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A common molecular logic determines embryonic
stem cell self-renewal and reprogramming
Sara-Jane Dunn1,2,† , Meng Amy Li2,† , Elena Carbognin3 , Austin Smith2,4,* &

Graziano Martello3,**

Abstract

During differentiation and reprogramming, new cell identities are
generated by reconfiguration of gene regulatory networks. Here, we
combined automated formal reasoning with experimentation to
expose the logic of network activation during induction of naïve
pluripotency. We find that a Boolean network architecture defined
for maintenance of naïve state embryonic stem cells (ESC) also
explains transcription factor behaviour and potency during resetting
from primed pluripotency. Computationally identified gene activa-
tion trajectories were experimentally substantiated at single-cell
resolution by RT–qPCR. Contingency of factor availability explains
the counterintuitive observation that Klf2, which is dispensable for
ESC maintenance, is required during resetting. We tested 124
predictions formulated by the dynamic network, finding a predictive
accuracy of 77.4%. Finally, we show that this network explains and
predicts experimental observations of somatic cell reprogramming.
We conclude that a common deterministic program of gene regula-
tion is sufficient to govern maintenance and induction of naïve
pluripotency. The tools exemplified here could be broadly applied to
delineate dynamic networks underlying cell fate transitions.
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Introduction

Over the last 10 years, a multitude of protocols have been devel-

oped that allow the conversion of one cell type into another (Graf &

Enver, 2009). Most of these strategies rely on the forced expression

of transcription factors (TFs) highly expressed by the target cell type

that have either been chosen empirically or, recently, with the aid of

computational tools such as CellNet or Mogrify (Cahan et al, 2014;

Rackham et al, 2016; Radley et al, 2017). Despite the large amount

of transcriptomic data available for such conversions, our under-

standing of the dynamics and logic followed by cells during repro-

gramming and transdifferentiation remains fragmentary.

The most studied cell fate transition is the generation of murine-

induced pluripotent stem cells (iPSCs) from somatic cells

(Takahashi & Yamanaka, 2006). Bona fide iPSCs are, like murine

embryonic stem cells (ESCs), competent to form blastocyst

chimaeras and are considered to occupy a state of naı̈ve pluripo-

tency similar to that in the pre-implantation embryo (Nichols &

Smith, 2009; Boroviak et al, 2015). This unique identity is deter-

mined by a self-reinforcing interaction network of TFs. Experimental

and computational efforts have led to circuitry mapping of the core

TF program that maintains ESC self-renewal under defined condi-

tions (Chen et al, 2008; Niwa et al, 2009; MacArthur et al, 2012;

Dunn et al, 2014; Herberg & Roeder, 2015; Rue & Martinez Arias,

2015; Yachie-Kinoshita et al, 2018).

We previously applied a mathematical and computational model-

ling approach based on automated formal reasoning to elucidate the

dynamic regulatory network architecture for self-renewing mouse

ESCs (Dunn et al, 2014; Yordanov et al, 2016). A minimal interac-

tion network of 12 components was found to recapitulate a large

number of observations concerning naı̈ve state maintenance and

successfully predicted non-intuitive responses to compound genetic

perturbations (Dunn et al, 2014).

Forced expression of several components of this core TF network

in various cell types leads to a state of induced pluripotency

(Takahashi & Yamanaka, 2006; Nakagawa et al, 2007; Silva et al,

2008; Feng et al, 2009; Hanna et al, 2009; Han et al, 2010a;

Buganim et al, 2012; Tang et al, 2012; O’Malley et al, 2013; Stuart

et al, 2014; Sone et al, 2017). Accumulating evidence suggests that

cells progress through defined stages, with a final transition entail-

ing the hierarchical activation and stabilisation of the naı̈ve
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pluripotency TF network (Mikkelsen et al, 2008; Silva et al, 2009;

Han et al, 2010b; Samavarchi-Tehrani et al, 2010; Buganim et al,

2012; Golipour et al, 2012; Di Stefano et al, 2013, 2016; O’Malley

et al, 2013; Tanabe et al, 2013). However, it is not clear if cells

undergoing successful conversion follow a deterministic trajectory

of gene activation, defined by the naı̈ve pluripotency TF network

architecture, or if genes are activated in random sequence.

A tractable experimental system with which to investigate activa-

tion of naı̈ve pluripotency is the resetting of post-implantation

epiblast stem cells (EpiSCs; Guo et al, 2009). EpiSCs are related to

gastrulation stage epiblast (Kojima et al, 2014; Tsakiridis et al,

2014). They represent a primed state of pluripotency, developmen-

tally downstream of the naı̈ve state and unable to contribute

substantially to blastocyst chimaeras (Nichols & Smith, 2009).

EpiSCs exhibit distinct growth factor dependency, transcriptional

and epigenetic regulation compared to ESCs. They self-renew when

cultured in defined media containing FGF2 and ActivinA (F/A) and

lack significant expression of most functionally defined naı̈ve

pluripotency factors (Brons et al, 2007; Tesar et al, 2007; Guo et al,

2009). EpiSC resetting proceeds over 6–8 days, much faster than

somatic cell reprogramming, and entails primarily the activation

and consolidation of the naı̈ve pluripotency identity (Hall et al,

2009; Festuccia et al, 2012; Gillich et al, 2012; Martello et al, 2013).

In addition, EpiSC resetting does not require a complex reprogram-

ming cocktail. The activation of Jak/Stat3 signalling (Han et al,

2010a; Yang et al, 2010; Bernemann et al, 2011a) or forced expres-

sion of a single naı̈ve TF factor (Guo et al, 2009; Silva et al, 2009;

Han et al, 2010a) is sufficient to mediate reprogramming in combi-

nation with dual inhibition (2i) of the Erk pathway and glycogen

synthase kinase-3 (GSK3; Ying et al, 2008).

In this study, we undertook an iterative computational and

experimental approach to test the hypothesis that a common

network is sufficient to govern both naı̈ve state maintenance and

induction. Focusing on EpiSC resetting, we investigated whether

naı̈ve state induction follows an ordered sequence of network

component activation. By refining our understanding of the network

governing this process, we sought to delineate transcription factors

crucial for the execution of EpiSC resetting, and identify synergistic

combinations that accelerate resetting kinetics. Finally, we extended

the approach to investigate whether the same network architecture

is operative in somatic cell reprogramming.

Results

Deriving a set of network models consistent with EpiSC resetting

We previously studied the TF network controlling maintenance of

naı̈ve pluripotency through a combined computational and experi-

mental approach (Dunn et al, 2014). Our methodology is based on

the definition of relevant network components derived from func-

tional studies in the literature, and the identification of “possible”

interactions between these components (Fig 1A). Possible interac-

tions are inferred based on gene expression correlation using the

Pearson coefficient as a metric (Materials and Methods) and are

used to define a set of alternative concrete Boolean network models,

each with unique topology. We refer to this set of concrete models

as an Abstract Boolean Network (ABN). This formalism allows us to

navigate some of the uncertainty in the interactions that may exist

between network components, which can arise due to noisy or con-

flicting data. We then define a set of experimental results, such as

the effect of genetic perturbations, which serve as constraints to

identify those models from the ABN that recapitulate expected beha-

viour. The Reasoning Engine for Interaction Networks (RE:IN,

www.research.microsoft.com/rein) is software based on automated

formal reasoning, developed to synthesise only those concrete

models that are provably consistent with the experimental

constraints (Dunn et al, 2014; Yordanov et al, 2016). The set of

consistent models is defined as a constrained Abstract Boolean

Network (cABN), which is subsequently used to generate predic-

tions of untested molecular and cellular behaviour. Our approach

differs from typical modelling strategies in that we do not generate a

single network model, but rather a set of models, which individually

are consistent with known behaviours. We formulate predictions of

untested behaviour only when all models agree, such that predic-

tions are consistent with the limits of current understanding. This is

important because different network models can recapitulate the

same experimental observations, and one should not be prioritised

over another. Whenever predictions are falsified by new experimen-

tal results, it is possible to refine the cABN by incorporating the new

findings as additional constraints (Fig 1A). The refined cABN is then

used to generate further predictions.

For the present study, we first refined the cABN describing main-

tenance of naı̈ve pluripotency by adding further expression profiles

generated using RNA sequencing and RT–qPCR to the five datasets

used previously to infer possible interactions (Dunn et al, 2014) and

by using an updated version of RE:IN (Yordanov et al, 2016;

Materials and Methods). A Pearson correlation threshold of 0.832

was sufficient to define an ABN consistent with observations of

maintenance of naı̈ve pluripotency (Appendix Fig S1A–C). We iden-

tified required and disallowed interactions from this ABN to define

the 0.832 cABN (Fig 1B), which we subsequently tested against new

gene perturbation experiments in mouse ESCs (Appendix Fig S1D)

and observed a significant increase in prediction accuracy over the

previous version (Dunn et al, 2014). We therefore used the 0.832

cABN as the starting point for analysis of EpiSC resetting.

We asked whether the naı̈ve state maintenance cABN is consis-

tent with experimental observations of EpiSC resetting. To this end,

we exploited GOF18 EpiSCs, which are susceptible to resetting in

2i+LIF in the absence of transgenes (Han et al, 2010a). In accor-

dance with the Boolean modelling formalism, we discretised gene

expression patterns of the network components for the initial

(GOF18 EpiSC) and final (naı̈ve state ESC) states, such that each

gene is High/Low in each case (Appendix Fig S1E and Materials and

Methods). We defined a set of six constraints based on experimental

observations of when EpiSC resetting can or cannot be achieved

(Fig 1C, Appendix Fig S1F and Materials and Methods). For exam-

ple, one constraint specifies that if a given cell has none of the naı̈ve

pluripotency factors initially expressed, then 2i+LIF alone is not suf-

ficient to induce the naı̈ve state (Fig 1C, top arrow). In contrast,

resetting can be achieved if the initial state is equivalent to GOF18

EpiSCs, which express Oct4, Sox2 and Sall4 (Fig 1C, third arrow

from the top). We found that these additional constraints were satis-

fied by the naı̈ve state maintenance cABN, which suggests that a

common network may control both maintenance and induction of

naı̈ve pluripotency.
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The number of concrete models in the 0.832 cABN is in the order

of 105. As a control, we randomly generated 10,000 models with the

same number of components and possible interactions. None of

these models could satisfy the entire set of constraints. Indeed, if

interactions with a Pearson correlation of at least 0.5 are chosen

randomly, the probability of generating the 0.832 ABN is of the

order 10�31. This indicates that the data-driven approach facilitated

identification of meaningful interactions between network compo-

nents, and in practical terms substantially reduced the compute time

for subsequent analyses. To test the requirement for each compo-

nent in the cABN, we explored the consequence of deleting individ-

ual TFs from the network and constraints (Materials and Methods).

