
ll
OPEN ACCESS
iScience

Article
Modularization of grid cells constrained by the
pyramidal patch lattice
Tao Wang, Fan

Yang, Ziqun

Wang, Bing

Zhang, Wei Wang,

Feng Liu

zhangbing_nanjing@nju.edu.

cn (B.Z.)

wangwei@nju.edu.cn (W.W.)

fliu@nju.edu.cn (F.L.)

Highlights
Each module is modeled

as a continuous attractor

network with specific

parameters

The lattice of bump

attractors is specifically

aligned to the pyramidal

patch lattice

Twenty-two scenarios for

the bump attractor lattice

are proposed

The grid spacing ratios

and orientation

differences are

determined intrinsically

Wang et al., iScience 24,
102301
April 23, 2021 ª 2021 The
Author(s).

https://doi.org/10.1016/

j.isci.2021.102301

mailto:zhangbing_nanjing@nju.edu.cn
mailto:zhangbing_nanjing@nju.edu.cn
mailto:wangwei@nju.edu.cn
mailto:fliu@nju.edu.cn
https://doi.org/10.1016/j.isci.2021.102301
https://doi.org/10.1016/j.isci.2021.102301
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2021.102301&domain=pdf


iScience

Article

Modularization of grid cells constrained
by the pyramidal patch lattice

Tao Wang,1 Fan Yang,1 Ziqun Wang,1 Bing Zhang,2,3,* Wei Wang,1,3,* and Feng Liu1,3,4,*

SUMMARY

Grid cells provide a metric representation of self-location. They are organized into
modules, showing discretized scales of grid spacing, but the underlyingmechanism
remains elusive. In this modeling study, we propose that the hexagonal lattice of
pyramidal cell patches may underlie the discretization of grid spacing and orienta-
tion. In the continuous attractor network composed of interneurons, stellate and
pyramidal cells, the hexagonal lattice of bump attractors is specifically aligned to
the patch lattice under 22 conditions determined by the geometry of the patch lat-
tice, while pyramidal cells exhibit synchrony to diverse extents. Given the bump
attractor lattice in each module originates from those 22 scenarios, the experi-
mental data on the grid spacing ratio and orientation difference between modules
can be reproduced. This work recapitulates the patterns of grid spacing versus
orientation in individual animals and reveals the correlation between microstruc-
tures and firing fields, providing a systems-level mechanism for grid modularity.

INTRODUCTION

Grid cells in superficial layers of the medial entorhinal cortex (mEC) provide a universal spatial metric via their

grid-like firing fields (Doeller et al., 2010; Fyhn et al., 2008; Hafting et al., 2005; Jacobs et al., 2013; Killian

et al., 2012; Yartsev et al., 2011). Each grid cell maintains the hexagonally distributed firing fields with specific

grid spacing, orientation, and phase (Boccara et al., 2010; Hafting et al., 2005; Stensola et al., 2015). Grid cells

are grouped into modules, and up to four modules have been identified in rats (Stensola et al., 2012); co-

modular cells share the grid spacing and orientation but exhibit diverse phases. Modules are numbered with

increasing the grid spacing and located from dorsal to ventral mEC (Hafting et al., 2005; Stensola et al.,

2012). It is established that grid modularity ensures the precision and scalability of spatial representation

(Stemmler et al., 2015; Stensola et al., 2012), responsible for path integration and cognitive maps (Burak and

Fiete, 2009; Epstein et al., 2017; Rowland et al., 2016). Accumulating evidence shows that grid modules are

also engaged in representing cognitive variables at diverse scales (Bellmund et al., 2018; Constantinescu

et al., 2016; Park et al., 2020). All these indicate that modularity has a key role in grid cell functioning.

While the ratios of grid spacing between successive modules roughly fall in the range of 1.4–1.7 (Barry et al.,

2007; Gu et al., 2018; Krupic et al., 2015; Stensola et al., 2012) (Table S1), the grid spacing progression

exhibits large variability between animals and there seems to be no uniform pattern (Stensola et al.,

2012). The grid orientations are also discretized (Stensola et al., 2012) (Table S2); the orientation differences

betweenmodules have a preference for 0� and 30� albeit with a few intermediate values (Krupic et al., 2015).

It is still challenging to unravel the underlying mechanisms for these scale ratios and orientation

differences, as well as module formation.

Continuous attractor network (CAN) models have been proposed to account for firing features of grid cells.

