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Abstract

the ability to progress through the cell cycle.

nucleotides opposite BPDE-induced DNA damage.

extension step of translesion synthesis.

Background: DNA polymerase zeta (Pol() is a specialized DNA polymerase that, unlike classical replicative
polymerases, is capable of replicating past DNA lesions, i.e. of performing translesion synthesis (TLS). The catalytic
subunit of hPol¢, hRev3, has been shown to play a critical role in DNA damage-induced mutagenesis in human
cells, but less is known about the role of hRev7, the accessory subunit of hPol, in such mutagenesis. To address
this question, we recently generated human fibroblasts with very significantly reduced levels of hRev7 protein and
demonstrated that hRev7 is required to protect cells from ultravioletpss nmy (UV) radiation-induced cytotoxicity and
mutagenesis (McNally et al., DNA Repair 7 (2008) 597-604). The goal of the present study was to determine
whether hRev7 is similarly involved in the tolerance of DNA damage induced by benzolalpyrene diol epoxide
(BPDE), the reactive form of the widespread environmental carcinogen benzolalpyrene.

Methods: To determine whether hRev7 also plays a role in protecting human cells from the cytotoxicity and
mutagenesis induced by benzo[a]pyrene diol epoxide (BPDE), cell strains with reduced hRev7 were compared to
their parental strain and a vector control strain for the effect of BPDE on cell survival, induction of mutations, and

Results: The results show that cell strains with reduced hRev7 are more sensitive to the cytotoxic effect of BPDE
than the control strains, and progress through S-phase at a slower rate than the control cells following BPDE
treatment, indicating that hRev7, and likely hPol(, is required for efficient bypass of BPDE-induced DNA lesions.
However, neither the frequency nor kinds of mutations induced by BPDE in cells with reduced hRev7 differ
significantly from those induced in the control strains, suggesting that hPol is not essential for inserting

Conclusions: Taken together, our results which show that hRev7 is required for TLS past BPDE-induced DNA
lesions but that it is not essential for inserting nucleotides opposite such lesions suggest a role for hPol( in the

Background

Human cells undergo countless rounds of DNA replica-
tion, which must be very accurate to preserve critical
genetic information. To maintain such a significant level
of accuracy, the classical replicative polymerases have
evolved highly selective active sites that only accommo-
date nucleotides when they are correctly paired to the
DNA template. In addition, many of these DNA
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polymerases possess 3’5’ proofreading exonuclease
activity, which removes nucleotides that are incorrectly
incorporated during replication, allowing an additional
attempt at accurate DNA synthesis. Because of their
stringency, the classical replicative polymerases cannot
tolerate fluctuations in the DNA structure, including
those that result from DNA damage. Nevertheless, DNA
is continually subjected to a variety of insults, from both
endogenous and environmental agents, that generate
DNA damage. Much of this damage is excised by DNA
repair mechanisms before replication occurs. However, if
repair is slow or the DNA damage is extensive, DNA
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lesions may persist during replication. If the high fidelity
replicative polymerase complex encounters a DNA lesion
that blocks elongation, potentially fatal stalling or arrest
of replication can occur.

To avoid replication arrest, mechanisms have evolved
that enable DNA lesions to be tolerated without their
physical removal. Translesion synthesis (TLS) is one such
mechanism. Translesion synthesis involves the use of
specialized polymerases, that are thought to bypass DNA
lesions using a two-step mechanism where, nucleotides
are first inserted opposite DNA damage and then the
resulting atypical primer termini are extended, before the
replicative polymerases resume DNA synthesis (For
review see [1]). Several DNA polymerases have been dis-
covered, whose primary function appears to be TLS.
These TLS polymerases typically contain active sites that
are less restrictive, making them able to accommodate
distortions in DNA (see for example [2-5]). Although
TLS polymerases have the unique ability to synthesize
past replication-blocking DNA lesions, enabling cells to
survive such DNA damage, they are also characterized by
relaxed nucleotide selectivity and lack of 3’5" proof-
reading exonuclease activity. As a result, protection of
cells from replication arrest may come at the cost of
introducing mutations in DNA, which can contribute to
the development of cancer.