Deleting 8 of the TFs made the initial constraints unsatisfiable. Only

removal of Esrrb could be tolerated, but with substantially reduced

number and accuracy of predictions. Therefore, the models are

highly sensitive to all components of the cABN.

Prediction of resetting potency for individual
network components

The dynamics of the concrete networks in the cABN were deter-

mined by a synchronous update scheme: from a given initial state,

each and every component updates its state in response to its

upstream regulators at each step (see Materials and Methods).

Accordingly, we could examine the sequence of activation of each

component along the trajectory towards the naı̈ve state. RE:IN can

be used to determine the number of regulation steps required by all

models to reach the naı̈ve state. This can be used as a metric to

study the resetting process (Materials and Methods).

Spontaneous GOF18 EpiSC resetting can be enhanced by expres-

sion of naı̈ve network factors such as Klf2 (Hall et al, 2009; Gillich

et al, 2012; Qiu et al, 2015), and such resetting events, measured by

reporter activation, often possess faster activation kinetics than

control (Gillich et al, 2012). The GOF18 EpiSC line contains a trans-

genic GFP reporter driven by the upstream regulatory region of

Pou5f1 (commonly known as Oct4). This transgene does not behave

as endogenous Oct4. It is active in ESCs but only in a rare subpopu-

lation of EpiSCs. Therefore, it serendipitously allows the live moni-

toring of EpiSC to ESC conversion (Han et al, 2010a). We

hypothesised that enhanced EpiSC resetting upon naı̈ve factor

expression may be due to accelerated network activation. We

sought to test this computationally by determining the number of

regulation steps required for all concrete models of the cABN to

stabilise in the naı̈ve state in 2i+LIF, with or without Klf2 transgene

expression. The 0.832 cABN predicted that forced expression of Klf2

in GOF18 EpiSCs results in the network stabilising in the naı̈ve state

in only three steps, compared with five steps for transgene-free

control (Appendix Fig S2A). Experimentally, we confirmed that

transient Klf2 expression induced Oct4-GFP+ colony formation

earlier than empty vector control and led to higher colony number

throughout 10 days of EpiSC resetting time course (Appendix Fig

S2B; Gillich et al, 2012). Thereafter, we assumed that the number of

Oct4-GFP+ colonies obtained reflected EpiSC resetting dynamics

and used this as an experimental output to compare with computa-

tional predictions.

We predicted the effect of forced expression of each network

component using the 0.832 cABN (Fig 1D). The predictions indi-

cated that expression of all factors except Tbx3 and Sox2 would lead

to stabilisation in the naı̈ve state in fewer steps than control, indicat-

ing that most network components could enhance EpiSC resetting.

For example, when Esrrb is introduced, all concrete models

predicted full activation of the naı̈ve network by Step 2, compared

to Step 5 for control.

To test these predictions experimentally, we generated expres-

sion constructs for each factor by cloning the cDNA into an identical

vector backbone and transiently transfected GOF18 EpiSCs 1 day

prior to initiating resetting in 2i+LIF. We measured the relative effi-

ciency between different components by the fold increase of Oct4-

GFP+ colonies formed at Day 7 over empty vector control (Fig 1E,

Appendix Fig S2C). While some factors, such as Sall4 and Oct4, had

no significant effect over control, others, notably Esrrb, Klf2 and

Klf4, showed a robust enhancement. The computational predictions

showed a similar trend to the experimental results, with seven out

of eleven cases correctly predicted (Fig 1D, Appendix Fig S2D).

Predictions for Tbx3, Stat3 and Oct4 transgene expression were

incorrect. Most strikingly, Sall4 was predicted to be one of the most

efficient factors, but was found to be the least efficient experimen-

tally.

The iterative nature of our approach (Fig 1A) allows the refine-

ment of the cABN in the light of new experimental results that were

predicted incorrectly. We encoded the experimental observation that

Sall4 expression was no more efficient than control as an additional

◀ Figure 1. Networkmodels consistent with naïve state maintenance predict the effect of TF forced expression in resetting from primed pluripotency. See also
Appendix Figs S1 and S2.

A Flowchart describing the methodology. Network components were identified based on functional studies from the literature, and possible interactions between
components defined based on pairwise gene expression correlation. A set of experimental results served as constraints. The software RE:IN synthesises all possible
interaction networks consistent with the constraints, which is termed the cABN. The cABN is used to formulate predictions to be tested experimentally. Importantly,
predictions do not overlap with imposed constraints. If predictions are falsified, the cABN can be further refined by incorporating new experimental results as
constraints. The refined cABN is used to generate further predictions.

B cABN derived from a Pearson coefficient threshold of 0.832, consistent with constraints previously defined for ESC self-renewal (Dunn et al, 2014). Solid arrow,
required interaction; dashed arrow, possible interaction; black arrow, activation; red arrow, inhibition. There is no regulation hierarchy associated with component
positioning.

C Illustration of EpiSC resetting constraints. See Appendix Fig S1F.
D Predicted number of regulation steps required for all models to stabilise in the naïve state under forced expression of a single network component. The red dashed

line indicates the number of steps required under empty vector control.
E Fold increase of Oct4-GFP+ colony number over control under forced expression of individual factors. n ≥ 5, where each dot indicates an independent experiment.

Box plots show median, 1st and 3rd quartile values. One-sample Wilcoxon test P-values are as indicated, with P < 0.05 shown in red.
F cABN derived from a Pearson coefficient threshold of 0.782.
G Predictions from the 0.782 cABN. Light green regions indicate where some, but not all, concrete networks allow stable conversion to the naïve state. Sall4 is indicated

in green, as this was imposed as a constraint and therefore is not a model prediction.
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constraint (Materials and Methods). Satisfying the new constraint

together with the original set required additional possible interac-

tions, which were identified by lowering the Pearson coefficient

threshold (Fig 1F). The new threshold, 0.782, was the highest to

define a cABN that satisfied the updated experimental constraints.

We then generated a new set of predictions for single factor forced

expression (note that forced expression of Sall4 is encoded as a

constraint therefore is not used to make a prediction). In each case,

we observed a range of steps for which some concrete models

predicted stabilisation in the naı̈ve state, while others did not

(Fig 1G, light green). However, predictions can only be formulated

when all concrete models are in agreement (Fig 1G, dark green).

Therefore, forced expression of Esrrb, Klf4, Gbx2, Klf2 or Tfcp2l1

was predicted to be more efficient than control, in agreement with

the experimental results shown in Fig 1E (see also Appendix Fig

S2D).

For forced expression of Nanog, Tbx3, Stat3 and Sox2, overlap of

the light green regions with control prevented definitive predictions

(Fig 1G). To resolve this uncertainty, we formally tested in silico

whether expressing a given factor would be more efficient than

control for every concrete model. This resulted in the correct predic-

tions that Nanog was always at least, or more efficient than control,

while Stat3, Sox2 and Oct4 were not (Appendix Fig S2D). The strat-

egy did not generate a prediction for Tbx3 because some concrete

models generated different kinetics to others.

We extended the test to perform a pairwise comparison of all

genes to delineate the relative efficiency of individual factors

(Appendix Fig S2E). Predictions could be formulated for 37 out of

55 possible comparisons. Of these, 22 were supported experimen-

tally, while 9 were incorrect. For the remaining 6, the experimental

results showed a trend in agreement with the predictions, although

without reaching statistical significance due to variability in the

naı̈ve colony number between independent experiments.

Appendix Fig S2F summarises all significant pairwise comparisons

with experimental support.

Delineating the sequence of network activation

The 0.782 cABN accurately predicted the effect of forced expression

of naı̈ve components on EpiSC resetting, which suggests that reset-

ting is not a random process. We therefore asked if resetting occurs

via a precise sequence of gene activation, and whether this could

also be identified using the cABN. We investigated whether a

defined sequence of gene activation was common to all concrete

models, or whether individual models transition through unique

trajectories. We focussed on those genes expressed at low levels in

GOF18 EpiSCs, to enable unequivocal detection of activation over

time in population-based measurements.

To predict the sequence of gene activation during EpiSC reset-

ting, we examined the number of regulation steps required for

each gene to be permanently activated in 2i+LIF without trans-

gene expression (Fig 2A). The 0.782 cABN predicts that Stat3 and

Tfcp2l1 are the first to be activated, at Steps 1 and 2, respec-

tively, while Gbx2, Klf4 and Esrrb are activated last, at Steps 6

and 7. The wide range of step values for permanent Tbx3 activa-

tion predicted by different concrete models within the cABN

(Fig 2A, light blue region) prevented a definitive prediction in this

case.

To test these predictions, we measured the expression of each

gene over the EpiSC resetting time course in 2i+LIF for up to 4 days

(Fig 2B and C). We defined gene activation to be an upregulated

expression level that is statistically significant over EpiSCs. As

predicted, Stat3 was significantly induced as early as 2 h after

2i+LIF induction, Tfcp2l1 after 8 h, while Klf4, Esrrb and Tbx3 only

became detectable between 48 and 96 h. In contrast to the predic-

tions, Klf2 was significantly increased after only 1 h of 2i+LIF

treatment.

Tfcp2l1 and Esrrb are direct targets of the LIF/Stat3 and CH/Tcf3

axes (Martello et al, 2012, 2013; Ye et al, 2013; Qiu et al, 2015).

However, even though CH and LIF were applied simultaneously to

initiate resetting, Tfcp2l1 and Esrrb displayed distinct activation

kinetics. We hypothesised that the local regulation topology of these

two components may affect the timing of their activation. We there-

fore examined all immediate upstream regulators of Tfcp2l1 and

Esrrb, and the logical update rules that define the conditions under

which each component becomes active (Fig 2D). Tfcp2l1 had six

upstream activators, of which Stat3 and Esrrb were definite, and

one inhibitor, Tcf3. Esrrb had three definite activators, Sall4, Nanog

and Tfcp2l1, as well as a definite and an optional inhibitor. The

computational methodology defines a set of alternative update rules,

referred to as regulation conditions, that span the possible scenarios

under which a target can be activated (Materials and Methods;

Yordanov et al, 2016). In the same manner in which some possible

interactions were found to be required or disallowed when experi-

mental constraints were applied to the ABN, certain regulations

conditions were also found to be used or unused in order to satisfy

the constraints. We compared the subset of regulation conditions

assigned to Tfcp2l1 and Esrrb across all concrete models in the

cABN, and one key difference emerged. While Tfcp2l1 required only

one of its potential activators (Stat3, Esrrb, Tbx3, Gbx2, Klf2 or

Klf4) to activate expression, Esrrb required the presence of all acti-

vators (Nanog, Tfcp2l1, Sall4; Fig 2D). Since Stat3 was activated

after 1 h in response to 2i+LIF, early activation of Tfcp2l1 could

therefore be attributed to Stat3. Esrrb would necessarily only be acti-

vated after activation of Tfcp2l1. This local topology analysis there-

fore provides a network explanation accounting for the rapid

▸Figure 2. Models predict the sequence of gene activation during resetting to naïve pluripotency.

