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Abstract: Pancreatic ductal adenocarcinomas (PDAC) belong to the most frequent and most deadly
malignancies in the western world. Mutations in KRAS and TP53 along with some other frequent
polymorphisms occur almost universally and are likely to be responsible for tumor initiation.
However, these mutations cannot explain the heterogeneity in therapeutic responses observed in
PDAC patients, which limits efficiency of current therapeutic strategies. Instead, recent classifications
of PDAC tumor samples are based on transcriptomics data and thus include information about
epigenetic, transcriptomic, and post-transcriptomic deregulations. RNA binding proteins (RBPs)
are important post-transcriptional regulators involved in every aspect of the RNA life cycle and
thus considerably influence the transcriptome. In this study, we systematically investigated
deregulated expression, prognostic value, and essentiality reported for RBPs in PDAC or PDAC
cancer models using publicly available data. We identified 44 RBPs with suggested oncogenic
potential. These include various proteins, e.g., IGF2 mRNA binding proteins (IGF2BPs), with reported
tumor-promoting roles. We further characterized these RBPs and found common patterns regarding
their expression, interaction, and regulation by microRNAs. These analyses suggest four prime
candidate oncogenic RBPs with partially validated target potential: APOBEC1, IGF2BP1 and 3,
and OASL.

Keywords: RNA binding proteins (RBPs); pancreatic ductal adenocarcinoma (PDAC); APOBEC1;
IGF2BP1; IGF2BP3; OASL

1. Introduction

Pancreatic cancer currently is the fourth leading cause of cancer-associated death in Western
societies and predicted to become the second leading cause of death by 2030 [1,2]. The vast majority of
pancreatic malignancies are pancreatic ductal adenocarcinomas (PDACs), accounting for more than
95% of pancreatic malignancies [3]. PDAC has one of the worst prognoses of any common solid tumors
with a 5-year survival rate of around 5–8% [1,4]. The adverse prognosis in most cases is due to diagnosis
at advanced disease stages and only up to 20% of patients are candidates for surgical resection in
curative intent [5,6]. Most PDACs are associated with somatic mutations, most frequently in the KRAS,
TP53, CDKN2A, and SMAD4 genes. Especially, KRAS mutations were found to occur in more than
90% of all tumor samples [3,7]. In transgenic mouse PDAC models, activating mutations in the K-ras
gene are typically sufficient for the initiation of tumorigenesis [3]. However, these known and frequent
mutations do not allow clinically relevant prognostic classifications, suggesting that the origins of the
PDAC heterogeneity may be found at the postgenetic level, since therapy resistance and poor outcome
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is associated with substantial transcriptome heterogeneity observed in PDAC [6]. At least three PDAC
subtype classifications based on transcriptomic data have been proposed. Moffitt et al. [8] described
two tumor-specific subtypes obtained via non-negative matrix factorization (NMF) of microarray
data; a basal-like subtype, typically associated with worse outcome, and a classical subtype with
improved prognosis. Furthermore, this study proposed two classes of stroma subtypes, normal
and activated, yielding four molecular PDAC subtypes in total. Collisson et al. [9] suggested three
subtypes also generated by NMF of microarray data: classical, quasi-mesenchymal, and exocrine-like.
Notably, the classical subtypes proposed by Moffitt et al. and Collison et al. show substantial
overlaps in gene expression signatures. Bailey et al. [1] derived four subclasses by applying NMF
to RNA-seq and microarray data of pancreatic cancer samples: squamous, pancreatic progenitor,
immunogenic, and aberrantly differentiated endocrine exocrine (ADEX). Application of these three
classification systems to the RNA expression data provided by The Cancer Genome Atlas (TCGA)
research network revealed that classification of the samples as basal-like or classical was independent
of tumor purity. Moreover, these subtypes were distinguished by differential regulation of gene
expression by microRNAs (miRNAs) and DNA methylation [7]. Juiz et al. reported that the basal-like
and classical subtypes can be interconverted by upregulation or downregulation of the transcription
factors MET and GATA6, which were proposed to regulate disease super-enhancers, i.e., clusters of
transcription factors located in the same region of the genome [6]. According to Juiz et al., PDAC
carcinogenesis is initiated by mutations triggering epigenetic deregulation. This was proposed to
drive transcriptome alterations that finally manifest in the basal-like or classical PDAC subtype.
Gene expression is regulated at various levels including RNA-dependent regulation by short and
long noncoding RNAs (ncRNAs) as well as RNA binding proteins (RBPs). While miRNAs as one
specific class of ncRNAs have been studied extensively in pancreatic cancer (e.g., [10–12]), little is
known about the role of RBPs in PDAC progression. Despite the lack of systematic investigation
of RBPs in PDAC, ample evidence suggests substantial impact of some RBPs in this malignancy.
For example, all three members of the insulin-like growth factor 2 mRNA binding protein family
(IGF2BPs) have recently been described as being upregulated and associated with a poor prognosis in
pancreatic cancer [13–17]. Furthermore, inactivation of the histone deacetylase SIRT6 was reported
to accelerate PDAC progression in mouse models due to upregulation of LIN28B [18]. Consistent
with the role of LIN28B in impairing biogenesis of let-7 microRNAs [19], LIN28B upregulation was
associated with downregulation of let-7 microRNAs and upregulation of major let-7 targets HMGA2,
IGF2BP1, and IGF2BP3. Intriguingly, IGF2BP1, LIN28B, and HMGA2 form a self-promoting network
antagonizing the tumor-suppressive actions of the let-7 miRNA family [20]. Other RBPs with suggested
tumor-promoting roles in PDAC include the 5’-3’ exonuclease EXO1 [21] and the RBPs HuR (ELAVL1)
and PTBP3, which both have been reported to lead to hypoxia-induced chemoresistance in pancreatic
cancer cells [22,23].