More than 300 polymerases involved in TLS have been
discovered in eukaryotes, bacteria and archaea [6]. The
first TLS polymerase to be identified in eukaryotes was
DNA polymerase zeta (Poll) [7]. DNA polymerase { was
initially characterized in the budding yeast, Saccharo-
myces cerevisiae, and is composed of two subunits, a cat-
alytic subunit, called Rev3, as well as an accessory
subunit, Rev7 [7]. Studies using yeast rev mutant strains
have demonstrated that Pol( is responsible for the major-
ity of both spontaneous [8,9] and DNA damage-induced
mutations that occur in this organism [10-15], suggesting
that this polymerase participates in error-prone TLS past
an extensive array of DNA lesions (reviewed in [16]).

Human homologs of the yeast REV genes have been
identified [17,18]. The transcript of the human REV3 gene
encodes a 353 kDa protein, which is about twice the size
of the yeast protein [19]. Presumably because of the large
size and low cellular levels of hRev3, the protein has never
been expressed or isolated and therefore, in vitro studies
using human Pol{ are lacking [20]. However, human cells
expressing high levels of ZREV3 antisense RNA have been
reported to demonstrate a lower frequency of ultraviolet
(UV)-induced mutations than the control cells, indicating
that, as in yeast, hRev3 is required for induced mutagen-
esis and suggesting that the functions of Pol( are con-
served from yeast to humans [19,21].

To investigate the role of hRev7 in TLS, we recently
generated two human fibroblast cell strains in which the
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levels of hRev7 protein were significantly reduced by
small interfering RNA (siRNA) [22]. When cell strains
with reduced hRev7 were UV-irradiated, their rate of
progression through S-phase was considerably slower,
and their cell survival was significantly reduced, com-
pared to control strains. In addition, the frequency of
UV-induced mutations in cell strains with reduced
hRev7 was five times lower than normal. These data
show that like hRev3, hRev7, presumably as a part of
human Pol(, plays a role in UV-induced mutagenesis of
human cells.

To determine whether hRev7 is similarly involved in
the tolerance of DNA damage induced by benzo[a]pyr-
ene diol epoxide (BPDE), the reactive form of the wide-
spread environmental carcinogen benzo[a]pyrene, cells
strains with reduced levels of hRev7 were compared to
their parental strain and a vector control for their
response to the biological effects of BPDE. Our results
show that cell strains with reduced hRev7 progress
through the cell cycle at a slower rate than control
strains after exposure to BPDE, and are also more sensi-
tive to its cytotoxic effect. These data suggest that in the
absence of hRev7, cells are less efficient at completing
TLS past BPDE-induced DNA lesions, resulting in a
delay in cell cycle progression and increased cell death
following exposure to BPDE. To our surprise, however,
we found that neither the frequency nor the kinds of
mutations induced by BPDE in cells with reduced levels
of hRev7 differ dramatically from those induced in
the control cell strains, suggesting that hRev7 is not
responsible for the insertion of nucleotides opposite
BPDE-induced DNA lesions. Together, these results are
consistent with a role for hRev7, and likely hPol(, in the
extension step of TLS past BPDE-induced DNA lesions.

Methods

Cell strains

The human fibroblast cell strain used as the parental
strain in this study, designated MSU-1.2.9N.58 (9N.58
for short), was derived from the infinite life span, telo-
merase positive, near-diploid, karyotypically stable,
MSU-1.2 lineage of cells established in the Carcinogen-
esis Laboratory [23]. Cell strains 2-2 and 2-6, which
have significantly reduced levels of hRev7 protein, as
well as the vector control strain, VCA, were derived
from the parental strain, 9N.58, by McNally et al., as
described [22]. The two additional cell strains with
reduced hRev7 that were used in this study, designated
2.5 and 3.2, as well as the vector control, V1.1, were
derived from the same parental strain, i.e. 9N.58, using
the methods previously described [22]. To generate a
cell strain in which the level of hRev7 has been reconsti-
tuted (2-2 + R7), cell strain 2-2 was transfected with a
vector that expresses an siRNA insensitive hRev7
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mRNA using Lipofectamine (Invitrogen) according to
the manufacturer’s instructions.

Western blot analysis
Nuclear protein extracts were obtained and Western
analysis was conducted as previously described [22].