A Model predictions of the number of regulation steps required for permanent activation of each network component. Light blue regions indicate where only some,
while dark blue regions indicate that all concrete networks predict that the given gene has permanently activated.

B Heatmap of average gene expression normalised to b-actin over an EpiSC resetting time course in 2i+LIF. Each row is coloured according to the unique minimum
and maximum for that gene. The values shown are average expression of four independent experiments.

C Gene expression for Stat3, Klf2, Esrrb and Tfcp2l1 during EpiSC resetting relative to established mouse ESCs. b-actin serves as an internal control. Mean � SEM, n = 4
independent experiments. *P < 0.05 Student’s t-test.

D Left: Local network topology for Tfcp2l1 and Esrrb. Right: Summary of regulation conditions required by Tfcp2l1 and Esrrb in the 0.782 cABN.
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activation of Tfcp2l1 (8 h, Fig 2B) and the delayed activation of

Esrrb (48 h).

Combinations of factors can enhance EpiSC resetting

Earlier studies have shown that forced expression of a combination

of factors can synergistically enhance resetting efficiency (Yang

et al, 2010; Gillich et al, 2012; Qiu et al, 2015). Our computational

approach enabled us to investigate the effect of factor combinations

in a systematic manner. We focused on those factors found to be

potent inducers when expressed individually: Klf4, Klf2, Esrrb, Tbx3

and Tfcp2l1 (Fig 1E). Six out of seven combinations were predicted

to reduce the number of regulation steps required to induce and

stabilise the naı̈ve state (Fig 3A, left). In the case of Esrrb/Tfcp2l1

dual expression, no enhancement beyond single factors was

predicted.

We tested these combinations experimentally by transient trans-

fection of the factors singly or combined. The number of reset Oct4-

GFP+ colonies was scored at Day 7, and resetting efficiency was

calculated based on fold increase over empty vector control. The

resetting efficiency of dual factor transfection was compared to indi-

vidual factors alone to determine the combinatorial effect. Six out of

seven experimental results were consistent with computational

predictions (Fig 3A, right). Five combinations (Esrrb/Klf2, Esrrb/

Klf4, Esrrb/Tbx3, Klf4/Tbx3, Klf2/Tbx3) yielded synergistic

enhancement, while two combinations (Esrrb/Tfcp2l1 and Klf2/

Klf4) showed no greater effect than the single factors (Fig 3A, right,

3B). These results demonstrate that the logic encoded within our

data-constrained set of models is sufficient to predict synergistic or

non-additive behaviour of factor combinations.

Since dual expression of Esrrb/Tbx3 and Esrrb/Klf4 dramatically

enhanced EpiSC resetting (Fig 3B, right), we utilised these combina-

tions to explore resetting dynamics in detail. We generated piggyBac

vectors harbouring doxycycline (DOX)-inducible Esrrb-T2A-Klf4-

IRES-Venus and Esrrb-T2A-Tbx3-IRES-Venus constructs. We deliv-

ered the transgenes into GOF18 EpiSCs together with a separate

rtTA construct (Fig 3C). The presence of Venus+ cells upon DOX

treatment confirmed induction of transgene expression. As a

control, we used an empty vector carrying only the DOX responsive

element and IRES-Venus. To assay resetting potency, we transferred

EpiSCs to 2i+LIF in the absence or presence of DOX (0.2 lg/ml) for

48 h and continued resetting in 2i+LIF only for an additional 4 days

before scoring Oct4-GFP+ colonies (Fig 3D). Cells transfected with

the empty vector with or without DOX, or with expression

constructs in the absence of DOX, showed spontaneous resetting at

low frequency, as expected (Fig 3E, top). In contrast, both factor

combinations in response to DOX yielded robust Oct4-GFP activa-

tion. There were too many GFP+ colonies to score accurately, and

therefore, we quantified the GFP signal intensity of randomly

selected fields (Fig 3E, bottom). This analysis demonstrated that

DOX induction led to a 9- to 16-fold increase in Oct4-GFP expression

for Esrrb/Tbx3 and Esrrb/Klf4 expression respectively.

To examine EpiSC resetting kinetics functionally, we replated

cells after 2, 4, 6 or 8 days (Fig 3D) at clonal density and scored the

number of emergent alkaline phosphatase (AP)-positive colonies. In

the absence of DOX, both the empty vector and dual expression

transfectants exhibited gradual accumulation of a few colonies.

With DOX induction, however, dual factor transfectants displayed

rapid production of numerous AP+ colonies, commencing as early

as Day 2 and peaking at Day 6 (Fig 3F).

To investigate whether the effect of these combined factors

extended to other EpiSC resetting systems, we expressed these

combinations in an independent EpiSC line, OEC2 (Appendix Fig

S3A), which carries an Oct4-GFP transgene and the chimeric LIF

receptor GY118 (Yang et al, 2010). Resetting does not occur in this

cell line in 2i+LIF alone. Similar to GOF18 EpiSCs, we found robust

induction of Oct4-GFP+ colony formation with DOX treatment and

could observe resetting to the naı̈ve state with only 24 h of DOX

induction (Appendix Fig S3B–E).

Delineating the sequence of network activation under dual
factor expression

We next used the 0.782 cABN to investigate the sequence of gene

activation that occurs upon dual factor expression. Predictions were

generated for the number of regulation steps required for each

component to be permanently activated (Fig 4A and B top,

Appendix Fig S4), and compared with experimental results (Fig 4A

and B bottom). To generate the experimental results, we measured

network component expression of DOX-inducible GOF18 EpiSCs

carrying the empty vector, Esrrb-T2A-Tbx3 or Esrrb-T2A-Klf4

constructs, and treated with 2i+LIF in the presence or absence of

DOX.

Under DOX treatment, Esrrb-T2A-Tbx3 transfectants showed a

more robust activation of endogenous Klf2 and Klf4 at Day 4 relative

to non-induced cells, consistent with the prediction that these genes

should be activated earlier (Fig 4A). Stat3 upregulation was not

accelerated, also as predicted. However, in the case of Tfcp2l1, we

detected enhanced activation that was not predicted. For Esrrb-T2A-

Klf4 expression, we observed accelerated activation of Klf2 and

Tbx3 at Day 4 compared to control, consistent with predictions

(Fig 4B). Again, we observed enhanced activation of Tfcp2l1 that

▸Figure 3. Combinations of potent factors enhance resetting by accelerating network activation. See also Appendix Fig S4.

A Left: Comparison of the number of steps required for all concrete networks to stabilise in the naïve state under single and dual factor expression. Right: Experimental
results showing the fold increase in colony number over empty vector control under single and dual factor expression. Y = Yes, N = No, *incorrect prediction.

B Predictions and experimental validation of examples of synergistic and non-additive factor combinations. Experimental measurement of fold increase over empty
vector control of Oct4-GFP+ colony numbers. Bars indicate the mean of 2 independent experiments, shown as dots.

C Scheme for DOX-inducible constructs used for dual factor expression.
D Experimental set-up for the functional characterisation of Esrrb-T2A-Klf4 or Esrrb-T2A-Tbx3 forced expression in EpiSC resetting.
E Representative confocal images (top) and quantification (bottom) of Oct4-GFP reporter mean intensity. The indicated cell lines were treated with DOX for the first

2 days and imaged at Day 6. Mean � SD of 9 technical replicates. One representative experiment of two is shown. Scale bars = 300 lm.
F Representative alkaline phosphatase (AP) staining images (left) and quantification (right) of AP+ colonies after clonal replating, as described in panel. Mean � SEM,

n = 3 independent experiments.
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was not predicted, while Stat3 showed no enhancement over

control. Importantly, the sequence of gene activation was indepen-

dently validated in OEC2 EpiSCs (Appendix Fig S3F). Of note, the

level of Klf2 activation relative to ESCs is much lower in OEC2

(Appendix Fig S3F) compared to GOF18 EpiSCs (Fig 4A and B).

EpiSC resetting is typically an inefficient and asynchronous

process (Appendix Fig S2B), limited by both technical and biological

variability. Consequently, analysis of population-based measure-

ments could mask the precise sequence of gene activation in

productive resetting. Since the inducible Esrrb-T2A-Klf4 expression

system significantly enhanced EpiSC resetting, this enabled us to

capture gene activation kinetics at single-cell resolution. Examining

gene expression of different components within the same cell along

the EpiSC resetting trajectory should allow reliable characterisation

of the sequence of network activation. To achieve this, we sorted

individual cells after 2 and 4 days resetting in 2i+LIF with DOX

treatment (Fig 4C left). We conducted single-cell gene expression

profiling by RT–qPCR of Day 2 Venus/GFP Low and High and Day 4

Venus/GFP High cells that were clonogenic in 2i+LIF upon replat-

ing, i.e. those that had undergone productive reprogramming

(Fig 4C, right). As controls, we included established mouse RGd2

ESCs (Kalkan et al, 2017) and un-induced parental EpiSCs. We pro-

filed selected genes that were differentially expressed between naı̈ve

ESCs and primed EpiSCs along with the core pluripotency factors,

Oct4 and Sox2 (Fig 4D and E, Table EV1). Robust activation of

naı̈ve ESC-associated genes was observed in Day 4 Venus/GFP High

cells. Some genes, such as Oct4 and Nr5a2, showed even higher

expression in Day 4 Venus/GFP High cells than in ESCs (Fig 4D),

possibly due to the perduring expression of Esrrb and Klf4. Oct4 and

Sox2 were reduced in many, but not all, Day 2 Low cells, but were

robustly expressed in some Day 2 High and all Day 4 High samples

(Fig 4E). EpiSC-enriched genes that are also expressed at low levels

in naı̈ve ESCs, such as Otx2, Utf1 and Pim2, were downregulated at

Day 2. However, some Day 4 High cells re-acquired expression of

those genes associated with early transition from naı̈ve pluripotency

(Acampora et al, 2016; Kalkan et al, 2017). In established reset

clones, however, their expression levels were similar to ESCs

(Appendix Fig S5A). Naı̈ve pluripotency in such reset clones was

confirmed functionally by generation of multiple high-grade live-

born chimera (Appendix Fig S5B). Overall, the single-cell transcrip-

tional analysis further validated the robust, stable activation of the

naı̈ve network after 4 days of Esrrb-T2A-Klf4 expression.

Clustering of single-cell gene expression profile reveals an EpiSC
resetting trajectory

We explored the sequence of gene activation at single-cell resolution

by examining the proportion of cells displaying expression of indi-

vidual genes at different stages of resetting to test whether these

data were consistent with predictions. For example, the 0.782 cABN

predicted that Klf2 would always be active before Tbx3, from which

it follows that upregulation of Tbx3 should not occur in the absence

of Klf2.