In the present study, we analyzed publicly available data from high-content studies to determine
which RBPs distinguish the classical from the basal-like PDAC subtype and which of these may play
tumor-promoting or -suppressing roles in order to identify novel candidate targets for diagnosis
and therapy.

2. Results

2.1. Workflow for the Identification and Characterization of Oncogenic RBPs in PDAC

In order to identify RBPs showing oncogenic or tumor suppressive potential in PDAC and its
subtypes, we first determined differential gene expression using large-scale transcriptomics data from
The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) projects [7,24]. Next,
we combined the results of this analysis with survival data to evaluate which RBPs deregulated in
PDAC were associated with adverse or beneficial prognoses. This led to 44 RBPs that showed an
elevated RNA expression in PDAC or at least one of its subtypes and that, in addition, showed adverse
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prognosis when expressed at a higher level. We termed them PDAC oncogenic RBPs or PoRs. We
further examined these 44 RBPs regarding various characteristics and common properties, putative
protein–protein interactions among them, and possible miRNA interactions (Figure 1).
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Figure 1. Analysis of pancreatic ductal adenocarcinomas (PDAC) onco-RNA binding proteins (RBPs).
Flowchart depicting the analysis pipeline for the in silico identification and characterization of RBPs
with oncogenic characteristics in PDAC using public data sets. Black boxes represent data sources,
white boxes denote analysis steps.

2.2. Transcriptional Regulation in PDAC

To infer information about deregulation of RBPs on the RNA level, we used PDAC RNA-seq data
derived from the TCGA project [7]. However, these data only contain four normal tissue samples.
Therefore, we decided to compare the primary tumor samples with pancreas RNA-seq data from
the GTEx project, providing transcriptome data of nonmalignant human tissue [24]. We used raw
count data from both projects and processed them together to avoid RNA composition biases (see
Methods). Altogether, we compared 248 pancreas samples with 177 PDAC tumor samples. Gene
set enrichment analyses (GSEA, [25]), using the fold change of expression to rank genes, revealed
pancreatic-cancer-related gene sets among the most significantly enriched sets (Supplementary Figure
S1A; Supplementary Table S1). In total, 7641 out of 18,797 investigated protein-coding genes were
determined as differentially expressed (FDR < 0.05, |log2FC| ≥ 1). Notably, more than twice as
many genes were upregulated (5221) than downregulated (2420) in PDAC samples, suggesting a
substantial reprogramming and reactivation of the transcriptome silenced in nonmalignant pancreatic
tissue (Supplementary Figure S1B). Protein-coding transcripts showing the highest expression values
in normal pancreas tissue all encode for digestive enzymes and cofactors. These proteins showed
a markedly lower expression in PDAC samples, supporting the observed impairment of exocrine
functions of the pancreas (Supplementary Figure S1C). In addition to considering the complete
PDAC sample set, gene expression of pancreas tissue was compared to the expression of the two
major molecular subtypes of PDAC, basal-like and classical, as well as between both subtypes.
The classification of the TCGA tumor samples into these subtypes was obtained from the TCGA
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Research Network [7]. Of the 177 PDAC tumor samples, 84 matched the classical and 65 matched the
basal-like subtype. Survival analysis of the subtype samples confirmed the trend that the basal-like
subtype is associated with a lower survival probability (hazard ratio basal/classical = 1.4, log-rank test
p value = 0.1; cf. Figure 2A). Interestingly, deregulated gene expression determined between pancreatic
tissue and PDAC subtypes revealed a high correlation of fold changes observed in classical and
basal-like subtype samples (Figure 2B). This suggests that the differences between the two subtypes
might not rely on fundamental differences in gene expression but rather implies distinct pronunciation
of the expression of specific genes. This was further analyzed by GSEA to determine processes and
pathways containing genes particularly deregulated in the two PDAC subtypes compared to normal
pancreas and to each other. For this purpose, the 50 MSigDB hallmark gene sets were used. These
sets are comprised of genes serving as markers of well-defined biological states or processes [26]
(Figure 2C). Overall, normalized enrichment scores (NES) determined by GSEA were similar for the
classical and for the basal-like subtype, indicating analogous trends in deregulation of the processes
represented by these hallmark gene sets in both subtypes. However, fold changes resulting from
the comparison of classical against basal-like PDAC samples revealed different manifestations of the
respective enrichments. For example, genes involved in the epithelial-to-mesenchymal transition
tended to be upregulated in both PDAC subtypes, but to a greater extent in the basal-like tumors.
The same trend was observed for genes known to be upregulated upon KRAS signaling, whereas the
gene set containing genes known to be downregulated upon the KRAS activation showed negative
enrichment scores for both subtypes, but this trend in downregulation was more pronounced in
the basal-like subtype. For gene sets related to interferon and inflammation response, positive NES
values were determined in both subtypes. However, genes comprised in these sets again tended to be
upregulated more strongly in the basal-like subtype. Finally, positive NES values for the glycolysis
gene set and negative NES observed for oxidative phosphorylation indicated a stronger manifestation
of the Warburg effect in the basal-like subtype [27]. Interestingly, genes known to be upregulated
in pancreatic beta cells (gene set PANCREAS_BETA_CELLS) tended to be downregulated in both
subtypes, but again this was pronounced in the basal-like subtype. In sum, these findings support
the view that worse disease outcome observed for basal-like PDAC is consistently associated with
pronounced dedifferentiation, indicated by impaired exocrine and endocrine functions as well as
overall enhanced deregulation of cancer hallmark pathways.