Exposure of cells to chemical mutagens

When treating with chemical mutagens, the number of
DNA lesions generated is dependent upon the cell den-
sity at the time of treatment. Therefore, both for survi-
val and for mutagenesis studies, cells in exponential
growth were detached from the dishes using trypsin
and plated in 150 mm-diameter dishes approximately
16 h prior to treatment, such that the density of cells
at the time of treatment would be as near 10,000 cells/
cm? as possible. Following the 16 h attachment period,
the culture medium was removed from each dish, cells
were rinsed twice with phosphate-buffered saline
(PBS), and then covered in Eagle’s minimal essential
medium [for MNU treatments, medium was buffered
with 15 mM HEPES (pH 7.2)]. Immediately prior to
treatment, BPDE (Midwest Research Institute) or MNU
(Sigma) were dissolved in anhydrous dimethylsulfoxide
(DMSO), and the designated doses were delivered by
micropipette. To ensure that all cells were exposed to
the same concentration of DMSO, regardless of the
dose of BPDE or MNU, appropriate amounts of DMSO
were added to dishes (including the untreated control
cells) to equal the total amount of DMSO delivered to
cells treated with the highest dose. Cisplatin (American
Pharmaceutical Partners Inc.), which was supplied in
an aqueous saline solution (1 mg/ml), was delivered to
the dishes directly by micropipette. Cells were exposed
to BPDE or cisplatin for 1 h or to MNU for 30 min, at
37°C in a humidified 5% CO, incubator. At the end of
the exposure period the medium containing the muta-
gen was removed, cells were rinsed twice with PBS,
and supplied with fresh culture medium. Induced cyto-
toxicity and mutagenesis assays were performed as
described below.

Exposure of cells to ionizing radiation

On the day of treatment, exponentially growing cells
were detached from dishes with trypsin and diluted to
200,000 cells/ml in culture medium containing 2% sup-
plemented calf serum. Cells were irradiated as described
[24] in 50 ml polypropylene tubes on ice using a U.S.
Nuclear ®°Co variable flux, sealed source irradiator with
a dose rate of 1.378 Gy/min.

Cell survival assay
The procedures for determining the cytotoxic effects of
DNA damaging agents by colony forming ability differ
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slightly based upon the particular type of DNA dama-
ging agent used. For chemical mutagens, the cells
were exposed to the appropriate agent at a density of
10,000 cells/cm? as described above. Immediately
following treatment, the cells were rinsed with PBS, and
detached from the dishes using trypsin. Cells were then
diluted and plated into four 100 mm-diameter dishes
for each dose at cloning densities (i.e. the densities
necessary to obtain approximately 50 surviving colonies
per 100 mm-diameter dish depending on the expected
cytotoxicity). After 7 days, cells were provided with
fresh culture medium, and after 14 days, they were
stained with crystal violet. To determine sensitivity to
the cytotoxic effect of a particular agent (expressed as
percent survival), the cloning efficiencies of cells
exposed to the mutagen were normalized to the cloning
efficiency of the untreated control cells.

To determine the cytotoxicity induced by ionizing
radiation, cells were detached using trypsin and irra-
diated in suspension as described above. Immediately
after irradiation, each cell suspension was diluted appro-
priately into fresh culture medium and plated into 4,
100 mm-diameter dishes for each dose at cloning densi-
ties. The culture medium was renewed after 7 days
and the cells were stained after 14 days. The survival of
the irradiated cells was calculated by normalizing the
cloning efficiency of the irradiated cells to that of the
control cells.

Mutagenesis assay

To determine the frequency of induced mutations in the
hypoxanthine phosphoribosyl transferase (HPRT) gene,
assays were performed as described [25]. In short, a suffi-
cient number of target cells were plated into 150 mm-
diameter dishes to ensure that after treatment, the number
of surviving cells was large enough to result in at least 40,
6-thioguanine (TG) resistant clones. Because exposure to
BPDE causes a high frequency of induced mutants, it is
sufficient to have approximately 0.8 x 10° surviving cells.
Following exposure to BPDE, cells were maintained in
exponential growth for an 8-day expression period to
allow any wild-type HPRT protein to be depleted. After
the 8-day expression period, cells were trypsinized and
diluted to 2,500 cells/ml in culture medium. To determine
the cloning efficiency of the cells at the time of selection, a
small portion of the cell suspension was diluted further
and plated into 4, 100 mm-diameter dishes at cloning den-
sities. To assay for TG-resistance, the remainder of the cell
suspension was selected with TG, at a final concentration
of 40 uM, and then cells were plated at a density of 25,000
cells per 100 mm-diameter dish. All dishes were supplied
with fresh culture medium (with or without TG as appro-
priate) after 7 days, and stained with crystal violet after
14 days. The observed mutation frequency was corrected
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by the cloning efficiency of the unselected cells. The
induced mutation frequency was calculated by subtracting
corrected frequencies observed in untreated control cells
from the corrected mutant frequencies of the treated cells.