Recurrent inhibitory connectivity between principal neurons (Couey et al., 2013), together with external

excitatory inputs from the medial septum (Koenig et al., 2011) or hippocampus (Bonnevie et al., 2013),

can underlie hexagonally distributed bell-shaped activation bumps on a two-dimensional (2D) neural

sheet, and these bumps are able to shift as a whole when animals run in a 2D box (Burak and Fiete,

2009; Fuhs and Touretzky, 2006). This endows the firing fields of individual cells with hexagonal symmetry.

Despite the great success of CAN models, the discreteness in grid spacing awaits explanation. Neurons in

a CAN have the same grid spacing and orientation, definitely belonging to the same module (Burak and

Fiete, 2009; Rowland et al., 2016); but reshaping the profile of recurrent inhibitory connectivity can easily

change the scale of firing fields (Burak and Fiete, 2009; Kang and Balasubramanian, 2019), implying that
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the grid spacing of cells might vary continuously. Thus, if we still represent multiple modules using CAN

models with distinct parameters, there should exist additional constraints to guarantee the discretized

spacing ratios. Such constraints have yet to be identified.

There are two kinds of principal neurons, namely stellate and pyramidal cells; specifically, 10%–20%of pyramidal

cells and 11%–40% of stellate cells in mEC-L2 act as grid cells (Boccara et al., 2010; Gu et al., 2018; Sun et al.,

2015; Tang et al., 2016). The CANmodels have hardly specified the types of neurons involved; actually, pyrami-

dal cells are distinct from stellate cells in various aspects. In mEC-L2, pyramidal cells gather in patches (with a

diameter of 250 mm in mice and 150 mm in rats), which are also distributed hexagonally, whereas stellate cells

are uniformly localized beyond the pyramidal patches (Beed et al., 2010; Kitamura et al., 2014; Naumann

et al., 2016; Ray et al., 2014) (Figure 1A). Besides broad inhibitory connectivity between principal neurons via in-

terneurons, only pyramidal cells directly send excitatory inputs to other principal neurons (Beed et al., 2013;

Couey et al., 2013; Fuchs et al., 2016; Rowland et al., 2018; Zutshi et al., 2018) (Figure 1B). Furthermore, pyramidal

cells project primarily to contralateral mEC and sporadically to CA1 of the hippocampus (Beed et al., 2010; Ray

et al., 2017; Tang et al., 2016; Varga et al., 2010; Zutshi et al., 2018), whereas stellate cells mainly project to the

dentate gyrus (DG) andCA3 (Kitamura et al., 2014; Ray et al., 2014; Rowlandet al., 2018; Varga et al., 2010). These

findings suggest that stellate andpyramidal cellsmay servedifferent functions. The roles for the pyramidal patch

lattice in spatial processing are largely unknown.

Inspired by the same symmetry in the architecture of pyramidal patches and grid cell firing fields, here we

hypothesize that the pyramidal patch lattice may provide geometrical templates for the arrangement of

bump attractors on the neural sheet. We modeled each module by a CAN model and built a large network

A C E

B

D F

Figure 1. Schematic of the model, activation pattern and firing fields of grid cells

(A) Schematic illustration of principal neurons in mEC-L2. Stellate cells are uniformly distributed, while pyramidal cells gather in patches distributed

hexagonally (green).

(B) Schematically shown are connections between different neural types. S: stellate cell; P: pyramidal cell; I: interneuron.

(C) Each module includes 39 hexagonally distributed pyramidal patches (green triangles) and uniformly distributed stellate cells (gray dots) besides

interneurons. Each neuron is labeled by its location p in the i, j-coordinate, where the i-axis parallels the dorsal-ventral axis of mEC-L2.

(D) Activation state of a cell is described by the product of three von Mises functions with distinct orientations. The arrow in each panel denotes the

orientation of each function.

(E) Pattern of activity bumps (white) and pyramidal patches (green). q labels the pattern orientation.

(F) Shown are the firing fields of one grid cell, distributed hexagonally, when an animal ran in a square box. The firing rate is color coded.

See also Figure S1.
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of fourmodules, taking into account the anatomical organizations of stellate and pyramidal cells inmEC-L2.We

examined the dynamics of individual modules when the simulated animal ran in a 2D box, and calculated the

mutual information (MI) between the animal’s position and firing rates of pyramidal cells. By scanning the param-

eter space, we identified the conditions for neural synchrony and highMI. We explored diverse combinations of

four modules and inferred the grid patterns across modules. This study not only quantitatively reproduced

experimental observations but alsomade experimentally testable predictions. Our results suggest thatmodular

organization of grid cells is dictated by the pyramidal patch lattice.