2.3. Transcriptional Regulation of RBPs in PDAC

Aiming to characterize deregulated RBP expression in PDAC subtypes, a total number of
1542 RBPs described by the RBP census from Gerstberger et al. [28] was considered. RNA expression
data for the majority of these (1499) was contained in the respective transcriptome data. A total
of 290 RBPs were determined differentially expressed in PDAC compared to nonmalignant tissue,
using the aforementioned criteria (130 up, 160 down; Supplementary Table S2). The comparison
between nonmalignant pancreatic tissue and the classical subtype yielded 125 upregulated RBPs and
171 downregulated RBPs. In the basal-like subtype, upregulation was observed for 128 RBPs, whereas
193 were decreased. To link deregulated expression with prognostic relevance, survival analyses based
on RNA expression levels in the TCGA PDAC cohort were performed. Applying a rather moderate
significance threshold (log-rank test p-value < 0.25), we could identify 44 RBPs that were upregulated
in the complete PDAC cohort or at least in one of the subtypes and furthermore showed an unfavorable
prognostic value, i.e., the hazard ratio (HR) between high and low expression was greater than one.
We will refer to these RBPs as PDAC onco-RBPs (PoRs) in the following (Supplementary Table S3).
Analogously, we determined 104 RBPs downregulated in the PDAC samples that showed better
survival probabilities (HR < 1) when expressed at a higher level, which we will refer to as PDAC
tumor suppressor-RBPs (PsRs; Supplementary Table S4). In accordance to the general trend observed
for aberrant gene expression in PDAC, deregulation of RBP expression followed the same tendencies
in both subtypes. Only DDX53, one of the PoRs showing upregulation in the basal-like subtype and
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associated with an adverse prognostic (log2FC = 2.9; HR = 2.1), was significantly downregulated
in the classical subtype (log2FC = −1.2; HR = 0.4). However, it has to be mentioned that the base
expression of this RBP was considerably low (average CPM = 0.005 in pancreas).
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B

C

Figure 2. PDAC subtype properties. (A) Kaplan–Meier-curves showing overall survival rates for
classical (blue) and basal-like (red) PDAC. (B) RNA expression changes of protein-coding genes in
classical and basal-like PDAC subtypes compared to normal pancreas samples. Green points mark
RNA binding proteins (RBPs). (C) Heatmap showing normalized enrichment scores (NES) obtained
from gene set enrichment analyses (GSEA) of the 50 MSigDB hallmark gene sets using fold changes
obtained by the comparisons of pancreas against classical PDAC (first column), pancreas against
basal-like PDAC (second column), and basal-like against classical PDAC (third column).