Analysis of the types of base substitutions induced by
BPDE in the HPRT gene

To determine the kinds of mutations induced in the
HPRT gene, TG-resistant clones obtained from doses of
BPDE that resulted in mutation frequencies more than
ten times the background frequency, were isolated, and
then lysed, and their HPRT cDNA was amplified as
described previously [22]. Only base substitutions that
occurred at adenine or guanine and resulted in an
amino acid change were considered to be BPDE-
induced. When two clones were considered to be sib-
lings, i.e. they contained the same mutation, only one of
the mutants was included in the study.

Analysis of the cell cycle progression of BPDE treated
cells by flow cytometry

Cells in exponential growth were detached from the
dishes using trypsin, and plated in 100 mm-diameter
dishes such that the density of G;/S-synchronized cells
at the time of treatment would be 10,000 cells/cm?.
Cells were allowed 16 h to attach and then synchronized
at the G;/S border exactly as described [22]. Cells were
released from synchrony by washing twice with PBS and
immediately treated with BPDE as described above.
Every 4 h for the first 24 h post-treatment, cells were
fixed in 80% ethanol and stained with a propidium
iodide solution as described previously [22]. Cells
were analyzed for DNA content by flow cytometry at
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the Flow Cytometry Core Facility at Michigan State
University.

Results

Effect of reduced hRev7 protein on the survival of human
fibroblasts exposed to BPDE and on the frequency of
BPDE-induced mutations

Using siRNA, we previously generated two derivatives of
the human fibroblast strain 9N.58 with significantly
reduced levels of hRev7 protein [22]. These derivative
strains were designated 2-2 and 2-6. Those two cell
strains, along with two newly generated 9N.58-derived
cell strains with reduced hRev7 protein (designated
2.5 and 3.2), as well as the appropriate vector controls
(VCA and V1.1), were used in our current study
(Figure 1). In addition, the level of hRev7 was also
reconstituted in cell strain 2-2 (2-2 + R7) by transfecting
that cell strain with a vector expressing hRev7 mRNA
with a nucleotide sequence that was altered in such a
way as to make it insensitive to siRNA-induced degrada-
tion (Figure 1).

To determine whether reducing the level of hRev7
protein alters the response of human fibroblast cells to
the cytotoxic or mutagenic effects of BPDE, two cell
strains with significantly reduced levels of hRev7 pro-
tein, (clones 2-2 and 2-6) were assayed along with their
parental strain and a vector control transfectant for
their sensitivity to the cytotoxic effect of BPDE as mea-
sured by survival of colony-forming ability (Figure 2A).
These data show that, whereas the vector control strain
demonstrated a BPDE-induced cytotoxicity that was
very similar to that of the parent strain, each of the cell
strains with reduced hRev7 protein was considerably

25 32 V11

hRev7 —»

Ku80 — e — ——— — G —

Figure 1 Western blot analysis of the level of hRev7 protein. The level of hRev7 protein was examined by Western blotting of nuclear
extracts obtained from the parental cell strain (P), derivative strains expressing hRev7 siRNA (clones 2-2, 2-6, 2.5 and 3.2), control strains
expressing an siRNA with limited homology to known sequences in the human genome (VCA and V1.1), as well as a complementation
derivative of cell strain 2-2 that expresses an siRNA insensitive hRev7 (2-2 + R7). Ku80 was used as a loading control.