To test these predictions, we first discretised the data by k-means

clustering (Materials and Methods) and calculated the proportion of

cells at each resetting stage exhibiting the four expression patterns:

Klf2/Tbx3 both Low; Klf2 High and Tbx3 Low; Klf2/Tbx3 both

High; and Klf2 Low and Tbx3 High (Fig 5, top row). The majority of

cells at Day 2 were Klf2/Tbx3 double Low, while such cells were

not found at Day 4. By Day 4, the majority of cells were Klf2/Tbx3

double High, as for ESCs. We observed that the proportion of Klf2

High and Tbx3 Low cells was highest at Day 2 and subsided at Day

4 and in the established ESCs. Klf2 and Tbx3 High cells were mostly

present at Day 4 and ESCs. This indicates that Klf2 activation

precedes Tbx3. Only a negligible fraction of Klf2 Low and Tbx3 High

cells was observed in Day 4. Since similar fraction of these cells was

observed in ESCs, this indicates that they most likely reflect tran-

scriptional fluctuation or heterogeneity in the naı̈ve state. These

results are consistent with the prediction that Klf2 precedes Tbx3

activation during resetting upon Esrrb-T2A-Klf4 expression. Simi-

larly, the cABN accurately predicted that Klf2 activation precedes

Gbx2, and sustained expression of Sox2 is prerequisite to Tfcp2l1

activation (Fig 5, middle and bottom panels). As an independent

approach, we performed hierarchical clustering using the SPADE

algorithm to visualise the kinetics of gene activation (Anchang et al,

2016; Qiu et al, 2011; Appendix Fig S5C and D). This analysis con-

firmed our observations and also allowed us to place factors that are

not in the naı̈ve network on the resetting activation timescale. For

example, Nr5a2, a known resetting enhancing factor (Guo & Smith,

2010), activates in a similar pattern to Klf2.

Identifying required components for naïve network activation

We next investigated whether loss of specific network factors would

block naı̈ve network activation. We used the 0.782 cABN to predict

▸Figure 4. Co-expression of factors activated late in EpiSC resetting increases pluripotency marker expression and significantly reduces the resetting time
scale. See also Appendix Figs S3 and S5, Table EV1.

A Top: Predictions of the number of regulation steps required for full activation of the indicated gene under control or dual expression of Esrrb and Tbx3 (+E/T). Bottom:
Gene expression of EpiSCs harbouring empty vector (grey) or Esrrb/Tbx3 (orange), captured at D0 (F/A), D2 and D4 (as described in Fig 3D). Dashed black line:
expression levels in ESCs maintained in 2i+LIF. Data normalised to empty vector cultures in F/A. Gapdh serves as an internal control. Mean � SEM, n = 3
independent experiments.

B As for panel (A), comparison of control with dual expression of Esrrb and Klf4 (+E/K, green in bottom plot). Mean � SEM, n = 3 independent experiments for bottom
qRT–PCR panels.

C Left: Flow cytometry profiles of the resetting progression of EpiSCs stably transfected with the Esrrb-T2A-Klf4 construct and cultured in 2i+LIF with DOX for 2 and
4 days, with the indicated fraction of cells sorted for colony formation assay. Since the Venus reporter is under the control of a DOX responsive element, and the
emission spectra of Venus and GFP fluorescence overlap, the Oct4-GFP reporter could not be fully distinguished from Venus expression. Right: Number of AP+ colonies
formed from 250 sorted cells from indicated fractions. Data points represent two technical replicates of one out of two independent experiments.

D Heatmap of single-cell expression measured by qRT–PCR of major ESC and EpiSC markers in un-induced EpiSCs (black), established ESCs (red), Day 2 High/Low (dark
and light blue) and Day 4 High cells (green).

E Scatterplots of the relative expression of pluripotency and transitional markers. Red bar corresponds to median gene expression, and each dot represents a single cell.
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network components required for EpiSC resetting by investigating

whether the network could permanently stabilise in the naı̈ve state

in the absence of each factor (Fig 6A). The 0.782 cABN predicted

that two factors, Esrrb and Gbx2, are dispensable for EpiSC reset-

ting, while the remaining factors are required. In the case of Tbx3,

no prediction could be formulated.

Figure 5. Single-cell gene expression profiles recapitulate the predicted sequence of gene activation.

Left: 0.782 cABN predictions of the sequence of gene activation between gene pairs (white, Low; blue, High) along the resetting trajectory, compared to single-cell gene
expression measured by RT–qPCR. Each table summarises the percentage of single-cells at the indicated stage of resetting (columns) that have the indicated expression
state (rows). Right: Scatterplots showing single-cell coordinates based on the expression of the gene pair.
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To test these predictions, we transfected GOF18 EpiSCs with

siRNAs against individual network factors. EpiSC resetting was initi-

ated 24 h post-transfection by switching from F/A to 2i+LIF, and

Oct4-GFP+ colonies were scored at Day 6 (Fig 6B). Experimental

results confirmed that Gbx2 is dispensable for resetting. Further-

more, the requirements for Oct4, Sall4, Sox2, Stat3 and Klf2 were

accurately predicted. Knockdown of Esrrb and Tbx3 reduced but did

not abolish colony formation. Overall, 6 out of 9 predictions were

consistent with experimental results.

The experimental results revealed distinct resetting behaviour

upon Klf2 or Klf4 depletion. Both were predicted to be required, yet

Klf4 knockdown did not eliminate colony formation, while Klf2 was

found to be essential (Fig 6B). This experimental result was coun-

terintuitive as well as not predicted. Klf4 and Klf2 show at least

partially redundant function in ESC self-renewal (Jiang et al, 2008),

and both were potent resetting inducers when expressed in GOF18

EpiSCs (Fig 1E). To confirm the result, we generated Klf2 and Klf4

knockout (KO) GOF18 EpiSCs by deleting the largest coding exons

using CRISPR/Cas9 (Appendix Fig S6A and B). Resetting in 2i+LIF

using two independent KO EpiSC clones confirmed the knockdown

results: Klf4 KO EpiSCs generated Oct4-GFP+ colonies as efficiently

as wild-type control, while Klf2 KO EpiSCs yielded no Oct4-GFP+

colonies (Fig 6C). This observation was further validated using an

independent EpiSC line in which resetting is driven by hyperactiva-

tion of Stat3 (Appendix Fig S6C).

To investigate the consequence of Klf2 loss for network activa-

tion, we examined the expression of network components over the

resetting time course for up to 4 days (Fig 6D). Wild type (WT) and

Klf2 KO EpiSCs showed similar patterns of expression for Oct4, Sox2

and Sall4. For up to 8 hours of resetting, Klf2 KO cells behaved simi-

larly to WT. However, Klf2 KO cells failed to elevate the expression

of Nanog and Tfcp2l1 at later time points. Factors activated after

2 days of resetting, such as Esrrb, Klf4 and Tbx3, failed to be acti-

vated in Klf2 KO cells. Taken together, these data suggest that in the

absence of Klf2, EpiSCs can respond to 2i+LIF to initiate resetting,

but this response is not sustained. Of note, EpiSC markers—Pou3f1,

Otx2, Fgf5—were sharply downregulated in both WT and Klf2 KO

cells (Fig 6D, middle), suggesting that Klf2 is not involved in the

dissolution of EpiSC identity. Furthermore, in both WT and Klf2 KO

EpiSC resetting we observed similar upregulation at the population

level of lineage-specific genes, such as Sox1 and Pax6 (ectoderm),

T/Bra (primitive streak), Flk1 (mesoderm) and Pdgfra (endoderm;

Fig 6D bottom). This suggests that Klf2 does not exert a lineage

repression function during resetting. In addition, Klf2 deletion in

ESCs did not affect multi-lineage differentiation (Appendix Fig S6D).

We next asked whether forced expression of individual network

factors could compensate for the loss of Klf2. To this end, we tran-

siently expressed all individual factors and found that only Klf2 and

Klf4 could rescue the Klf2 KO phenotype (Fig 6E). These results

indicate that Klf2 is specifically required for initiating resetting in

EpiSCs. Rescue by forced expression of Klf4 suggests that the two

factors are functionally equivalent. Differences in the activation

kinetics of the two factors during resetting (Fig 2B) underlie the

requirement for Klf2 and dispensability of Klf4 (see also Discus-

sion).

We picked and expanded individual Klf2 KO reset clones

obtained via transient Klf2 expression at Day 7, and confirmed they

were free of integration of Klf2 transgene by genomic PCR

(Appendix Fig S6E) and lack of Klf2 expression (Appendix Fig S6F).

We quantified gene expression for naı̈ve network factors in these

lines and found that Oct4, Tbx3, Tfcp2l1 and Klf4 levels were

comparable to control, while Sall4, Gbx2, Sox2, Stat3 and Nanog

were elevated (Appendix Fig S6F). Only in the case of Esrrb was

gene expression lower in Klf2 KO iPSCs than in control. Despite

these differences, Klf2 KO naı̈ve cells showed sustained self-renewal

in 2i+LIF. Therefore, Klf2 is dispensable for maintenance in 2i+LIF

once naı̈ve pluripotency has been attained, consistent with previous

reports for ESC propagation (Yeo et al, 2014).

In the light of the unexpected finding that Klf2 was specifically

required for EpiSC resetting, we investigated the relevance of other

network components for resetting versus maintenance of naı̈ve

pluripotency. Predictions were generated and tested by siRNA

transfection in self-renewing ESCs followed by clonal assay (Dunn

et al, 2014). Stat3 and Klf2 emerged as specifically required for

resetting. Depletion of Tbx3, Esrrb, Nanog and Sall4 also reduced

EpiSC resetting frequency but had little effect on naı̈ve state main-

tenance (Fig 6F). Klf4, Tfcp2l1 and Gbx2 appear dispensable for

both maintenance and resetting, while Oct4 and Sox2 are essential

▸Figure 6. Klf2 and Stat3 are required for EpiSC resetting, but not for naïve state maintenance. See also Appendix Figs S6 and S7.

A 0.782 cABN predictions of essential or dispensable factors for EpiSC resetting, compared with the experiment results shown in panel (B).
B siRNA knockdown effects measured by Oct4-GFP+ colony formation at Day 6 of resetting. n = 4 independent experiments. Box plots indicate 1st, 3rd quartile and

median. *P < 0.05 Student’s t-test; n.s. = not significant.
C Left, resetting capacity of Klf2 and Klf4 KO EpiSCs measured by Oct4-GFP+ colony formation at Day 6 of resetting. Data points represent two independent

experiments. Right, representative fluorescent and bright field images of wild-type and Klf2 KO EpiSCs at Day 6 of resetting in 2i+LIF. Scale bars = 100 lm.
D Expression of naïve pluripotency, transition and somatic lineage markers in wild-type and Klf2 KO EpiSCs during a resetting time course in 2i+LIF. Expression is

normalised to wild-type EpiSCs in A/F, and b-actin was used as internal control. The values shown correspond to the average expression of three technical replicates
from one representative experiment out of two.