RESULTS

Network model and firing fields of neurons

It was found early that grid cells with similar phases are close to each other anatomically (Hafting et al.,

2005; Heys et al., 2014) and was revealed recently that they are localized according to their phases within

a module—map-like organization (Gu et al., 2018). A hexagonal lattice of activated neural ensembles is

observable, as the CAN model has predicted (Burak and Fiete, 2009). Although our work is based on the

CAN model, we did not investigate the temporal evolution of membrane potential or gating variables of

neurons, rather assuming that the network can admit bump attractors given proper synaptic connectivity

and inputs. That is, a phenomenological model is adopted here.

The networkmodel was constructed as follows. Pyramidal patches are located at vertexes of a hexagonal lattice,

while stellate cells are distributed uniformly between them (Figure 1C). Interneurons located around these prin-

cipal neuronsmediate inhibitory interactions. As the pyramidal patch lattice is intact inmEC-L2 (Ray et al., 2014),

it provides a natural reference for describing the locations of neurons. The lattice axis parallel to the dorsal-

ventral axis ofmEC is defined as i-axis, and j-axis is vertical to the i-axis. The physical distance between two adja-

cent pyramidal patches is defined as the unit length d0 for convenience, which is around 300 mm for mice (Gu

et al., 2018) but is unknown for rats. Each neuron is marked by p= ði; jÞ in this i, j-coordinate. From the dorsal to

ventral, neurons are organized into distinct modules. Within each module, stellate and pyramidal cells are sup-

posed tobe connected recurrently and obey the attractor dynamics. Aswe focusedon the relationship between

individual modules and the pyramidal patch lattice, ignoring the correlation between different modules, it was

unnecessary to construct a uniform coordinate system across modules. The coordinate origin for each module

was separately set to be at the position of the most central patch.

As the exact number of patches per module is unknown, we assumed that each module included 39 pyramidal

patches unless otherwise specified; their locations are shown in Table S3. Thirty-nine patches is an acceptable

estimate. First, it was reported that the total number of patches is 69–115, varyingmarkedly across species (Nau-

mann et al., 2016); fourmodules were identified inmEC-L2 of rats, and differentmodules are heavily overlapped

(Stensola et al., 2012). Thus, eachmodule contains dozens of patches. Second, the area of eachmodule inmEC-

L2 is on the order of square millimeters, also allowing for tens of patches (Ray et al., 2014; Stensola et al., 2012).

Third, 39 patches cover 7 rows with 5 or 6 patches per row, which is convenient for demonstration and analysis.

Furthermore, one patch comprises 111–837 pyramidal cells, depending remarkably on species (Naumann et al.,

2016).Notably, not all pyramidal cells behave asgrid cells; only those at thepatch edges have relatively highgrid

scores (Gu et al., 2018). As we concentrated on the hexagonal lattice of pyramidal patches rather than details of

each patch, we assumed that each patch comprised one representative pyramidal cell unless otherwise spec-

ified.We also explored other cases wherein the patch lattice was distorted by deviating vertexes from ideal po-

sitions, or defects were introduced by discarding vertexes randomly.

We turned to investigate the firing activity of grid cells. Owing to the topographic organization of grid cells

(Gu et al., 2018; Hafting et al., 2005; Heys et al., 2014), the firing rate of each cell depended on its location p,

with a hexagonal symmetry on the neural sheet, and was assumed to obey

f
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FMax is the maximal firing rate, and f1, f2, f3 are von Mises functions with different orientations (Stemmler

et al., 2015), used to generate hexagonally arranged bumps (Figures 1D and 1E). How the regular bump

lattice is formed is illustrated in Figures S1A–S1I. pMax;1ðtÞ, pMax;2ðtÞ and pMax;3ðtÞ signify the neurons with

the highest firing rate (i.e., zero phase) at time t; for simplicity, they were all set to pMaxðtÞ, which is the center
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of a bump attractor (other bump attractors are periodically repeated). u1, u2, u3 are unit vectors spaced

120�apart, characterizing the orientations of patterns in f1, f2, and f3, respectively (Figure 1D). Given that

zero phase lines are vertical to un and the equivalence of u1, u2 and u3, we introduced q, defined as the

orientation of zero phase lines for f1, to label the orientation of the activation bump lattice for simplicity

(Figure 1E). D equals the bump spacing, while k scales the bump extension. In biophysically realistic

CANmodels, the values of FMax, q,D, and kwould depend on boundary conditions of the neural sheet, pro-

files of recurrent synaptic connectivity and the strength of external input (Burak and Fiete, 2009). Here they

were just predetermined as parameters (Table S4). Specifically, q and D were taken as free parameters in

simulation.