P VCA 22 26 2-2+R7
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Figure 2 Reducing the level of hRev7 in human fibroblasts renders them more sensitive to the cytotoxic effect of BPDE, but does not
affect their frequency of BPDE-induced mutations. The parental cells strain (open circles); cell strains with reduced hRev7, designated clones
2-2 and 2-6 (closed symbols); the vector control strain (open triangles); and a cell strain in which to level of hRev7 was reconstituted, designated
2-2 + R7 (open squares); were treated with BPDE and assayed for (A) cell survival or (B) the frequency of mutations induced in the HPRT gene.
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more sensitive to BPDE-induced cytotoxicity. Specifi-
cally, 80% of the parent and vector control cells survived
after being exposed to 0.07 uM BPDE, but only 50% of
cells with reduced hRev7 survived following exposure to
the same dose. Complementation of cell strain 2-2 with
hRev7 (2-2 + R7) resulted in BPDE-induced sensitivities
that were indistinguishable from those of the control
cell stains, indicating that the marked increase in sensi-
tivity to the cytotoxic effect of BPDE demonstrated
by cells with reduced hRev7 was not the result of an
unintended, off-target effect of the siRNA. Together,
these results show that cells with reduced hRev7
are more sensitive to the cytotoxic effect of BPDE than
control cells.

Because cell strains with reduced hRev7 protein were
more sensitive to the cytotoxic effect of BPDE, we were
interested to determine whether the increase in the kill-
ing of such cells occurred as a result of a requirement for
this protein in TLS past BPDE-induced DNA lesions, as
was found with UV [22]. Therefore, cell strains with
reduced hRev7 were compared to their parental cell
strain as well as to the vector control strain for the fre-
quency of mutations induced in the HPRT gene following
exposure to BPDE. To our surprise, the BPDE-induced
mutation frequencies of cell strains with reduced expres-
sion of hRev7 protein did not differ significantly from
those of their parental cell strain or from those of the
vector control cell strain (Figure 2B).

Effect of reduced hRev7 protein on the types of BPDE-
induced base substitutions in human fibroblasts
Although we were unable to detect any differences
between the frequency of mutations induced by BPDE
in cell strains with reduced hRev7 and control strains, it
is possible that, in the absence of hPol{, another TLS
polymerase, which makes mutations at a very similar
frequency to hPol{, substitutes. However, it is unlikely
that another TLS polymerase would make the same fre-
quency and types of mutations as hPol{ does. Therefore,
we also compared the kinds of mutations induced by
BPDE in cell strains with reduced hRev7 and control
strains, by isolating BPDE-induced, TG-resistant colo-
nies and sequencing their DNA for mutations in the
HPRT gene. The results are compared in Table 1.
Although the percentage of G—C mutations induced by
BPDE in control cells differs somewhat from those in
cell strains with reduced hRev7, based on the Fisher
Exact Test, the frequency 8 out of 45 is not statistically
different from 2 out of 37 (one-sided p-value = 0.084).
Thus, these data indicate that the kinds of base substitu-
tions induced by BPDE in cells with reduced hRev7 do
not differ from those induced in normal human
fibroblasts.
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Table 1 Types of base substitutions induced by BPDE in
the HPRT gene of cells with normal or reduced levels of
hRev7

Base changes Parent and Clone 2-2 and
vector control clone 2-6
G-oT 29 (64.4%) 28 (75.7%)
G—A 2 (4.4%) 4 (10.8%)
G—C 8 (17.8%) 2 (54%)
A>T 1 (2.2%) 0 (0%)
A—-G 3 (6.7%) 0 (0%)
A—C 2 (4.4%) 3 (8.1%)
Total 45 (100%) 37 (100%)

Effect of reduced hRev7 on cell cycle progression
following BPDE treatment

Our laboratory previously demonstrated that decreasing
the level of hRev7 protein in human fibroblasts rendered
them more sensitive to the cytotoxic effect of UV and
resulted in impaired progression through S-phase fol-
lowing UV-irradiation [22]. We hypothesized that this
UV-induced delay in cell cycle progression contributed
to the increased UV-induced cytotoxicity that we
observed. In the present study we found that, as with
UV, cell strains with reduced hRev7 are more sensitive
to the cytotoxic effect of BPDE than control strains.
Therefore, we examined the ability of these cell strains
to progress through the cell cycle following BPDE
treatment.