E Rescue of Klf2 KO EpiSC resetting by forced expression of individual network components measured by Oct4-GFP+ colony formation at Day 6 of resetting in 2i+LIF.
Data points represent two independent experiments.

F Comparison between the effect of single factor knockdowns on ESC maintenance (n = 4 independent experiments) and EpiSC resetting using experimental results.
G EpiSC resetting in 2i+LIF measured by Oct4-GFP+ colony formation after Stat3 siRNA in wild-type EpiSCs (left), or Klf4 KO EpiSCs transfected with Tfcp2l1 and Gbx2

siRNAs. n = 3 independent experiments in wild-type cells (box plots indicate min, median, max), n = 2 for Klf4�/� cells (box plots indicate min, mean, max).
H EpiSC resetting in 2i+LIF measured by Oct4-GFP+ colony formation of Stat3 knockdown EpiSCs transiently transfected with Tfcp2l1, Gbx2 and Klf4. n = 4 independent

experiments: Student’s t-test, P-value indicated on plot. Box plots indicate min, median, max. See also Appendix Fig S7C.
I The 0.717 cABN used to illustrate the kinetics of EpiSC resetting as determined experimentally. Left: Genes coloured according to the order of activation during

resetting in 2i+LIF. Right: Genes coloured according to their potency in enhancing the efficiency of resetting. TFs with a green border are the common factors
required for ESC self-renewal and EpiSC resetting. See also Appendix Fig S6A.

12 of 24 The EMBO Journal 38: e100003 | 2019 ª 2018 The Authors

The EMBO Journal Network governing pluripotency induction Sara-Jane Dunn et al



A B C

D F

G H

I

E

Figure 6.

ª 2018 The Authors The EMBO Journal 38: e100003 | 2019 13 of 24

Sara-Jane Dunn et al Network governing pluripotency induction The EMBO Journal



to both (Fig 6F). These results indicate that EpiSC resetting and

naı̈ve state maintenance display different sensitivity to network

components, and such differences were correctly identified by the

0.782 cABN.

We further investigated the specific requirement for Stat3 in

EpiSC resetting. Gbx2, Klf4 and Tfcp2l1 are the direct downstream

effectors of Stat3 (Niwa et al, 2009; Martello et al, 2013; Tai & Ying,

2013). We first examined activation of these TFs in the absence of

LIF, or upon Stat3 knockdown. Induction of Tfcp2l1 and Gbx2 was

significantly reduced at 24 h in both conditions (Appendix Fig S7A).

Later induction of Klf4 was also reduced following Stat3 depletion

(Appendix Fig S7B). To examine the functional contribution of these

factors downstream of Stat3, we conducted knockdown and rescue

experiments. Depletion of Tfcp2l1, Gbx2 or Klf4 either individually

or in dual combinations does not inhibit GOF18 EpiSC resetting

(Fig 6A and G). However, combined loss of all three factors signifi-

cantly reduced resetting efficiency (Fig 6G) to levels comparable to

Stat3 knockdown. In contrast, forced expression of individual

factors rescued the effect of Stat3 knockdown (Fig 6H, Appendix Fig

S7C). Taken together, we conclude that Tfcp2l1, Gbx2 and Klf4 are

individually dispensable, but in combination they mediate the effect

of LIF/Stat3 signalling.

The dispensability of Klf4 and Tfcp2l1 and partial requirement

for Esrrb were not correctly predicted by our models (Fig 6A). By

including new constraints for the effect of Klf4 and Tfcp2l1 knock-

down, we could derive a cABN that was fully consistent with the

siRNA resetting phenotypes. Figure 6I shows the refined cABN,

defined by a Pearson threshold of 0.717, and also highlights the

experimentally observed kinetics of gene activation during EpiSC

resetting alongside the potency of individual factors in accelerating

the resetting dynamics. Interestingly, the rich set of behaviours we

have explored could be explained by as few as 32 interactions

between all network components in one “minimal” network topol-

ogy (Appendix Fig S8A). We characterised both required and disal-

lowed interactions in the 0.717 cABN against CHIP-sequencing

data generated from self-renewing mouse ESCs (Sanchez-Castillo

et al, 2015) and found that 90.91% were supported (Table EV4).

This suggests that a large fraction of the interactions may be

direct.

A single biological program governs maintenance and induction
of naïve pluripotency

Developmentally distant somatic cell types such as mouse embry-

onic fibroblasts (MEFs) can be reprogrammed to naı̈ve pluripotency

with naı̈ve factor combinations (Takahashi & Yamanaka, 2006). We

therefore asked whether MEF reprogramming could also be

predicted with the 0.717 cABN. We first surveyed the literature for

those factor combinations present in our network that have been

used to reprogram MEFs. Without encoding any additional

constraints, the 0.717 cABN accurately computed the capacity for

successful production of iPSCs for 7 combinations from the litera-

ture (Takahashi & Yamanaka, 2006; Nakagawa et al, 2007; Silva

et al, 2008; Feng et al, 2009; Buganim et al, 2012; Tang et al, 2012;

Fig 7A). In each case, we assumed a starting state in which all

components are inactive, save those factors in the reprogramming

cocktail. We next investigated the effect of adding single factors to

OSKM in a systematic manner by comparing the number of regula-

tion steps required to stabilise in the naı̈ve state in LIF (Fig 7B).

Experimentally, we conducted OSKM reprogramming of primary

MEFs with a Nanog-GFP knock-in reporter (TNGA; Chambers et al,

2007). Reprogramming was induced by LIF addition in the presence

of Vitamin C and Alk inhibitor (O’Malley et al, 2013), and Nanog-

GFP+ colonies were scored at Day 12 (Fig 7B, right). The 0.717

cABN accurately predicted that the addition of Nanog, Tbx3 and

Esrrb would enhance reprogramming efficiency in presence of LIF

(Takahashi & Yamanaka, 2006; Nakagawa et al, 2007; Silva et al,

2008; Feng et al, 2009), while Sall4, Gbx2, Klf2 and Tfcp2l1 would

have no additive effect.

We also explored the effect of 2i on somatic cell reprogramming.

We conducted reprogramming as before, but from Day 6, 2i was

supplemented until day 12 when Nanog-GFP+ iPSC colonies were

scored. 2i addition enhanced MEF reprogramming compared to LIF

alone (Fig 7C). However, LIF is critical to reprogramming over

OSKM alone -driven reprogramming irrespective of 2i (Appendix Fig

S7D), in agreement with model predictions and previous observa-

tions (Silva et al, 2008). In 2i+LIF, 3 out of 4 predictions of

enhanced reprogramming over OSKM alone proved correct (Nanog,

Tbx3 and Esrrb, but not Sall4; Fig 7C). Taken together, these results

▸Figure 7. A common gene regulatory program governs naïve state maintenance, EpiSC resetting and somatic cell reprogramming.

A 0.717 cABN predictions compared with published data on gene combinations that do (dark green) or do not (white) enable MEF reprogramming.
B Comparison of predictions (left) and experimental outcome (right) for the potency of additional network factors in OSKM-driven MEF reprogramming in LIF

containing medium. n = 4 independent experiments, except Klf2 and Nanog where n = 2 independent experiments. *P < 0.05 Student’s t-test. n.s. = not significant.
Red dashed lines indicate empty vector + OSKM level. Box plots indicate min, median, max.

C Comparison of predictions (left) and experimental outcome (right) for the potency of additional network factors in OSKM-driven MEF reprogramming in 2i+LIF. n = 4
independent experiments, except Klf2 and Nanog where n = 2 independent experiments. *P < 0.05 Student’s t-test. n.s. = not significant. Empty vector + OSKM
reprogramming in LIF (“control no 2i”) was included as a control for the effect of 2i addition. Red dashed lines indicate empty vector + OSKM control level. Box plots
indicate min, median, max. The red asterisk indicates that the effect of Sall4 was incorrectly predicted.

D Recapitulation of the gene activation kinetics during MEF reprogramming. Top, the number of regulation steps required for permanent activation of the indicated
gene. Tfcp2l1 and Sall4 are found to activate earlier than Nanog and Esrrb. Bottom, gene expression measured from sorted populations of reprogramming
intermediates from O’Malley et al (2013).

E Delineation of gene activation at single-cell level. Top, experimental scheme used in Buganim et al (2012) for the isolation of reprogramming intermediates profiled
by single-cell RT–qPCR. Bottom, comparison of the predictions of the sequence of gene activation between gene pairs (left) along the reprogramming trajectory in
OSKM+LIF, compared with experimental measurements from Buganim et al (2012). Each table shows the percentage of single cells at the indicated stage of
reprogramming (column) that have the indicated expression state of the gene pair considered (row).

F Summary of the predictive accuracy of the three cABNs progressively refined against experimental results, with the 0.717 cABN having the highest predictive accuracy
for each set of the investigation.
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indicate that the 0.717 cABN is consistent with, and predictive of,

the majority of behaviours in MEF reprogramming.

The 0.717 cABN could also predict the dynamics of gene activa-

tion, again by computing the number of steps required for each

component of the network to be stably activated. Compared with

gene expression measurements both at population and single-cell

level from two independent studies (Buganim et al, 2012; O’Malley

et al, 2013), the 0.717 cABN correctly predicted that Tfcp2l1 and

Sall4 activate before Nanog and Esrrb in MEF reprogramming

(Fig 7D and E). The predicted sequential activation of gene pairs

was validated by comparing the proportion of cells expressing indi-

vidual genes at different stages of MEF reprogramming (Buganim

et al, 2012) at single-cell resolution (Fig 7E). Taken together, these

analyses suggest that a common gene regulatory program for naı̈ve

state maintenance governs reprogramming both from EpiSCs and

somatic cells.

To confirm the predictive capacity of our final set of models, and

compare with previous iterations—that described by Dunn et al

(2014) and the 0.782 cABN (Fig 1F, Table EV3)—we used the 0.717

cABN to formulate predictions previously generated for both naı̈ve

state maintenance (Dunn et al, 2014) and EpiSC resetting

(Table EV3). In total, the 0.717 cABN was constrained against 47

experimentally observed behaviours and generated a further 96

predictions consistent with experimental observations. When

compared to the previous generations of cABNs, we observed a

progressive increase in overall predictive accuracy as we refined the

models against new data (Fig 7F).

Discussion

In this study, we undertook an iterative computational and experi-

mental approach to uncover the logic of resetting post-implantation

derived EpiSCs to the ESC state of naı̈ve pluripotency. Our method

exploited the power of automated reasoning to constrain a set of

possible network models against existing experimental observa-

tions, and subsequently to use this set of models to formulate

predictions of untested behaviour. The complete set of predictions is

summarised in Table EV3. Our results reveal that the biological

program ruling maintenance of the naı̈ve state also governs installa-

tion of naı̈ve pluripotency both from primed EpiSCs, and from

developmentally distant somatic cells. The program that we have

progressively refined captures a complex and rich set of behaviours

and thereby encapsulates the robust nature of the naı̈ve state

captured in 2i+LIF, as well as the fragility of resetting and its depen-

dency of the availability of specific factors. Furthermore, the

program is highly predictive: of 124 tested predictions for the 0.717

cABN, 77.4% were supported by experiment. We conclude that

maintenance and induction of naı̈ve pluripotency are under the

control of the same biological program, which responds dynamically

to the initial cell state and signals provided.

