases (CKDs). b Blood cis-eGenes disease network showing centrality of cerebrovascular accident and cardiovascular
diseases. c Chart indicating the consistency in the directional effect of the cis-regulation on risk factors/disorders and the lifespan derived from Mendelian
randomization analyses; blue: concordant (e.g. the cis-regulated eGene that decreased the risk of disorder/risk factor increased the lifespan), orange: non-
concordant (e.g. the cis-regulated eGene that decreased the risk of disorder/risk factor decreased the lifespan). Blue and orange square P < 0.05, *P < 0.05
(FDR), **P < 1.27 × 10−4 (Bonferroni). AF: atrial fibrillation, CKD: chronic kidney disease, T2D: type 2 diabetes, BMI: body mass index, WC: waist
circumference, RA: rheumatoid arthritis, T1D: type 1 diabetes, SLE: systemic lupus erythematosus, PSC: primary sclerosing cholangitis. d Forest plot of
genes found to be causally associated with long-livedness (≥90 years).
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These data are consistent with the hypothesis that control of
inflammation is linked to the aging process55. However, the
present data suggest that antigen presentation as well as the
orchestration of the immune response by T cells may be involved
in the human lifespan. We highlighted that lifespan-associated
cis-eGenes were enriched in a subset of cDC1 expressing
CLEC9A. Studies have underscored that CLEC9A is involved in
the recognition and cross-presentation of dead cell antigens56. In
addition, single-cell expression data revealed that six lifespan
trans-eQTL genes (NCAM1, ADRB2, TNFRSF14, CCR1, CD58,
and KLRB1) were expressed by DCs and/or a cluster of cytotoxic
monocytes, which were predicted to interact. Monocytes/macro-
phages with a cytotoxic profile have been previously described in
tumors57. Hence, follow-up studies could provide further
mechanistic insights by examining the crosstalk between DCs and
monocytes in the context of aging. Autophagy plays a significant
role in the function of immune cells, including DCs58. We found
a strong signal in both colocalization and MR analyses for the
expression of BECN1, a key regulator of autophagy, on the life-
span. Recent data in Caenorhabditis elegans (C. elegans) showed
that the inhibition of bec-1 (Beclin homolog) in adulthood
extended the lifespan20. Conversely, in C. elegans the inhibition of
bec-1 at the developmental stage decreased the lifespan. Present
findings in human showed that lifelong genetically determined
BECN1 level in the blood was causally and negatively associated
with the lifespan. The expression of IREB2 and DHX58 in blood
cells was positively associated with the lifespan. The control of iron
metabolism by IREB2 could play a role in host defense against
pathogens. DHX58 is a RIG-I-like receptor involved in the inter-
feron γ pathway and host defense against viral infection59. Also,
some eGenes causally associated with the lifespan, such as FES,
SH2B3, and PTPN22, are well known for their role in signaling
pathways in immune cells60–62. In blood cells, we identified that cis-
regulation of SH2B3 was associated with 548 trans-eQTL genes,
which were enriched in TFs as well as with ligands–receptors. These
data are consistent with the role of the encoded protein as an
adapter molecule in the immune signaling cascade. PTPN22 is a
protein tyrosine phosphatase highly expressed in lymphocytes and
it decreases the signaling mediated by the TCR63. Gain-of-function
variant in PTPN22 (frequency in CEU= 0.12) was previously
identified as being associated to different autoimmune disorders,
such as RA, Hashimoto’s thyroiditis, Graves’ disease, type 1 diabetes
(T1D), systemic sclerosis, and systemic lupus erythematosus64.
Consistently, we underlined that genetically determined expression
of PTPN22 was positively associated in MR with the development of
RA, thyroid disorder, and primary sclerosing cholangitis. PTPN22
negatively regulates signaling by the TCR and experiments suggest
that it may promote the selection of autoreactive clones and affect
the function of regulatory T cells65.