We could directly manipulate pMaxðtÞ to model the shift of activation bumps following the animal’s move-

ment in the x, y-coordinate of the box (see transparent methods):8>>><
>>>:

dpMax;iðtÞ
dt

= a
dx

dt
=a,sðtÞ,cosðfðtÞÞ

dpMax;jðtÞ
dt

= a
dy

dt
=a,sðtÞ,sinðfðtÞÞ;

(Equation 2)

where pMax;iðtÞ and pMax;jðtÞ denote the i, j-component of pMaxðtÞ; respectively. The x-axis (y-axis) corre-

sponds to the animal’s running direction when the bumps shift along the i-axis (j-axis) (Burak and Fiete,

2009; Fuhs and Touretzky, 2006). fðtÞ, denoting the shift direction, takes the same amplitude as the animal’s

motion direction jðtÞ. a is a constant in units of d0 m�1, controlling the shift scale of activation bumps, and

sðtÞ is the animal’s running speed. asðtÞ thus represents the shift rate of activation bumps. Consequently, a

1-meter movement along the x-axis in the box corresponds to a shift of a along the i-axis in the activation

pattern. When the simulated animal ran continuously in the box, the path of one bump’s center was map-

ped to the animal’s trail (Figures S1J–S1L).

To simulate the spiking dynamics of each cell, independent Poisson random variables were generated with

mean of f ðp; tÞDt at time t, representing the spike count between t and t +Dt. When monitoring the cell’s

discharge, the animal’s position was recorded simultaneously to plot a spike count map; after each trial,

this map was used to produce a firing map as was done experimentally (Hafting et al., 2005) (see trans-

parent methods). Further, the averaging over 100 trials could yield hexagonally distributed firing fields (Fig-

ure 1F). Taken together, our model can capture two fundamental features of grid cells: neural activation

bumps are centered on a hexagonal lattice, shifting in response to the animal’s motion (Burak and Fiete,

2009; Fuhs and Touretzky, 2006; Gu et al., 2018), and firing fields of cells are hexagonally distributed,

anchored to the environment (Hafting et al., 2005; Krupic et al., 2015).

Synchronous spiking of pyramidal cells in individual modules

It is generally accepted that neurons in the same activation bump discharge synchronously in the attractor

network (Compte et al., 2000; Xue and Liu, 2014). The CAN model of grid cells can admit dozens of hexag-

onally distributed bumps simultaneously (Burak and Fiete, 2009; Fuhs and Touretzky, 2006; Gu et al., 2018).

It is unclear how synchronous firings in each bump are correlated within a module. Here, we first explored

the firing dynamics in individual modules when the simulated animal ran on a linear track at a constant rate

of 0.6 m/s. The module dynamics depended remarkably on the free parameters q andD. For most values of

q and D, the hexagonal lattice of activation bumps was of arbitrary spacing and orientation, mismatching

the pyramidal patch lattice (Figure 2A, top); accordingly, pyramidal cells in different patches had distinct

activation phases and discharged asynchronously (Figure 2B, top). Note that each spike train was produced

according to the firing rate, obeying a Poisson distribution. By contrast, when the bump attractor lattice

matched the patch lattice for specific values of q and D, all pyramidal cells had the same activation phase

(Figure 2A, bottom) and almost spiked synchronously (Figure 2B, bottom).

When the animal ran freely in a 2D box, the spike map of each cell was obtained by monitoring their spiking

and recording the animal’s location simultaneously. Pyramidal cells had similar spike maps if they dis-

charged synchronously, and their centers of spiking clusters overlapped (Figure 2C). Moreover, their firing

rates varied nearly periodically when the animal ran along a definite direction (Figure 2D). These results

were in sharp contrast to those in the case of asynchronous spiking. Notably, the activation phases of stel-

late cells were always continuously distributed in both the cases, and their spiking clusters scattered on the

plane (Figure S2A).
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One way to quantify the extent of neural synchrony is measuring the MI between the animal’s position and

firing rates of all pyramidal cells (see transparent methods). This method is superior to calculating the

spatial or temporal correlation between neural pairs, since the latter characterizes a local rather than global

A

C

B

D

Figure 2. Discharge of pyramidal cells under diverse conditions

(A) Snapshots of the activation pattern relative to the pyramidal patch lattice when the animal ran rightward on a linear

track. White areas: centers of bump attractors; black triangles: pyramidal patches. Firing activity is represented by

heatmap. Top panel: q= 30+ and D = 0:8d0; bottom panel: q= 0+ and D = 0:5d0 (here and thereafter).

(B) Raster plots of all pyramidal cells.

(C) Spike maps of three representative pyramidal cells when the animal ran freely in the 2D square box. Each dot

represents a spike, and different colors denote distinct cells. The animal’s path is not shown.