Initially, we investigated how forced expression of individual

network components influences EpiSC resetting. The program fore-

cast correctly that only some factors—Klf2, Klf4, Esrrb and Tbx3—

strongly enhance EpiSC resetting, and furthermore that certain pairs

of factors act synergistically. Co-expression of Esrrb with Klf4 or

Tbx3 produced a highly efficient resetting context, which permitted

us to dissect the sequence of gene activation at the single-cell level.

Significantly, we could identify TFs that can be compensated for by

other components during self-renewal, but are stringently required

during EpiSC resetting.

Klf2, but not Klf4, was unexpectedly identified as critical for

resetting. Yet Klf2 becomes dispensable after the naı̈ve network is

established due to functional redundancy with Klf4. We conclude

that EpiSC resetting is a conditional process that is highly dependent

on the sequence of gene activation, whereas the naı̈ve state mainte-

nance circuitry is robust due to layers of redundancy that confer

network resilience (Martello & Smith, 2014).

An often overlooked aspect of modelling is the insight to be

gained from analysing incorrect predictions. The distinction

between Klf2 and Klf4, which are both members of the Krüppel-like

family of TFs and share high sequence homology in the DNA bind-

ing domain, was neither predicted nor intuitive. In both naı̈ve state

maintenance and somatic cell reprogramming, these genes have

been shown to have largely redundant function (Nakagawa et al,

2007; Jiang et al, 2008; Yeo et al, 2014). Furthermore, expression of

Klf2 and Klf4 has a similar and potent effect on EpiSC resetting.

However, only Klf2 is required for transgene-free EpiSC resetting.

This can be understood in the context of the network by examina-

tion of the kinetics of gene activation. Klf2 is upregulated within the

first 2 h of resetting, whereas Klf4 becomes stably expressed only

after 48 h. Thus, inactivation of Klf2 leaves the cell devoid of both

Krüppel-like family TFs for the first 2 days. Associated with this,

naı̈ve markers normally activated subsequently are not induced and

resetting does not proceed. Inactivation of Klf4, in contrast, can be

compensated for by the presence of Klf2, which is activated early

and maintained throughout. The functional redundancy between

Klf2 and Klf4 is exemplified in the observation that Klf2 KO cells can

be reset by transient expression of either Klf2 or Klf4.

Like Klf2, Stat3 is also a factor specifically required for resetting,

and the potent effect of the LIF/Stat3 axis in resetting was previ-

ously reported (Yang et al, 2010; Martello et al, 2013; Carbognin

et al, 2016). Here, we clarified the downstream mediators of Stat3

and observed that three direct targets, Klf4, Tfcp2l1 and Gbx2, coop-

eratively induce naı̈ve pluripotency. Indeed, only their triple inacti-

vation phenocopies the loss of Stat3 in GOF18 EpiSCs, while single

expression of each is sufficient to rescue Stat3 knockdown. We

previously found that Tfcp2l1 is required for the resetting of OEC2

EpiSCs, which do not convert spontaneously (Martello et al, 2013).

In such cells, LIF/Stat3 signalling results in the activation of Tfcp2l1

but not of Klf4 (Martello et al, 2013). Moreover, Klf2 induction is

attenuated in OEC2 compared to GOF18 EpiSCs (Fig 4 and

Appendix Fig S3F). The lack of robust activation of Klf2 and Klf4

may explain the dependency on Tfcp2l1 for OEC2 resetting. Notably,

however, other findings, such as Esrrb/Klf4 dual factor synergy and

Klf2 KO phenotype, have been confirmed in OEC2 cells. It is well

known that EpiSC lines vary in their properties, including efficiency

of resetting (Bernemann et al, 2011b; Illich et al, 2016). This is

consistent with the contingencies revealed by our models.

It is currently debated whether acquisition of naı̈ve pluripotency

is an ordered process, following a precise sequence of events, or a

stochastic system in which individual cells follow different trajecto-

ries. Our results suggest that productive EpiSC resetting is not

stochastic, revealing a sequential gene activation trajectory towards

the naı̈ve state that is substantiated even at single-cell resolution.

This may seem counterintuitive, given that some EpiSCs fail to reset
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in the presence of transgenes (Fig 4C) and activation of somatic

lineage markers can be detected (Fig 6D). However, we hypothesise

that EpiSC resetting is deterministic subject to an initial activation

threshold. Technical impedance, such as variable transgene expres-

sion and biological stochasticity, may render some cells irresponsive

or aberrantly responsive. Crucially however, once cells overcome

the initial activation threshold they follow a deterministic trajectory.

Our analyses identified two distinct kinetics of network gene acti-

vation (Fig 2B and D). Factors such as Stat3, Tfcp2l1 and Klf2 are

rapidly upregulated in 2i+LIF, followed later by factors such as Klf4

and Esrrb. These different gene activation kinetics could be associ-

ated with different roles in naı̈ve network installation. Rapidly acti-

vating factors are important to initiate naı̈ve network activation,

consistent with the observation that Stat3 and Klf2 are essential to

resetting (Fig 6A). Slow-activating factors such as Esrrb could play a

consolidating role in network installation. In line with this, Esrrb

activation is a rate-limiting step for resetting, and Esrrb is one of the

most potent factors to induce the naı̈ve state (Fig 6I). This is consis-

tent with the recent finding that Esrrb acts as a pioneering factor in

chromatin remodelling for core pluripotency TF recruitment in

EpiSC resetting (Adachi et al, 2018). We speculate that different

modes of activation for genes with different functions could be inte-

gral to the information-processing performed by a cell. Understand-

ing how regulation modes are coupled to biological function in a

given process may contribute insight into biological computation,

and in turn enable the artificial synthesis of molecular logic to

achieve a desired cellular behaviour.

Finally, we demonstrated that the network program derived from

observations of naı̈ve state maintenance and EpiSC resetting has

both explanatory and predictive power in somatic reprogramming.

This further suggests that the late phase of somatic reprogramming

is deterministic (Buganim et al, 2012; O’Malley et al, 2013), but also

highlights that a common network logic governs acquisition of

naı̈ve pluripotency from different starting cell types.

Although arguably the mouse naı̈ve pluripotency network is one

of the most well-characterised GRNs, we consider that our method-

ology could be applied to study other networks with less complete

knowledge. Given a preliminary set of network components and

interactions, the methodology has the flexibility to incorporate or

eliminate constraints and regulators. Importantly, it can evaluate

network behaviour against experimental observations and guide

network refinement towards higher predictive accuracy and reality.

Furthermore, our approach is complementary to computational

modelling approaches that typically consider a single network and

explore its dynamics under asynchronous updates (Xu et al, 2014;

Abou-Jaoudé et al, 2016; Yachie-Kinoshita et al, 2018). It is a signif-

icant challenge to select the right model to investigate given uncer-

tainty in the set of interactions, and it is difficult to reason over

multiple experiments in the process of model formulation. We

provide an automated platform to enrich for models that are prov-

ably consistent with multiple biological observations. From this set,

the software can readily identify the “minimal model”, which has

the fewest interactions. Indeed, it is a common strategy to develop

the most parsimonious interaction network (Muñoz Descalzo et al,

2013; Xu et al, 2014). We used the minimal model from the 0.717

cABN to investigate the dynamics of resetting simulated under asyn-

chronous updates (Appendix Fig S8B–F and Appendix Text S1),

demonstrating a predictive accuracy of 75.86%. This highlights that

our method can be exploited to identify a candidate network topol-

ogy as a starting point for subsequent investigation using alternative

methodologies. However, the increasing wealth of observed hetero-

geneity in cellular gene expression and behaviours could indicate

that multiple network topologies co-exist in cell state regulation.

Given our approach can capture highly predictive sets of models

with consistent behaviours, we provide an ideal starting point to

unpack biological heterogeneity at the network level.

The cABN implicitly defines different concrete networks that are

consistent with the imposed constraints, but may not generate the

same dynamic behaviour in response to a tested perturbation. When

all concrete networks generate the same response, we formulate a

definitive prediction that is subsequently tested experimentally. We

then calculate the fraction of correct predictions, which reveals the

predictive accuracy of the cABN. In those cases where not all

concrete networks agree, we are unable to form a prediction without

prioritising one network over another. However, these cases of “no

prediction” in fact reveal discriminating experiments that can be

performed to constrain the cABN further. Interestingly, during the

process of cABN refinement (Fig 1A) we observed a significant

reduction in the percentage of “no prediction” with a concomitant

increase in the accuracy of the predictions made (Fig 7F and

Table EV3). It could be argued that the absence of a prediction

should be considered as an incorrect prediction, because the cABN

could not definitively confirm the correct behaviour. However, even

in this extreme case the predictive accuracy of the final 0.717 cABN

is 65.1%, therefore remaining highly predictive.

In summary, our analyses point to a common biological program

that governs naı̈ve pluripotency maintenance and induction. The

power and utility of the combined computational and experimental

methodology is exemplified by predicting the sequence of gene acti-

vation that occurs during EpiSC and somatic reprogramming, even

at single-cell resolution, and pinpointing which factors affect reset-

ting efficiency. This method enabled the identification of pairs of

TFs that dramatically accelerate resetting, yielding an overall effi-

ciency increase of up to 50-fold. The refined cABN provides a plat-

form for revealing principles of network dynamics underlying

pluripotency transitions, including the emergence and dissolution of

naı̈ve pluripotency in the embryo (Boroviak et al, 2015). Moreover,

a similar iterative methodology using the RE:IN tool (Yordanov

et al, 2016) could be applied to study direct lineage reprogramming

(Davis et al, 1987; Xie et al, 2004; Vierbuchen et al, 2010). We

further envisage that our approach should be applicable to derive an

understanding of network architecture and dynamics underpinning

other cell fate transitions.

Materials and Methods

Cell lines

All EpiSC lines in this work were cultured as described in Guo et al

(2009) on fibronectin-coated plates in serum-free media N2B27

(DMEM/F12 and Neurobasal [both Life Technologies] in 1:1 ratio,

with 0.1 mM 2-mercaptoethanol, 2 mM L-glutamine, 1:200 N2 [Life

Technologies] and 1:100 B27 [Life Technologies]) supplemented

with FGF2 (12 ng/ml) and Activin (20 ng/ml) produced in house.

GOF18 EpiSCs were described in Han et al (2010a) and generously
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provided by Hans Schöler. OEC2-Y118F (Oct4-GFP) EpiSCs were

described in Yang et al (2010). TNGA MEFs were cultured as

described in O’Malley et al (2013).