For this study, we focused on the PoRs (Figure 3A), since these represent factors that may
promote dedifferentiation and diseases progression and may thus present therapeutic targets eligible
for treatment by inhibition, as proposed for LIN28B [29] and other RBPs. Among the 44 PoRs were
proteins previously implicated in PDAC progression, e.g., IGF2BP1-3 [13–17], IFIT3 [30], EXO1 [21],
or PTBP3 [23]. However, there were also proteins that, to the best of our knowledge, have not yet
been associated with oncogenic potential in pancreatic cancer, e.g., OAS proteins, RBM34 or DQX1.
Remarkably, some protein families seemed to be enriched among the PoRs. The complete IGF2BP
and OAS families of RBPs were included, as well as four members of the DEAD-box helicase family,
two members of the IFIT family, and three RNase subunit coding genes. The strongest upregulation
in PDAC samples in terms of fold change was observed for the RNA-editing enzyme APOBEC1
(log2FC = 8.02) followed by OASL, DQX1, and ERN2. All of these showed log2 fold changes in mRNA
expression above five, i.e., had average expression levels more than 32-fold higher in PDAC samples
compared to normal pancreatic tissues. Comparisons regarding the expression of the PoRs in PDAC
subtypes revealed that all three members of the IGF2BP family showed pronounced upregulation
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in the basal-like subtype. However, only for IGF2BP1 significantly higher abundance was observed
in the basal-like subtype when comparing both subtypes directly (log2FC = 1.01; FDR = 0.01).
Notably, IGF2BP1 also showed a distinctly stronger upregulation in each subtype than the other two
IGF2BPs, supporting reports on its pivotal oncogenic potential [31]. The loss of SIRT6 in PDAC tumor
models was associated with upregulation of LIN28B and consequently increased expression of the
let-7 targets HMGA2, IGF2BP1, and IGF2BP3 [18]. In agreement, these let-7 targets as well as LIN28B
were enhanced in PDAC samples. However, instead of downregulation, this was accompanied with
a modest upregulation of SIRT6 in TCGA PDAC samples (log2FC = 0.4). This suggests that other
additional mechanism underlie upregulation of LIN28B in PDAC leading to enhanced expression
of oncogenic factors including IGF2BP1 and HMGA2, as previously reported [20]. Besides IGF2BP1,
DDX53 also showed a significantly pronounced upregulation in the basal-like subtype. The enhanced
expression of both RBPs was associated with significantly reduced survival probability in the basal-like
subtype whereas hazard ratios below one were observed in the classical subtype for both RBPs.
In contrast, ANG, APOBEC1, DQX1, ERN2, and PIWIL1 were significantly upregulated in the classical
compared to the basal-like subtype samples (Figure 3A). Furthermore, these five RBPs showed hazard
ratios above one associated with significant differences in the survival probabilities only in the classical
PDAC samples. The same trends in expressional differences between the tumor subtypes could be
recapitulated in PDAC cell lines, classified as being classical or basal-like origin, as determined by
Yu et al. [32], for IGF2BP1, ANG, APOBEC1, and ERN2 (Supplementary Figure S2A, Supplementary
Table S5).

2.4. Characterization and Interactions of the PoRs

The chromosomal distribution of the PoR genes revealed a conspicuous enrichment of
chromosome 12, since eight of these 44 RBPs (18%) are located on this chromosome (Figure 3B). This is
considerably more than expected, since only around six percent of all RBPs are located on chromosome
12. Similar numbers (≈ 5%) are obtained when considering the fraction of all protein-coding genes
located on chromosome 12 as well as those protein-coding genes that were differentially expressed
in PDAC and that are located on this chromosome (Supplementary Figure S2C). The PoRs located
on chromosome 12 are OAS1-3, OASL, APOBEC1, GAPDH, RBMS2, and PIWIL1. The inspection of
consensus target RNA types, as reported in the RBP census, revealed a four-fold bigger fraction of the
PoRs binding to unspecified noncoding RNAs when compared to all RBPs (Figure 3B, Supplementary
Figure S2B). Among these RBPs were the viral RNA binding proteins OAS1-3, OASL, IFIT2, and IFIT3,
as well as the vaultRNA (vtRNA) binding protein MVP.

Functional enrichment analyses using the 44 PoRs revealed that, besides the obvious enrichment
of RNA-binding functionality, proteins influencing nuclease activity were significantly enriched among
those RBPs (Figure 3C, Supplementary Table S6). This category contained the nucleases RNASE7,
RNASEH2A, RNASE10, and EXO1, as well as proteins regulating nucleases, like the OAS-protein
family that are known to activate RNase L activity upon viral infection [33]. Helicase activity was also
significantly enriched among PoRs, since they comprised four DEAD-box helicases (DDX53, DDX6,
DDX60, DDX60L) as well as RUVBL1 and DQX1, both described to at least possess DNA-helicase
activity. In addition, with ZNFX1, a further reported helicase was included in the PoR list, although not
yet annotated as such in Gene Ontology [34]. Interestingly, analysis of enriched processes revealed that
a substantial number (9/44) of PoRs play a role in the viral defense response (Figure 3C, Supplementary
Table S6). These include IFTI2 and IFIT3, OAS1-3 and OASL, APOBEC1, DDX60, and MRPL13.
In addition, two further helicases among the PoRs, DDX60L and ZNFX1, were recently described to be
involved in the human innate immune response against viral infection [35,36].
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Figure 3. Properties of PDAC onco-RBPs (PoRs). (A) Average normalized RNA expression values (log10
CPM) of the 44 PoRs in pancreas as well as in classical and in basal-like PDAC samples. The color bar
on the left side encodes subtype specificity of oncogene properties (yellow—upregulated and adverse
prognostic only in classical PDAC; orange—upregulated and adverse prognostic only in basal-like
PDAC; brown—upregulated and adverse prognostic in both PDAC subtypes). (B) Chromosomal
distribution (left) and consensus RNA target types (right) of the PoRs. (C) Top 12 significantly
(FDR < 0.05) enriched functions (left) and biological processes (right) among the PoRs. Gene Ontology
terms are sorted according to the significance of their enrichment. (D) Average dependency scores of
the PoRs in PDAC subtype specific cell lines obtained by knockdown via RNAi or CRISPR knockout.
Gray color denotes missing values.