We found that a subset of causally associated eGenes were also
associated in MR with long-livedness (≥90 years). The expression of
PTPN22 and ARPC3 in blood cells was negatively associated with
long-livedness. ARPC3 encodes for a protein that regulates the
polymerization of actin and in T cells it participates to the recycling
of the TCR66. On the other hand, HSD17B1, which encodes for a β-
hydroxysteroid dehydrogenase that regulates androgen and estro-
gen levels67, was positively associated with an extended lifespan.
HSD17B1 is expressed by monocytes and the metabolism of sex
steroid hormones could participate to immune senescence68.

Previous work underlined that genetic association data for
cardiovascular diseases showed frequent antagonist pleiotropy
with reproductive traits69. As such, selective pressure for the fit-
ness operates on traits that occur during the first decades of life.
Therefore, it is unlikely that traits and disorders that occur late
during a lifetime are under selective pressure. To this effect, in the
present study we found that loci identified in a scan for positive

selection showed antagonist pleiotropy with the lifespan. At the
SH2B3 locus, the derived allele at rs597808 increases the
expression of SH2B3 and decreases the lifespan. One study
reported that the SH2B3 rs3184504-derived allele, which is in
high LD with rs597808 (r2= 0.98), is associated with an increased
production of IL1B through a NOD2 (nucleotide-binding oligo-
merization domain-containing protein 2) recognition pathway
and may have been selected to protect against bacterial infec-
tion42. Also, the derived allele at rs1011157, which is in a region
identified in a genome-wide scan for positive selection, is a strong
cis-eQTL for the expression of BECN1 and is negatively associated
with the human lifespan. Experimental evidence suggests that
BECN1 may participate in host defense against viral infections70.

The lifespan is a complex trait characterized by a landscape of
trajectories, which vary during a lifetime according to complex
interactions between the genotype and environmental factors. We
found that lifespan-associated blood eGenes were enriched in
cardiovascular diseases. In a disease network, we observed that
cardiometabolic traits and diseases were linked to autoimmune
disorders and cancer. Together, these findings provide support to
different observational data. For instance, RA, an autoimmune
disorder, is associated with an elevated cardiovascular risk71.
Hypertension, a cardiovascular risk factor, has been associated
with the risk of breast cancer72. Lifespan-associated gene OCIAD1
is dysregulated in different cancers73–75 and recent findings sug-
gest that it controls embryonic stem cell differentiation76. In mice,
the deletion of OCIAD1 promoted the degradation of p53 along
with the development of a myeloproliferative disorder and a
reduced lifespan21. Consistently, we found that genetically pre-
dicted higher expression of OCIAD1 in the blood was associated
with an increased lifespan and a reduced risk of breast and
prostate cancers. Also, blood cis-regulated eGenes associated with
the lifespan were enriched for genes involved in rare primary
immunodeficiency disorders. Taken together, these findings
highlight that cis-regulation of genes with important functions in
immunity and cell fate determination are at the interface of a
multimorbid space, which is shared with the lifespan. We found
that the majority of the eGene–disorder association pairs sig-
nificant in MR were concordant for their effects on the lifespan.
For instance, positive associations for the expression of eGenes
with coronary artery disease, stroke, and dementia were negatively
associated with the lifespan. These chronic disorders are well
known for their negative associations with the vital prognosis77,78.

The present work has some limitations. MR is a powerful
inference tool; however, only randomized clinical trials can pro-
vide a confirmation of causality. The MR analysis performed for
long-livedness had limited power. Hence, the associations with
long-livedness should be considered exploratory at this stage and
could be used as a resource to generate hypotheses for further
investigations.

This work provides evidence that genetically determined
expression of genes in blood cells is associated with the lifespan.
The immune system likely plays a significant role in the trajectory
of the human lifespan. Causally associated cis-regulated blood
eGenes established connections between a landscape of morbid
states and trajectories with the human lifespan and long-
livedness. The identification of genetically regulated pathways
involved in the lifespan and long-livedness may help develop
strategies to provide a healthy aging.