Plasmid constructions

Individual core pluripotency network factors were either amplified

from cDNA or cloned from existing expression plasmids into

pENTR2B donor vector. Subsequently, the transgenes were gateway

cloned into the same destination vector containing PB-CAG-DEST-

bghpA and pGK-Hygro selection cassette. The sizes of final expres-

sion constructs ranged from 8.5 to 10.7 kb.

To construct the T2A linked inducible overexpression plasmids,

Esrrb and either Tbx3 or Klf4 were PCR amplified with part of the

T2A sequence flanking the 30 or 50 of the gene, respectively. Three-

way ligation of both gene fragments together with pENTR2B vector

resulted in the fusion of EsrrbT2ATbx3 or EsrrbT2AKlf4. Subse-

quently, the fusion constructs were gateway cloned into the same

final destination vector containing TRE-CMV and a Venus reporter.

To generate co-expression cell lines, cells were co-transfected with a

plasmid containing rtTA and a Neomycin selection cassette.

Transient overexpression of factors for EpiSC resetting

1.5 lg of plasmid DNA was transfected with 3 ll of Lipofectamine

2000 to 1 × 105 EpiSCs in suspension in FGF2/ActivinA containing

N2B27 medium with Rock inhibitor Y-27632 (Sigma, 1:1,000) over-

night in one well of the 12-well plate. The next day, medium was

switched to 2i+LIF medium to initiate reprogramming. GFP-positive

colonies were scored at Day 7 of reprogramming. When a combina-

tion of two factors was co-transfected, 0.75 lg of plasmid DNA of

each factor was used. For the control single factor transfections,

0.75 lg of plasmid DNA harbouring the indicated factor together

with 0.75 lg of empty vector plasmid was used.

Generation of KO EpiSCs with CRISPR/Cas9

The gRNA pair was chosen to delete the largest coding exons within

Klf2 and Klf4 to ensure complete loss of function. The gRNA design

was conducted using online CRISPR gRNA design tool https://

www.dna20.com/eCommerce/cas9/input. The chosen gRNAs were

based on the minimal off-target scores. The gRNA containing plas-

mids were cloned by annealing the complementary oligos indicated

in Appendix Table S3, and cloned into BbsI digested pX458 vector

(Addgene). The constructs were sequence validated before transfec-

tion.

A pair of gRNA containing plasmids based on px458 designed

with specific deletion were transfected using Lipofectamine 2000

(Invitrogen). 500 ng of each plasmid was transfected with 3 ll Lipo-
fectamine 2000 to 2 × 105 EpiSCs in suspension in Activin/FGF2/

XAV939 containing N2B27 medium with Rock inhibitor Y-27632

(Sigma, 1:1,000) overnight in one well of the 12-well plate. The next

day, the media was refreshed with Activin/FGF2/XAV939/Rock

inhibitor, and 48 h post-transfection, 2,000 GFP high cells were

sorted into 6 cells for colony formation. Individual colonies were

picked and genotyping was conducted from extracted genomic DNA

by primers indicated in Appendix Table S3 to identify clones with

designed deletion. For Klf2 KO, deletion from both gRNAs resulted

in genotyping PCR product to shift from 890 bp representing the

wild-type allele to 130 bp. For Klf4 KO, deletion from both gRNAs

resulted in genotyping PCR product to shift from 840 bp represent-

ing the wild-type allele to 100 bp. Only homozygous mutants were

chosen for subsequent experiments.

siRNA knockdown for EpiSC resetting

Final concentration of 20 nM siRNAs together with 0.5 ll of Dhar-
mafect 1 (Dharmacon, T-2001-01) was transfected to 1 × 105 EpiSCs

in suspension in Activin/FGF2 containing N2B27 medium with Rock

inhibitor Y-27632 (Sigma, 1:1,000) overnight in one well of the 12-

well plate. At least 2 siRNAs were used for each target gene knock-

down, and the catalogue numbers of all siRNAs are shown in

Appendix Table S1. The next day, medium was switched to 2i+LIF

to initiate reprogramming. GFP-positive colonies were scored at Day

7 of reprogramming.

siRNA knockdown for ESC maintenance

To test the effect of knockdown of individual factors on mainte-

nance of naı̈ve pluripotency, we transfected siRNA in mES cells

and replated them after 48 h at clonal density, as described in

Dunn et al (2014). Five days after plating, we scored the number of

pluripotent colonies, relative to cells transfected with a control

siRNA. At least 2 siRNAs were used for each target gene knock-

down, and the catalogue numbers of all siRNAs are shown in

Appendix Table S1.

EpiSC resetting of DOX-inducible factor combinations

Cells with the stably integrated piggyBac transposase (500 ng),

piggyBac transposon constructs harbouring the DOX-inducible factor

combinations (375 ng) and rTtA construct (125 ng) were plated in

N2B27 medium containing F/A. The next day, medium was

switched to 2i+LIF with or without DOX 0.2 lg/ml for 2 days to

induce transgene expression. At Day 2, medium was switched to 2i

+ LIF without DOX. Images were acquired at Day 6, and clonal

assays were performed at Day 2-4-6-8 (See also Appendix Fig S3D).

For single-cell qPCR analysis of resetting intermediates, cells were

kept in 2i+LIF+DOX throughout the experiment for up to 4 days.

Clonal assay was performed by replating 250 cells in one well of a

12-well plate in 2i+LIF without DOX.

MEF reprogramming

All MEF reprogramming experiments were conducted on primary

MEFs at P2. 2.5 × 105 TNGA MEFs were transfected with 2.5 lg of

OSKM piggyBac transposon construct (Yusa et al, 2009), 2.5 lg of

naı̈ve factor piggyBac transposon construct or empty vector,

together with 1.9 lg of HyPBase (Yusa et al, 2011) using NEON

transfection system (Thermofisher). Transfected cells were plated in

MEF medium, and the next day, one-tenth of cells were replated into

1 well of a 6 well with MEF medium supplemented with LIF, 50 lg/
ml ascorbic acid and 500 nM Alk inhibitor A83-01, as described in

O’Malley et al (2013). The Nanog-GFP+ colonies were scored at Day

12. For experiments with 2i addition, 2i was added to MEF repro-

gramming media from Day 6 onwards.
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Alkaline phosphatase staining

For AP staining, cells were fixed with a citrate–acetone–formalde-

hyde solution and stained using the Alkaline Phosphatase kit

(Sigma, cat. 86R-1KT). Plates were scanned using a Nikon Scanner

and scored manually.

RNA extraction, reverse transcription and Real-time PCR

Total RNA was isolated using RNeasy kit (Qiagen), and DNase treat-

ment was conducted either after RNA purification or during column

purification. cDNA was transcribed from 0.5 to 1 lg RNA using

SuperScriptIII (Invitrogen) and oligo-dT priming. Real-time PCR was

performed using on StepOnePlus and QuantStudio machines

(Applied Biosystems). Target gene primer sequences and probes

used are listed in Appendix Table S2. Expression levels were

normalised to Actinb or Gapdh. Technical replicates for at least two

independent experiments were conducted. The results were shown

as mean and standard deviation calculated by StepOnePlus software

(Applied Biosystems).

Single-cell gene expression profiling

OpenArrays were custom designed by ThermoFisher with the

Taqman assay ID shown in Appendix Table S4. Single cells were

directly deposited by Fluorescence Activated Cell Sorting into 9 ll
of a pre-amplification mixture (CellDirect One-Step qRT-PCR kit,

11753-500) which contains 0.05× of each TaqMan assay, 1× Cell-

Direct reaction mix, 200 ng/ll SuperscriptIII/Platinum Taq and

100 ng/ll SUPERase-In (ThermoFisher) in DNA suspension buffer

(TEKnova). The reverse transcription and gene-specific PCR ampli-

fication was carried out in a thermal cycler with the following

condition: 50°C for 30 min, 95°C for 2 min followed by 24 cycles

of 95°C for 15 s, 60°C for 4 min. cDNA was diluted 1:10, and only

cells with at least two housekeeping genes amplified were chosen

for whole panel gene expression profiling. The cDNA samples were

loaded onto an OpenArray using OpenArray AccuFill system, and

the quantitative real-time PCR was run using Quantstudio 12K Flex

System. For gene expression analysis, the average of five house-

keeping genes (Actb, Gapdh, Tbp, Ppia, Atp5a1) was used for

normalisation.

For quality control, the expression of Actb and Atp5a1 was first

analysed to establish whether the cells were deposited successfully.

We excluded wells where no amplification or abnormal amplifi-

cation was obtained.

RNA sequencing

RGd2 mouse ESCs were derived and expanded in 2i for six passages

and subsequently cultured in defined conditions on gelatin-coated

plates for five passages in N2B27 basal medium supplemented with

four combinations of cytokine LIF (20 ng/ml), GSK3 inhibitor

CHIR99021 (CH, 3 lM) and MEK inhibitor PD0325901 (PD, 1 lM):

PD+CH, PD+LIF, CH+LIF and PD+CH+LIF. The cells were passaged

every 3 days at a density of 15,000 cells per cm2 with medium

refreshed daily.

Total RNA was isolated with RNeasy RNA purification. Ribo-

zero rRNA-depleted RNA was used to generate sequencing

libraries. Single-end sequencing was performed, and the reads

were mapped using NCBI38/mm10 with Ensembl version 75

annotations. RNA-seq reads were aligned to the reference genome

using tophat2. Only uniquely mapped reads were used for further

analysis. Gene counts from SAM files were obtained using htseq-

count with mode intersection non-empty, -s reverse. Differential

gene expression analysis was conducted using Bioconductor R

package DESeq2 version 1.4.5. DESeq2 provides two P-values, a

raw P-value and a Benjamini–Hochberg P-value (adjusted P-

value). An adjusted P-value threshold of 0.05 was used to deter-

mine differential gene expression (95% of the results are not

false discoveries, error rate 0.05 = 5%). The data are available

at the NCBI Gene Expression Omnibus (accession number:

GSE111694).

Chimera production

Adult chimeras were produced by microinjection of iPSCs into

C57BL/6 blastocysts. In total, we used 10–15 animals, including

collecting superovulated embryos and pseudopreganant hosts for

embryo transfer. Animal studies were authorised by a UK Home

Office Project License and carried out in a Home-Office-designated

facility.

Identifying possible interactions

The initial 0.832 ABN (Appendix Fig S1C) was constructed from a

set of definite interactions downstream of LIF, CH and PD, based on

previous experimental studies that identified the direct targets of

these signals (Niwa et al, 2009; Silva et al, 2009; Martello et al,

2012, 2013; Qiu et al, 2015), and a set of possible interactions

derived from our RNA-Seq and RT–qPCR datasets as follows. Alter-

native network models are thereby implicitly defined by the ABN,

as the unique instantiation of n possible interactions defines 2n

concrete networks.