To evaluate the “essentiality” of PoRs in cancer cells, we queried dependency scores reported
by the DepMap project for PDAC-derived cell lines (Figure 3D, Supplementary Table S7), classified
as classic- or basal-like. RNAi-mediated depletion as well as CRISPR-mediated deletion data of
the respective RBPs were extracted from the DepMap data [37,38]. In general, dependency scores
reported by DepMap are supposed to indicate how essential a specific gene is for cell survival and
propagation in 2D cell culture. Dependency scores below –1, the median dependency score of all
pan-essential genes, are considered to indicate core essential genes. In the RNAi screens, although
largely negative, most of the PoRs showed average dependency scores close to zero, implying only
minor proliferation effects when depleted (Figure 3D, Supplementary Table S7). In general, dependency
scores of the PoRs obtained from the CRISPR screens were lower compared to those from the RNAi
screens. As expected, the lowest dependency scores were observed for the basal factors of ubiquitous
function, for instance SNRPD1, a crucial component of the SMN-Sm complex mediating spliceosomal
snRNP assembly. Notably however, in general, determined dependency did not reflect the impact
of the PoRs as determined prior by hazard ratios or upregulation in PDAC or any of the two PDAC
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subtypes. This suggests that in-vitro-determined dependency scores are only of minor value for
evaluating the oncogenic potential of PoRs.

To investigate whether the 44 PoRs might act together via common protein complexes or at
least influence each other, we searched for known protein–protein interactions (PPI) and analyzed
relations of their RNA expressions in PDAC. The search for known PPI using the STRING-database
(string-db.org, [39]) revealed a highly connected network consisting of the four OAS proteins as well
as the two members of the IFIT family IFIT2 and IFIT3 (Figure 4A). Furthermore, the mRNAs encoding
the respective proteins showed highly correlated RNA expression values in pancreatic tissues. These
correlations were even more pronounced in the PDAC samples, where a distinct cluster of proteins
with very high expression correlation was formed (Figure 4B,D). Besides the OAS and IFIT proteins,
this cluster contained the helicases DDX60, DDX60L, and ZNFX1, suggesting a collective upregulation
of RBPs exerting antiviral functions in PDAC. The high degree of expression correlation of these RBPs,
here termed the OAS-IFIT-cluster, could also be recapitulated when considering the PDAC subtypes
alone (Supplementary Figure S3A,B), suggesting subtype independent function. Another PPI reported
by STRING was found between EXO1 and BRCA1. This interaction was speculated to augment the
recruitment of EXO1 to DNA double-strand breaks, especially during the G2 phase of the cell cycle [40].
The Spearman correlation coefficient (ρ) of the RNA expression of these two RBPs increased from 0.16
in pancreas to 0.61 in PDAC, suggesting a stronger association of them in the tumors. Whereas a strong
and discrete association cluster of both factors was observed in the classical subtype, the correlation
was weaker and the cluster appeared less discrete in the basal-like subtype (Supplementary Figure
S3A,B). Another example of a reported PPI that was pronounced stronger by expression correlation
in PDAC than in normal pancreas is IGF2BP1 und IGF2BP3. Here, Spearman’s ρ increased from
−0.04 to 0.43. However, although the overall expression correlation coefficients between IGF2BP1
and the other PoRs tended to increase in the PDAC samples, besides IGF2BP3 only SMAD6 and
EXO1 showed a moderate positive correlation with IGF2BP1 (ρ = 0.34, each), whereas the correlation
coefficients between IGF2BP1 and the remaining PoRs were considerably below 0.3. This suggested
that IGF2BP1 exerts its roles largely independent of other PoRs in PDAC as well as the subtypes.
In contrast, the other two IGF2BP members showed high correlation (ρ > 0.3) to several other PoRs in
the PDAC samples, for example to each other, LRRFIP1, SPATS2L, and to the abovementioned cluster
of PoRs with antiviral functions. These correlations were considerably lower in nonmalignant pancreas
samples, supporting the oncofetal expression pattern of IGF2BPs [41]. In general, a trend for stronger
correlations (positive as well as negative) between PoRs could be observed in PDAC compared to
normal pancreas (Figure 4C). Despite the conserved association of the OAS-IFIT-cluster in PDAC
subtypes, most association clusters showed variable extent and composition between both subtypes.

string-db.org
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Figure 4. PoR interactions. (A) Known physical interactions between PoRs according to the STRING
database. (B,D) Spearman’s correlation coefficients of the PoR RNA expression in pancreas (B) and
PDAC (D) RNA-seq samples. (C) Distribution of Spearman’s correlation coefficient magnitudes (|ρ|)
obtained from comparisons among the 44 PoRs in pancreas and PDAC RNA-seq samples.
***: Mann–Whitney test p-value < 0.001.