To determine the effect of decreased expression of
hRev7 protein on the rate of cell cycle progression of
BPDE-treated cells, the cell strains 2-2 and 2-6, with
reduced hRev7, their parental cell strain (P) and the vec-
tor control strain (VC) were synchronized at the G;/S
border, released from synchrony, and exposed to BPDE
for 1 h. At the end of BPDE exposure, populations of
each of the four cell strains were harvested every 4 h for
24 h and analyzed by flow cytometry to determine the
percentage of cells in each stage of the cell cycle. The
resulting DNA histograms obtained from the sets of cells
harvested at various times after BPDE treatment are
shown in Figure 3. For each of the cell strains, immedi-
ately after release from synchrony and just prior to BPDE
treatment (0 h), the majority cells were located at the G;/
S border, indicating that each of the four cell strains syn-
chronized equally well. After 4 h, most of the cells pre-
viously synchronized at the G,/S border had progressed
into S-phase regardless of the level of hRev7 protein,
indicating that cells released from the block and entered
S-phase at similar rates post-BPDE treatment. Eight h
after BPDE treatment, many of the synchronized control
cells had moved through S-phase and entered into the G,
phase, whereas fewer of the cells with reduced hRev7 had
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Figure 3 Reducing the level of hRev7 in human fibroblasts results in a BPDE-induced delay in progression through the cell cycle. Cell
strains with reduced levels of hRev7 (2-2 and 2-6), their parental cell strain (P), and a vector control transfectant (VC) were synchronized at the

G1/S border and treated with BPDE for one h immediately after release from synchrony. Cells were harvested, fixed, and stained with propidium
iodide for analysis of DNA content by flow cytometry. The distribution of cells in each phase in the cell cycle 0 h, 4 h, 8 h, 12 h, 16 h, 20 h, and

8h

24 h

completed S-phase, indicating that following BPDE treat-
ment, cell strains with reduced hRev7 progressed through
S-phase at a slower rate than the two control strains.
After 12 h, most of the control cells had divided and
cycled back into G;. In contrast, cells with reduced
hRev7 were still primarily in S and G, phase. Sixteen h
post-BPDE treatment, the control strains had progressed
through G; and back into S-phase, whereas the cell
strains with reduced hRev7 were primarily in G, and Gy,
a distribution similar to that of the control cells 4 h ear-
lier. After 20 h, although only a proportion of the cells
remained synchronized, the synchronized control cells
were moving through S-phase and into Gy, but the cells
with reduced hRev7 were delayed in moving into S phase
and G, phase, indicating that, even after entering a sec-
ond cell cycle, cells with reduced hRev7 progressed
somewhat slower than the control cells. Twenty-four h
post-BPDE treatment, the synchrony of all four cell
strains was lost. Taken together, the data presented in

Figure 3 indicate that, after BPDE treatment, cells with
reduced hRev7 progress more slowly through the cell
cycle than the control strains.

Effect of reduced hRev7 on the survival of cells exposed
to DNA damaging agents

Cell strains with reduced hRev7 are sensitive to the
cytotoxic effects of both UV and BPDE, which generate
structurally distinct types of DNA lesions. Therefore, we
examined whether the cell strains with reduced hRev7
also differed from the control strains in their response
to the cytotoxic effects of other types of DNA lesions by
exposing them to ionizing radiation; the DNA cross-
linking agent, cisplatin; and the alkylating agent, MNU.
As shown in Figure 4, cell strains with reduced hRev7
were more sensitive to cell killing induced by each of
these three DNA damaging agents, suggesting that
hRev7 is required for TLS past a variety of distinct types
of DNA damage.
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Figure 4 Reducing the level of hRev7 in human fibroblast cells
renders them more sensitive to the cytotoxic effects of a
variety of different types of DNA damaging agents. Cell strains
2.5 and 3.2, which have significantly reduced hRev7 protein, (closed
symbols) were compared to their parental strain and the vector
control strain (open symbols) for their sensitivity to the cytotoxic
effects of (A) the DNA cross-linking agent cisplatin, (B) ionizing
radiation (IR), and (C) the alkylating agent N-methyl-N-hydroxyurea
(MNU). The lines represent the least squares regression for the data.
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Discussion

The results presented show that reducing the level
of hRev7 in human fibroblasts has no significant effect
on the frequency (Figure 2B) or kinds (Table 1) of
mutations induced by BPDE in such cell strains, sug-
gesting that hRev7 is not required for inserting nucleo-
tides opposite DNA lesions induced by this damaging
agent. However, because our data indicate a requirement
for hRev7 in survival (Figure 2A) and cell cycle progres-
sion (Figure 3) following exposure to BPDE, these data
suggest that hRev7 is required for efficient TLS past
BPDE-induced DNA lesions.