Methods
Lifespan genetic associations. Full summary statistics of genome-wide associa-
tion data for the lifespan were obtained from 1,012,240 parental lifespans2,
including 691,621 parental lifespans from UK Biobank (excluding SNPs with MAF
< 0.005) and 320,619 parental lifespans from LifeGen consortium79 (excluding
SNPs with MAF < 0.01). Lifespan was derived from parental survival (age and
alive/dead status) and offspring genotype by using an association test2. Parents who

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-0937-x ARTICLE

COMMUNICATIONS BIOLOGY |           (2020) 3:206 | https://doi.org/10.1038/s42003-020-0937-x | www.nature.com/commsbio 11

www.nature.com/commsbio
www.nature.com/commsbio


died below the age of 40 years were excluded. The association test was conducted
under the Cox’s proportional hazards model as described in refs. 79,80. The Cox’s
model used a hazard ratio, and to be consistent with the lifespan (which implies a
positive effect size for a longer life), the effect sizes were expressed as −loge(Cox’s
hazard ratio) corresponding to a loge(protection ratio). Years of life were estimated
as loge(protection ratio) × 10 according to the average effect across cohorts of the
hazard ratio on the lifespan79. GWAS summary statistics for the lifespan were
publicly available2.

Annotation of lifespan genetic associations. GARFIELD8 was used to char-
acterize functional, cellular and regulatory contribution of genetic variations for the
lifespan. It provides enrichment of genome-wide summary association statistic,
which is corrected for the LD structure, in tissue-specific functional elements.
GARFIELD uses annotations from ENCODE10 and Roadmap9 epigenomics data
(1005 features, including genomic annotations, chromatin states, histone mod-
ifications, DNaseI hypersensitive sites, and TF binding sites, in a number of cell lines
and tissues). The software includes a C++ code for data pre-processing and a R
code for fold enrichment, significant testing, and visualization. LD data are included
as well as annotation data. P values for each SNP were extracted from the lifespan
genome-wide association data summary statistics and default settings were used.

Mapping of lifespan genetic associations. GWAS for the lifespan was mapped to
blood cis- and trans-regulated genes by using FUMA81. With the FUMA
SNP2GENE function, blood cis- and trans-eQTLs data from 31,684 blood sam-
ples11 (data from https://www.eqtlgen.org/index.html) were used to map genetic
associations for the lifespan. Genomic loci associated with the lifespan were defined
using a pre-calculated LD structure of the 1000G EUR reference population. SNPs
in genomic loci with LD r2 < 0.6, P value < 5 × 10−8 and MAF ≥ 0.01 were identified
as independent significant SNPs (IndSigSNPs). SNPs that have LD r2 ≥ 0.6 and
MAF ≥ 0.01 with one of the IndSigSNPs were included as candidate SNPs. These
SNPs might not be available in the GWAS dataset, but are available in the 1000G
EUR reference population. IndSigSNPs independent from each other (LD r2 < 0.1)
were identified as lead SNPs. Genomic loci closely located (<250 kb based on the
most right and left SNPs of each locus) were merged into one genomic locus. Gene
annotation was based on Ensembl (build 85) and entrez ID yielding identification
of 19,436 protein coding genes. Blood cis-eQTL mapping mapped IndSigSNPs to
genes up to 1Mb apart (called cis-regulated blood eGenes), and blood trans-eQTL
mapping mapped IndSigSNPs to genes >5Mb from genomic loci and/or on a
different chromosome. Only significant SNP–gene pairs (PFDR < 0.05) were kept.