2.5. Post-Transcriptional Regulation of the PoRs by microRNAs

MicroRNAs (miRNAs) and RBPs form regulatory networks modulating mRNA expression.
One prominent example in cancer is the LIN28B/IGF2BP-containing network, which antagonizes
tumor-suppressive regulation by let-7 miRNAs. Whereas LIN28B interferes with let-7 biogenesis,
IGF2BPs impair targeting of let-7 on specific transcripts [20]. Aiming to reveal additional miRNAs
regulating PoRs, we determined microRNAs predicted to bind to their respective mRNAs by querying
eight different prediction databases. We required a certain mRNA–miRNA binding to be predicted
by at least two of the eight databases to be considered further. Subsequently, we performed
Spearman’s correlation tests using TCGA small RNA-seq data to filter out those predicted target
interactions without significant negative correlation of expression between the respective miRNA
and RBP-encoding mRNA in PDAC (ρ < 0, p < 0.05). Thus, we limited the prediction results to
those relevant for the provided PDAC data. This resulted in 99 different miRNAs predicted to target
31 of the 44 PoRs (see Figure 5A, Supplementary Table S8). Notably, three of the obtained miRNAs
(miR-126, miR-454, miR-3613) were included in a recently reported miRNA-signature consisting
of seven miRNAs that are downregulated in PDAC and were proposed as prognostic markers for
pancreatic cancer [11]. The RBP predicted to be bound by the highest number of different miRNAs was
PTBP3 (23), followed by IGF2BP3 and RBMS1 (16 each). Further, the other two members of the IGF2BP
family were also among the 10 PoRs predicted to be bound by the most miRNAs (Figure 5C), and each
IGF2BP was predicted to be targeted by at least one let-7 family member. Another microRNA we
determined to be a putative regulator of IGF2BP1 and IGF2BP3 expression was miR-491. Previously,
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this microRNA was found to suppress cell proliferation and invasion in non-small cell lung cancer by
inhibiting IGF2BP1 [42]. Interestingly, miR-491 was recently reported to act as a tumor-suppressive
microRNA by inhibiting the known IGF2BP targets IGF2 and HMGA2 [43,44].
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C

Figure 5. Putative interactions between PoRs and microRNAs. (A) Predicted PoR–miRNA-interactions
that were associated with significant (p < 0.05) negative expression correlation (Spearman). Red color
encodes inferred interaction, blue means no interaction. (B) Top 10 miRNAs targeting the most PoRs.
(C) Top 10 PoRs targeted by the most miRNAs.

2.6. Selection of Candidate PoRs for Therapeutic Targeting

Aiming to select RNA binding proteins that could serve as promising candidates for therapeutic
targeting, we evaluated PoRs based on two criteria. First, we picked PoRs with substantial upregulation
or de novo synthesis in PDAC, as indicated by very low average RNA expression in healthy pancreas
tissues (<1 CPM) and at least six-fold upregulation in one of the PDAC subtypes. Moreover, we
required the candidates to have negative average dependency scores upon RNAi as well as upon
CRISPR loss-of-function studies in classical and basal-like PDAC cell lines, indicating a necessity
for proliferation and tumor cell survival, at least in vitro. Using these filter criteria, four RBPs were
unveiled—namely, APOBEC1, IGF2BP1, IGF2BP3, and OASL (Figure 6). APOBEC1 was the PoR with
the strongest relative upregulation in PDAC, compared to nonmalignant pancreatic tissue, and with
substantially enhanced expression in the classical compared to the basal-like subtype (Figure 6A).
Furthermore, high expression of APOBEC1 was associated with adverse disease outcome only in
the classical subtype (Figure 6B, Supplementary Figures S4A and S5A,B). This suggests APOBEC1
as a prime candidate target PoR in the classical subtype. IGF2BP3 and OASL showed only modest
variability in upregulation between the PDAC subtypes (Figure 6A) and similar or insignificant
survival probabilities in the subtypes (Figure 6B, Supplementary Figures S4C,D and S5E–H). This may
indicate that these two PoRs serve largely subtype-independent tumor-promoting roles, suggesting
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them as subtype-independent candidate targets. IGF2BP1 was the candidate PoR with the highest
hazard ratio determined in the basal-like subtype (Figure 6B, Supplementary Figures S4B and S5C,D)
and was stronger upregulated in this subtype (Figure 6A). This suggests IGF2BP1 as a major candidate
target in the basal-like subtype.
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Figure 6. Selected PoRs. (A) Average normalized RNA expression values (log10 CPM) of the four
selected PoRs in pancreas and PDAC samples comprised of the whole (PDAC) tumor sample set as well
as subtype specific subsets. (B) Hazard ratios (HR) of the four selected PoRs determined from overall
survival rates between low and high RNA expression. (C) Average dependency scores of the four
selected PoRs obtained from RNAi-derived depletion as well as CRISPR-derived deletion in classical
and basal-like PDAC derived cell lines.