Seven Pearson coefficients were generated for each gene pair,

one from each of seven datasets, which quantify the correlation in

gene expression under the action of different combinations of LIF,

CH and PD. An interaction between two genes was defined to be

possible and positive if at least one of these coefficients was above

a given threshold, and the majority of the remaining coefficients

were greater than zero. Similarly, an interaction between two

genes was defined to be possible and negative if at least one of

these coefficients was below the negative of a given threshold, and

the majority of the remaining coefficients were less than zero. In

cases where there were positive coefficients above the threshold as

well as negative coefficients below the threshold, we let the major-

ity rule. Given that correlations alone do not reveal which gene

behaves as the regulator, possible interactions were defined to be

bidirectional.

We identified the Pearson correlation threshold by constructing a

set of experimental constraints (Fig 1C and Appendix Fig S1F, as

described below). We then sought the maximum Pearson coefficient

threshold that generated a set of possible interactions that could

satisfy these expected behaviours, using the RE:IN software to test

for satisfiability. In doing so, we minimised the number of possible

interactions and therefore the number of concrete models in the

ABN.
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Discretising gene expression measurements and encoding
experimental observations

We discretised the gene expression profile of GOF18 EpiSCs

(Appendix Fig S1E) by setting a gene to High if its expression was at

least 0.5 of its level in mouse ESCs in 2i+LIF. We therefore discre-

tised the GOF18 EpiSC state to be such that Oct4, Sox2 and Sall4

were High, while the remaining TFs were Low. MEK/ERK and Tcf3

were also set to High in these cells, as they are cultured in F/A.

We added a set of experimental observations to our existing set

of constraints concerning maintenance of naı̈ve pluripotency (Dunn

et al, 2014), by discretising gene expression profiles for the follow-

ing experimental behaviours, shown in Appendix Fig S1F and

summarised in Table EV2:

Control: If none of the pluripotency factors are initially expressed,

then 2i+LIF alone is insufficient to reach the naı̈ve state, which is

defined to be the gene expression state of mouse ESCs cultured in

2i+LIF(Dunn et al, 2014).

EpiSC in 2i+LIF: Starting from the discretised gene expression pro-

file of GOF18 EpiSCs, 2i+LIF is sufficient for these cells to reset and

stabilise in the naı̈ve state (Han et al, 2010a; Martello et al, 2013).

EpiSC in 2i only: 2i alone is insufficient to reset GOF18 EpiSCs

(Martello et al, 2013).

EpiSC in 2i with Tfcp2l1 expression: Forced expression of Tfcp2l1

is sufficient to reset GOF18 EpiSCs in 2i alone (Martello et al, 2013).

Nanog knockout EpiSCs in 2i+LIF: Nanog knockout prevents

EpiSCs from reaching the naı̈ve state in 2i+LIF (Stuart et al, 2014).

Nanog knockout EpiSCs in LIF+CH: Nanog knockout EpiSCs in

the presence of LIF+CH is sufficient to activate Oct4, Esrrb, Klf2,

Tfcp2l1, Klf4 and Stat3 (Stuart et al, 2014).

Each constraint consists of an initial and final discrete gene

expression pattern, which are the required initial and final states of

network trajectories that correspond to the experiment under

consideration. We allow 20 steps for each experiment trajectory to

stabilise. The final state is either unreachable (indicated by a bar

over the final time step in Appendix Fig S1F), or stable (indicated by

an asterisk). In the case where the full gene expression state cannot

be defined (e.g. Tfcp2l1 forced expression in 2i), then we define the

final state at two sequential steps to ensure that the key genes are

sustained.

We encoded these constraints together with the ABN into the RE:

IN tool (Yordanov et al, 2016). RE:IN synthesises only those

concrete network models consistent with this set of expected beha-

viours, that is, which generate trajectories that pass through the

required expression states. These concrete networks comprise the

cABN.

When investigating the gene activation kinetics of resetting in

the 0.782 cABN, we included the observation that forced expression

of Sall4 in GOF18 EpiSCs does not increase the efficiency of resetting

to the naı̈ve state (Fig 1E). To ensure that this holds for all concrete

models of the cABN, we encoded a new constraint that defined

when Sall4 expression is imposed, an EpiSC will not reach the naı̈ve

state at an earlier step than the case in which it is not, regardless of

the step at which the latter occurs. This is illustrated in Table EV2.

We explored the sensitivity of our approach to missing compo-

nents by testing whether the above constraints are satisfiable if each

component is removed individually. For all components save Esrrb,

we found removing the component from the ABN prevents the

constraints from being satisfied. This demonstrates that these

components are absolutely required to generate the expected beha-

viour of ESCs and EpiSC reprogramming. Removal of Esrrb along

with the 5 constraints concerning Esrrb knockdown or forced

expression yields a cABN that can satisfy the remaining constraints,

but cannot explain known Esrrb phenotypes and has low predictive

power.

Network dynamics

Each concrete network model in the ABN is considered as a state

transition system, with a deterministic update scheme. Dynamic

behaviour emerges from the update functions that are applied to

each component, which are logical functions that define how the

gene updates its state in response to its regulators. Often such

update functions are defined according to the named regulators of a

given target, but for an ABN, the regulators of a target can vary

between concrete models. We therefore defined a set of twenty

update functions that are not dependent on named regulators (Yor-

danov et al, 2016), which reason about whether some, all or none

of a targets activators/repressors are present. In this present study,

we consider a subset of these conditions (regulation conditions 0–8

as described in Yordanov et al (2016)), which assume that a gene

requires at least one activator in order to be expressed. In a concrete

model, each component is assigned one of these regulation condi-

tions to ensure that the constraints are met.

Required and disallowed interactions

We characterise the cABN by identifying which of the possible inter-

actions are common to all concrete networks—required interactions

—and which are never present—disallowed interactions. A simple

algorithm is implemented that first identifies a single concrete

network consistent with the experimental observations. Each of the

possible interactions that are instantiated as present in this example

solution is subsequently removed individually from the ABN, and

RE:IN identifies whether the constraints are satisfiable in the

absence of the interaction. If the constraints are unsatisfiable when

a given possible interaction is removed, then it must be the case that

it is present in every concrete network that satisfies the constraints.

Conversely, we examine all interactions not present in the example

solution that we initially found, testing whether the constraints are

still satisfiable if these interactions are individually imposed as defi-

nite. If once a possible interaction is switched to being definite and

the constraints are no longer satisfiable, we conclude that this

particular interaction can never be present in any concrete model

solution. The remaining interactions—those which can be removed

or imposed individually without preventing the constraints from

being satisfied—remain as possible and will be needed in some

concrete models, but not all.

Formulating model predictions

Via RE:IN, our approach automatically synthesises concrete network

models consistent with the expected behaviour of the experimental

system. To formulate predictions of untested behaviour, we interro-

gate the entire set of consistent models. A prediction is generated,

and tested, only when all models are in agreement. The behaviour
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of only a subset of models, which may not be fully representative, is

never tested experimentally. However, such cases reveal discrimi-

nating experiments that, if performed, would allow us to eliminate a

subset of candidate models from the cABN.

To generate predictions, hypotheses are encoded as additional

constraints, and we test whether they are satisfiable together with

the set of experimental constraints. Crucially, we also test the null

hypothesis—that under the same conditions the expected behaviour

cannot be obtained. If both are satisfiable independently, then it

must be the case that some models satisfy the hypothesis, while

others satisfy the null hypothesis. If all models satisfy the hypothe-

sis, while the null is unsatisfiable, then a prediction that the hypoth-

esis holds can be formulated. If the null hypothesis is satisfiable,

while the hypothesis is unsatisfiable, then a prediction can also be

made, which is that the expected behaviour is never observed.

For example, to test whether GOF18 EpiSCs can reset to the

naı̈ve state under Gbx2 knockdown in 2i+LIF, we formulate a

constraint with these initial and final states. We then also formulate

and test the constraint that GOF18 EpiSCs do not reach the naı̈ve

state under Gbx2 knockdown in 2i+LIF. In this particular example,

we found that our hypothesis constraint was satisfiable, while the

null hypothesis constraint was unsatisfiable. Therefore, all concrete

models predict that GOF18 EpiSCs will reset in 2i+LIF with Gbx2

knockdown, which was subsequently found to be consistent with

experimental evidence.

Identifying the number of regulation steps to reach the
naïve state

To determine how many regulation steps are required to stabilise in

the naı̈ve state, starting from the EpiSC state, we formulate hypothe-

ses for each possible case, e.g. that it stabilises at Step 2, at Step 3,

etc. As described above, for each case we also test the null hypothe-

sis. In this manner, we deduced whether some, all or none of the

models allowed EpiSCs to stabilise in the naı̈ve state at a given regu-

lation step.

RE:IN allows the user to implement an asynchronous scheme, in

which a single gene updates at each step, and the order in which

genes update is chosen non-deterministically. Under this scheme, if

RE:IN determines that the constraints are satisfiable, this only

ensures that there exists at least one model and path that is consis-

tent with each constraint. That is, it is possible that the genes could

update in a different order and reach a different state from the same

initial conditions. Formulating predictions for the number of steps

for all models to stabilise in the naı̈ve state under an asynchronous

update scheme would require further assumptions to be made.

Either a limit would have to be placed on the maximum number of

sequential updates for a specific gene, or a restriction to ensure that

all genes update within a certain number of steps. It would also be

important to consider what is considered “fair” in implementing

asynchronous updates, to avoid unrealistic scenarios such as the

same gene repeatedly updating and no others.

K-means clustering to discretise single-cell gene expression data

We used k-means clustering with k = 2 on the log10-transformed

single-cell gene expression data (Fig 4D) in order to discretise gene

expression. We identified a unique discretisation threshold for each

gene. Of note, the mean expression levels in the two clusters dif-

fered by several orders of magnitude.

SPADE analysis

We conducted a SPADE analysis using SPADEV3.0 (Anchang et al,

2016), using the default settings. This was carried out on the log10-

transformed single-cell gene expression data (Fig 4D).

Asynchronous simulations

We carried out a comparison of the predictions generated by the

0.717 cABN, which assumes synchronous updates, with the mini-

mal model (Appendix Fig S8A) simulated under an asynchronous

scheme. Simulations were run using BooleanNet (Albert et al,

2008). Full details are provided in Appendix Text S1, and the results

are presented in Appendix Fig S8B–F.

Statistical analysis

We used the two-tailed unpaired Student’s t-test with P < 0.05 to

define statistical significance, unless specified otherwise. The

number of the experiments (n), the dispersion and precision

measurements (mean, median, standard errors and standard devia-

tions) can be found in figure legends.

Data availability

The RNA-sequencing data are available at the NCBI Gene Expres-

sion Omnibus (accession number: GSE111694). The files used to

generate the cABN are available at research.microsoft.com/rein,

which also provides a tutorial for the tool, and FAQ.

Expanded View for this article is available online.
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