Using a gapped plasmid assay, Shachar et al. [26] have
recently demonstrated that at least 39% of BPDE adducts
were bypassed by a TLS pathway that requires the com-
bined actions of Poll and Polx. They suggest that such
adducts are bypassed using a two-step, two-polymerase
mechanism whereby Polx first inserts a nucleotide oppo-
site a BPDE-induced DNA lesion and then Pol( performs
the subsequent extension step. Our study is consistent
with such a mechanism. The fact that there are no signif-
icant differences between the frequency or kinds of muta-
tions induced by BPDE in cells, regardless of the level of
hRev7 expression, indicates that a polymerase other than
Pol{ (possibly Polk or Poln) is required for the insertion
step of TLS past BPDE adducts. However, our results
show a clear defect in cell cycle progression and cell sur-
vival following BPDE exposure in cells lacking hRev7,
suggesting that cells lacking hPol(, have trouble complet-
ing TLS (perhaps as a result of inefficient extension) past
BPDE-induced DNA lesions, which ultimately results in
cell death.

The crystal structure of hRev7 in complex with a frag-
ment of hRev3 has also been recently reported [27]. In
such studies the authors found that the interaction
between hRev3 and hRev7 creates a structural interface
that is requisite for hRevl binding. Furthermore, they
demonstrated that hRev7 mediates interactions between
hRevl and hRev3, which are critical for DNA damage
tolerance. Based on their results, Hara et al. propose a
mechanism whereby binding of hRevl to the site of a
fork-blocking DNA lesion functions to recruit an “inser-
ter” polymerase to the site of DNA damage. Following
the insertion step, hPol{ is recruited to the site of
damage through the interaction between hRevl and
hRev7. The hRevl-hRev7 interaction also displaces the
inserter polymerase from the damage site, such that
hPolC can then perform the subsequent extension step,
completing TLS.

Based on data from our current study and from the
studies described above, we envision that under normal
circumstances, insertion opposite BPDE-induced DNA
damage would be carried out by hPolx (or hPoln). After
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which, hPol{ would be recruited to the DNA lesion, via
interaction between hRevl and hRev7, to perform the
extension step. However, when cells lack hRev7, hPol{
would no longer be recruited to the damaged site and
thus would not be capable of extending from the DNA
termini. The inability to extend past the DNA lesion
would result in failed TLS and, ultimately, increased cell
death. Our laboratory has also recently reported that
cells lacking hRev7 are more sensitive to UV-induced
DNA damage and demonstrate a reduced UV-induced
mutation frequency [22]. It seems likely therefore, that
in the case of UV, hPol( is required both for the inser-
tion step (which is carried out in an error-prone man-
ner) and for the subsequent extension step, at least for a
subset of DNA lesions, for instance 6-4 photoproducts.

Finally, our data demonstrated that cell strains with
reduced hRev7 are more sensitive to the cytotoxic
effects of cisplatin, ionizing radiation, and MNU (Figure
4A-C), suggesting that hRev7 is required for TLS past
DNA damage induced by these agents. Similar results
were reported by Cheung et al. [28], who showed that
downregulation of hRev7 (also referred to as MAD2B)
in nasopharyngeal carcinoma cells rendered such cells
more sensitive to DNA damaging agents, but not to
agents whose cytotoxic effect does not generate lesions
in DNA, such as anti-metabolites or microtubule-
disrupting agents. The fact that the increased sensitivity
of cells with reduced hRev7 is specific to DNA dama-
ging agents is consistent with a requirement for hRev7
in TLS past DNA lesions induced by such agents.

Conclusions

Translesion synthesis has traditionally been thought of as
a rather simple process when compared with other
mechanisms of DNA damage avoidance and DNA repair.
However, the biological data presented here are consis-
tent with a more complicated two-step, two-polymerase
bypass mechanism requiring hPol( or with the interpreta-
tion that there are redundant pathways for bypassing
BPDE-induced DNA lesions, one of which is dependent
on hPol and the other not requiring this polymerase.
Although many aspects of TLS remain uncharacterized,
studies such as these clearly indicate that TLS is much
more sophisticated than first imagined and emphasize
the continuing need to carry out experiments to deter-
mine the precise mechanisms involved in TLS.
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