Chromatin interaction mapping for the lifespan was performed with the FUMA
SNP2GENE function using Hi-C data in GM12878 (GEO accession number
GSE8711282). IndSigSNPs located into significantly interacting regions were kept
and then mapped to genes whose promoter regions (250 bp upstream and 500 bp
downstream of the TSS) were located within other significantly interaction regions.
Those SNP–gene loops formed frequently interacting regions has described
previously82. Only significant SNP–gene contacts were kept (PFDR < 1 × 10−6).
Circos zoom of genetic associations (eQTL and chromatin interaction) were
generated with the integrated tool in FUMA.

Gene essentiality. Gene essentiality was defined by using the Online GEne
Essentiality database12 (OGEE), which provides a list of human essential genes
based on experimental data. The Homo sapiens dataset of essential genes was
downloaded to identify essential eGenes. A hypergeometric test was performed to
test overrepresentation of essentiality for the eGenes.

Drug-target identification. The Open Targets database13 provides drug-target
identification and prioritization based on human genetic data and clinical infor-
mation. The Open Targets database was used to identify small molecules and/or
antibodies targeting the eGenes, their clinical trial status, and tractability for the
development of small molecules.

Network analyses. A co-expression network analysis was performed to identify
eGenes with central functions. NetworkAnalyst83 was used to generate a tissue-
specific co-expression network of eGenes based on whole-blood expression data
from the TCSBN database14. Pathway enrichment for the network was evaluated by
using the Reactome database15. Metrics for centrality (degree and betweenness)
were obtained from NetworkAnalyst. High betweenness centrality enrichment for
the causal eGenes was evaluated by testing these genes against the top percentile
(>99 percentile) nodes with the highest betweenness centrality with a hypergeo-
metric test. The Minimum Network tool and the Graphopt layout were used to
generate the visual representation of the network. The Origin software was used to
make the kernel density plot.

DisGenet48 data were downloaded to assess the association of eGenes with
disorders by using BeFree gene–disease associations, which provides a curated list
from text mining in MEDLINE. eGenes associated with diseases available in the
BeFree database were integrated in a gene–disease matrix. One gene connected
with two diseases formed a disease–disease pair used to generate a edge list.
Disease–disease pairs were thus obtained for each eGene and used to perform a
disease network for the lifespan using NetworkAnalyst as a visualization tool83.

TFs and regulons analysis. ChEA317 was used to identify TFs associated with the
expression of eGenes. ChEA3 provides TFs enrichment for genes based on ChIP-
seq experiments (from ENCODE10, ReMap84, and data publicly available), co-
expression data between TFs and genes (based on processed RNA-seq from
GTEx85 and ARCHS486), and TF-gen87.

Single-cell analyses. Single-cell RNA-sequencing data of monocytes and DCs
(GEO accession number GSE94820) were analyzed by using Automated Single-cell
Analysis Pipeline (ASAP88). Data were filtered for the variance (threshold 50%),
log-transformed, clustered by K-means, and reduction of dimension with t-SNE at
perplexity 30. Differential expression was performed by using Limma89 at PFDR <
0.05. For heatmap representation, log-transformed data were used for Z-score
distribution and visualized by using Morpheus.

To infer ligand–receptor interactions between monocytes and DCs, the publicly
available CellPhoneDB v2.0 package90 was used. Single-cell RNA-sequencing data
of monocytes and DCs (GEO accession number GSE94820) was log2 transformed
and used as an input in CellPhoneDB using default parameters. Significant
predicted ligand–receptor interactions were represented by using CellPhoneDB.

Mendelian randomization. Causal inference for eGenes on the lifespan was
evaluated with two-sample MR by selecting independent SNPs (instrumental
variables) associated with the expression of these eGenes. SNPs were analyzed
within a window of 500 kb around the TSS of each eGene, then only SNPs strongly
associated with the eGene expression (P < 0.001 corresponds to ~F statistics > 10)
and independent (r2 < 0.1 based on the 1000G EUR reference panel) were selected
as instrumental variables. For eQTLGen data, β (effect size) and SE were estimated
for each instrumental variable from their Z-score (Z), allele frequency (p), and
sample size (n) (data available from www.eqtlgen.org/cis-eqtls.html) using the
following equation91:

β̂ ¼ Z ´cSE;

where cSE ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pð1� pÞðnþ Z2Þp

.
MR was performed by using the MR package92. Horizontal pleiotropy was

estimated by using the heterogeneity test evaluated with the Cochran’s Q test and
was considered significant when Pheterogeneity < 0.05. The MR-PRESSO package7

was performed for eGenes significant in IVW, but with significant heterogeneity on
the Cochran’s Q test (Pheterogeneity < 0.05). MR-PRESSO performs an IVW MR and
includes three components: detection of heterogeneity with the MR-PRESSO
Global test, correction for heterogeneity via outlier removal with the MR-PRESSO
Outlier test, and test of significant difference in the causal estimate before and after
removal of outliers with the MR-PRESSO Distortion test. MR-PRESSO was
performed if PGlobal test < 0.05 and Poutliers test < 0.05; the test was considered
significant if PIVW-corrected < 0.05 and PDistortion test > 0.05. Egger regression and the
intercept test to evaluate horizontal pleiotropy of instrumental variables were
performed as sensitivity analyses. An absence of horizontal pleiotropy was
considered if PIntercept > 0.05.

Genetic colocalization analysis. Shared genetic signals between the expression of
cis-regulated eGenes (cis-eQTLs) and lifespan genetic associations or the expression
of blood trans-eQTL genes were evaluated using the HyPrColoc package93.
HyPrColoc provides a Bayesian colocalization analysis across traits in a genomic
region in order to test for shared genetic signal. Genomic regions were defined as
500 kb downstream and 500 kb upstream of the TSS of each eGene. As described
previously, β an SE for each SNPs associated with the expression of eGenes were
estimated from Z-score, allele frequency, and sample size. A shared genetic signal
between the expression of a cis-eGene and the lifespan or the expression of a blood
trans-eQTL gene was considered if the PP was >0.8. LocusCompare23 was used to
visualize the shared genetic signal between a cis-eGene and lifespan genetic asso-
ciations at a locus. Biocircos94 was used to present colocalization signals between
cis-eQTL and trans-eQTL genes.

GO, pathway, and enrichment analyses. GO and pathway enrichment were
performed by using EnrichR87 and data were reported by using adjusted P values.
The TFCheckpoint25 database, which provides experimental evidence of human
TFs on gene transcription regulation, was downloaded. The primary immunode-
ficiency deficiency and ligand–receptor gene lists were downloaded from https://
esid.org/Working-Parties/Registry-Working-Party/ESID-Registry/List-of-diseases-
and-genes and https://www.nature.com/articles/ncomms8866, respectively26. The
enrichment for eGenes was performed by using hypergeometric test.

Positive selection at cis-regulated eGene loci. The PopHumanScan40 catalog,
which regroups regions of the human genome showing strong evidences of positive
selection along the human lineage was downloaded. Lifespan loci genomic coor-
dinates were intersected with the positive selection scan from PopHumanScan.
Ancestral and derived alleles were identified from the Ensembl 92 VCF file (ftp://
ftp.ensembl.org/pub/release-92/variation/vcf/homo_sapiens/homo_sapiens.vcf.gz).
Variant allele frequencies were visualized by using The Geography of Genetic
Variants Browser95 (GGV) and data from the 1000 Genomes.
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Gene–phenotype associations. The PhenoScanner49 catalog containing human
genotype–phenotype associations was used to identify immune disorders asso-
ciated with eGenes enriched in primary immunodeficiency disorders.

Imputation from summary statistics. The RAISS96 package was used to impute
summary statistics. It relies on a Gaussian imputation of summary-level data and
empirical evidence indicates no increase in false-positive rate compared to impu-
tation on individual data. First, LD-correlation matrix from the 1000G EUR
reference population was generated with plink, and Z-scores were calculated from
long-livedness GWAS summary statistics54. RAISS was then run with default
settings. β̂ and cSE were estimated from Z-scores as described above to perform MR.