3. Discussion

In this study we identified 44 RNA binding proteins (RBPs) salient in the context of pancreatic
ductal adenocarcinomas (PDAC) due to their elevated RNA expression and adverse prognostic values.
We termed these pancreatic oncogenic RBPs (PoRs). Among this small set of RBPs, several protein
families were enriched, since it contained the whole IGF2BP and OAS family as well as several
DEAD-box helicases and RNase genes. Some of these RBPs seem to form interaction networks
with each other, as suggested by protein–protein-interaction data and further supported by the high
correlation of RNA expression among them. We identified a network of coexpressed RBPs that are
known to be part of the innate immune response against viral infections. This network was formed by
OAS1-3, OASL, IFIT2, and IFIT3, as well as the helicases DDX60, DDX60L, and ZNFX1. Whether the
upregulation of these RBPs is due to infections accompanying the progression of at least a subset of
the investigated pancreatic tumors, due to a common pathway deregulated upon infection and tumor
development (e.g., inflammation related), or is just due to coincidence still has to be investigated.
However, our network analyses suggest some RBPs, like IGF2BP1, to act rather independently from
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the other identified PoRs. Incorporating small RNA-seq data and miRNA predictions, we observed
that most of the 44 selected RBPs are putative targets of only a few miRNAs commonly downregulated
in PDAC.

We further focused on RBPs upregulated in either one or both considered PDAC subtypes,
showing consistently negative dependency scores and hazard ratios greater than one in PDAC and/or
subtypes. These proteins might be particularly suitable for therapeutic inhibition treatments since,
due to low or absent expression in the “normal” pancreas, they likely represent proteins important
for the cancer but dispensable for healthy pancreas cells. Prime candidates fitting these criteria are
APOBEC1, OASL, IGF2BP1, and IGF2BP3. APOBEC proteins are enzymes capable of introducing RNA
and DNA modifications and able to restrict viral infections by catalyzing mutations in viral genomes,
but are also thought to drive tumor evolution by introducing somatic mutations [45,46]. APOBEC1
was first connected to cancer when transgenic mice and rabbits expressing the protein in their livers
developed liver cancer [47]. Tumorigenesis was attributed to editing and consequently repression of
the mRNA of NAT1/EIF4G2 [48]. However, we observed a slight upregulation of the EIF4G2 gene in
PDAC (log2FC = 0.56). Furthermore, we found A1CF, the APOBEC1 complementation factor essential
for the mRNA editing functionality of APOBEC1 [49], to be significantly downregulated in PDAC
samples compared to normal pancreas. However, in a recent study of 32 tumor types from the TCGA,
the authors found a striking correlation of APOBEC1 upregulation in tumors bearing a high number of
in-frame indel mutations in various cancer cohorts including PDAC. In addition, A1CF was not found
to be differentially expressed in the samples with a high number of mutations compared to samples
showing low mutation levels [50]. This suggests that the oncogenic potential of APOBEC1 in PDAC is
based on its DNA-editing capability rather than on its RNA-modifying function. OASL, a member
of the OAS protein family, like APOBEC1, is associated to the innate immune defense against viral
infections. In contrast to OAS1-3, human OASL is lacking the 2’-5’ oligoadenylate synthase activity,
responsible for the name of the protein family. OASL has been reported to exert antiviral as well as
proviral function, depending on various mechanisms and phase of infection [33]. Lv et al. recently
reported that inhibition of OASL in lung-cancer-derived cells inhibits their proliferation [51]. However,
the mechanism causative for the pro-proliferative effect of OASL still has to be elucidated. IGF2BP1
and IGF2BP3 are bona fide oncofetal proteins upregulated in a variety of malignancies and were shown
to enhance the expression of genes related to cell migration and proliferation [41,52,53]. In previous
studies, we could show that IGF2BP1 stabilizes its RNA targets by antagonizing miRNA-impaired
gene expression in different cancer models [20,31]. In particular, we could show that IGF2BP1 shields
the transcripts of LIN28B and HMGA2 as well as its own mRNA from let-7-mediated downregulation
in ovarian cancer-derived cells, thus promoting an aggressive tumor phenotype [20]. A similar
mechanism of a self-promoting network including IGF2BP1 and IGF2BP3 may be active in PDAC,
preventing miR-491 targets to be suppressed. We found this miRNA to likely be a putative regulator of
both IGF2BPs and it has already been published that miR-491 suppresses IGF2BP1 as well as the known
IGF2BP targets IGF2 and HMGA2 [42–44]. Furthermore, it was demonstrated that the association of
IGF2BPs and their target mRNAs is mediated by N6-methyladenosine (m6A) modifications [54,55].
Although we did not investigate m6A-modifications in PDAC for the present study, it is tempting to
speculate that the oncogenic potentials of IGF2BP1 and 3 in PDAC also depend on this modification.
However, this still has to be elucidated. Notably, small molecule or nucleic acid-derived inhibitors
for our prime candidates or their homologues have already been reported. Inhibition by APOBEC3
proteins has been addressed in the context of HIV infection and cancer [46], suggesting that inhibition
of APOBEC1 is feasible. The small molecule BTYNB was reported to inhibit IGF2BP1 from binding
to c-MYC mRNA and showed moderate cytotoxic effects in various cancer-derived cells [56]. We
recently demonstrated, that BTYNB impairs IGF2BP1-driven cell cycle progression and tumor growth
in murine ovarian cancer models (Müller et al., in revision). A recent in silico screening for inhibitors
of OAS1-3 yielded several compounds able to inhibit ATP binding of these RBPs, which should result
in an impaired synthase activity [57]. Furthermore, divalent metal ions like zinc ions were also shown
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to inhibit the enzymatic activity of OAS1 and OAS2 [58]. Notably, a recently conducted meta-analysis
of different studies concluded that high dietary zinc uptake can significantly reduce the risk for
developing pancreatic cancer [59].