Statistics. Hypergeometric tests were performed by using the hypergea R package.
Spearman’s and Pearson’s correlations were performed with GraphPad Prism 5.0
(GraphPad Software, Inc., San Diego, CA).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
We performed analyses based on publicly available GWAS summary statistics
(Supplementary Information). As all analyses were based on publicly available GWAS
summary statistics, no ethical approval was required. GWAS summary statistics can be
found at the links below for the indicated phenotypes:
Lifespan: https://datashare.is.ed.ac.uk/handle/10283/3209; CAD: https://data.

mendeley.com/datasets/gbbsrpx6bs/1; stroke: http://www.megastroke.org/download.
html; AF: http://csg.sph.umich.edu/willer/public/afib2018/; CKD: https://ckdgen.imbi.
uni-freiburg.de/; T2D: http://diagram-consortium.org/downloads.html; BMI: https://
portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files;
cholesterol: https://www.understandingsociety.ac.uk/; breast cancer: http://bcac.ccge.
medschl.cam.ac.uk/bcacdata/icogs-complete-summary-results/; colorectal cancer: https://
grasp.nhlbi.nih.gov/FullResults.aspx; prostate cancer: http://practical.icr.ac.uk/blog/; RA:
http://plaza.umin.ac.jp/~yokada/datasource/software.htm; PSC: https://www.ipscsg.org/;
atopic dermatitis: ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/
PaternosterL_26482879_GCST003184; asthma: https://genepi.qimr.edu.au/staff/manuelf/
gwas_results/main.html; Alzheimer: https://ctg.cncr.nl/software/summary_statistics;
major depresssion: https://www.med.unc.edu/pgc/shared-methods/data-access-portal/;
bipolar disorder: https://www.med.unc.edu/pgc/data-index/; schizophrenia: https://www.
med.unc.edu/pgc/data-index/; ever smoke: https://www.thessgac.org/data; hypertension,
waist circumference, lung cancer, T1D, hypothyroidism and SLE: http://www.nealelab.is/
uk-biobank; long-livedness: https://grasp.nhlbi.nih.gov/FullResults.aspx.

Code availability
All software used in this analysis is publicly available at the URLs below:
GARFIELD package: https://www.ebi.ac.uk/birney-srv/GARFIELD/; FUMA: https://

fuma.ctglab.nl/; eQTLGen: https://www.eqtlgen.org/index.html; Hypergea package:
https://cran.r-project.org/web/packages/hypergea/index.html; Enrichr: https://amp.
pharm.mssm.edu/Enrichr/; OGEE: http://ogee.medgenius.info/browse/; Open Targets:
https://www.opentargets.org/; NetworkAnalyst: https://www.networkanalyst.ca/;
Reactome: https://reactome.org/; ChEA3: https://amp.pharm.mssm.edu/chea3/; ASAP:
https://asap.epfl.ch/; Limma: http://bioinf.wehi.edu.au/limma/; Morpheus: https://
software.broadinstitute.org/morpheus/; Mendelian randomization package: https://cran.
r-project.org/web/packages/MendelianRandomization/index.html; MR-PRESSO
package: https://github.com/rondolab/MR-PRESSO; HyPrColoc: https://github.com/
jrs95/hyprcoloc; TFcheckpoint: http://www.tfcheckpoint.org/; PopHumanScan: https://
pophumanscan.uab.cat/; DisGeNET: https://www.disgenet.org/home/; COSMIC: https://
cancer.sanger.ac.uk/cosmic; CellPhoneDB: https://github.com/Teichlab/cellphonedb;
PhenoScanner: http://www.phenoscanner.medschl.cam.ac.uk/; RAISS package: https://
gitlab.pasteur.fr/statistical-genetics/raiss; UK Biobank: http://www.nealelab.is/uk-
biobank.
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