In conclusion, our studies identify various oncogenic RBP candidates in pancreatic cancer. Some of
these proteins have been reported as tumor-promoting factors in various experimental cancer models.
Nonetheless, further experimental validation of proposed oncogenesis-driving roles of identified
candidate PoRs in pancreatic tumor models is required, since the data presented here solely rely on
publicly available high-content studies. Importantly however, for some of the candidate proteins,
therapeutic targeting strategies have already been reported or appear feasible.

4. Materials and Methods

4.1. RNA-seq Data Processing, Differential Expression, and Survival Analysis

We obtained gene-level RNA-seq read counts of TCGA primary tumor PDAC samples and GTEx
V7 normal pancreas tissue via the GDC data portal (portal.gdc.cancer.gov) and the GTEx portal
(gtexportal.org), respectively. By combining these data, we got read count information of 53045 genes
for 177 primary tumor samples and 248 normal pancreas tissue samples. Differential gene expression
was assessed using R/edgeR v3.28.0 [60] by applying trimmed mean of M values (TMM) normalization.
CPM transformation was utilized to obtain normalized expression values. False discovery rate (FDR)
values below 0.05 and at least two-fold changes in mean expression (|log2FC| ≥ 1) were considered
as thresholds for the determination of differential gene expression. MiRNA expression data were
also obtained by downloading read count data of TCGA PDAC samples via the GDC data portal.
CPM values were generated after applying TMM normalization using edgeR. Survival analyses
were performed using normalized TCGA RNA expression data processed as mentioned above and
associated clinical data obtained from the GDC data portal. The log-rank test was implemented in an
R-script according to the description in [61]. High and low expression groups were separated by the
respective gene’s median RNA expression value.

4.2. Functional Enrichment Analyses

Gene set enrichment analyses were performed using the GSEA v3.0 software [25] and MSigDB
v7.0 gene sets [26], applying the pre-ranked test, 1000 permutations, and the classical scoring
scheme. Gene annotation enrichment analyses were performed using Cytoscape v3.7.0 [62] and
the ClueGO plugin v2.2.5 [63]. For analysis of enriched molecular functions using the Gene
Ontology release 2020-01-28 [64,65], we applied the right-sided hypergeometric test, a cutoff-value for
Benjamini–Hochberg corrected p-values of 0.05, and a minimum GO-level of four.

4.3. RNA Expression and Dependency Scores in PDAC Cell Lines

RNA expression values (TPM) and dependency scores were obtained from the DepMap
project [37] via the R-package depmap v1.0.0 using the 19Q3 release. Classification of PDAC cell
lines into basal-like or classical subtype origin were obtained from the supplementary material of [32].
Only cell lines associated to a subtype class with an FDR less than 0.05 were considered.

4.4. Protein–Protein Interaction Analysis

In order to get protein–protein interactions, we queried the STRING v11 database [39] via the
STRING website (string-db.org). To obtain only known interactions, we restricted the search to
information experimentally determined or from curated databases, applying an interaction score of 0.4.

portal.gdc.cancer.gov
gtexportal.org
string-db.org
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4.5. MicroRNA Binding Prediction

To infer putative RBP-miRNA bindings, we first queried for predicted miRNA bindings utilizing
the R-package multiMiR v1.8.0; Database Version 2.3.0 [66] using all eight prediction databases and
the default prediction cutoff of 20%. We removed all predicted bindings predicted by less than two
different databases. From the remaining predictions, we chose those as putative interactions that
showed a significant negative Spearman correlation (ρ < 0; p-value < 0.05) in their expression values
to the RNA expression of the respective RBP. For this purpose, we compared RBP CPM values obtained
as described above with TCGA miRNA data obtained from the same tumor samples.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/21/11/4190/
s1, supplementary_figures.pdf: supplementary figures, Table S1: GSEA DGE-Pancreas-PDAC curated gene sets,
Table S2: Differential gene expression and Survival analyses of RBPs, Table S3: Differential gene expression
and Survival analyses of PoRs, Table S4: Differential gene expression and Survival analyses of PsRs, Table S5:
Gene expression of RBPs in PDAC cell lines, Table S6: Significantly enriched molecular functions and biological
processes among the PoRs, Table S7: Dependency scores of PoRs in PDAC-derived cell lines, Table S8: Predicted
PoR-miRNA binding.
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