(D) Firing rates of 39 pyramidal cells versus the position along the dashed line in (C) on a trial.

See also Figure S2.
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coherence. Moreover, the MI reflects the spatial information contained in the population activity (Domni-

soru et al., 2013) and is positively correlated with the performance of population decoding. In the following,

we always used the MI to represent the synchrony of pyramidal cells. Strong synchrony was associated with

a high MI: 0.75 bits versus 0.01 bits under conditions of synchronous and asynchronous firing, respectively

(Figures 2D and S2B). This result can be intuitively understood as follows. The firing activity of each cell is

defined as high or low according to whether the animal is within its firing field or not. Given the in-field state

of cells as state 1 and out-of-field state as state 0, 1 bit of information could be acquired from the spiking

activity of a cell if the probabilities of being in state 0 and state 1 are equal. This tells whether the animal is

within firing fields although its exact location in the 2D box might be unknown. This information is well

maintained with synchronous firing, whereas it is blurred in the presence of asynchronous firing. Overall,

the pyramidal patch lattice seems to provide a template for evoking synchronous firing.

Requirements for synchronous firing of pyramidal cells

To specify the geometrical constraint on the activation bump lattice by the pyramidal patch lattice, here we

systematically changed parameters to identify conditions leading to synchronous firing of pyramidal cells.

In the plane spanned by the orientation and normalized spacing of the activation bump lattice, there ex-

isted a few areas associated with relatively high MI (Figure 3A); the corresponding jqj was localized around

four orientations qi (i = 1� 4), which were separately parallel to the lines connecting neighboring pyramidal

patches, i.e., q1 = 0+, q2 = 30+, q3 = arcsin

 ffiffi
3

p
2
ffiffi
7

p

!
180�
p
z19� and q4 = arcsin

 ffiffi
3

p
2
ffiffiffiffi
13

p

!
180�
p
z14� (with the corre-

sponding distances d1 = d0, d2 =
ffiffiffi
3

p
d0, d3 =

ffiffiffi
7

p
d0, and d4 =

ffiffiffiffiffiffi
13

p
d0) (Figure 3B). Meanwhile, D had to

take specific values for high MI. Thus, to reach a high MI the activation bump lattice should be aligned

to the patch lattice in some special manner.

Choosing one of the four specific orientations, we probed how theMI varied withD (Figure 3C). Here,D was

restricted in the range of 0:18d0 � 1:1d0 as explained later. For each orientation, there appeared several

major and minor peaks. At q = q1, five major peaks arose at d0,
d0

2 ,
d0

3 ,
d0

4 , and
d0

5 (called cases 1a-1e) and

four minor peaks at 2d0

3 , 2d0

5 , 2d0

7 , and 2d0

9 (called cases 1f-1i). Note that case 1b corresponds to the example

with synchronous spiking shown in Figure 2. Peak locations and their naming for all cases are presented in

Table 1. There were 22 MI peaks in total, and they were classified as primary, secondary or tertiary ones.

The type of MI peak was closely correlated with the geometrical relation between the pyramidal patch and

activation bump lattices. For (q,D) admitting a primaryMI peak, the activation bump lattice couldmatch the

pyramidal patch lattice perfectly, i.e., a rhombus on the bump lattice was congruent with the rhombic

cellular of the patch lattice, with the side length being d0 (Figures 3D and S3). Thus, the ratio of the total

number of bumps to that of patches, r, was an integer (Table 1), and all pyramidal cells could discharge

synchronously, leading to the MI of around 0.7 bits (Figures 3E and S3). For (q, D) admitting a secondary

MI peak (i.e. cases 2c-2g), the bump lattice partially matched the patch lattice, with the side length of

the matching rhombus equaling d2. Thus, r equaled 4=3, 16=3, 25=3, 49=3, and 64=3, respectively, and py-

ramidal cells were classified as three subgroups, within which they spiked synchronously and had the same

firing maps. Note that the number of subgroups was equal to the denominator of r and the corresponding

MI was roughly one-third of 0.7 bits. For the other cases, the match between the bump lattice and patch

lattice was further weakened, with the side length being 2d1; the denominator of r was 4, and pyramidal

cells were divided into four subgroups. The MI in these cases was around one-fourth of 0.7 bits.

Further analysis revealed that the MI peak height depended greatly on the extent to which the activation

bump lattice geometrically matched the pyramidal patch lattice, rather than on the number of patches or

the shape of module boundary (Figures S4A–S4F). Theoretically, there was no constraint on the range of D

in our model. However, it was impossible to maintain an incredibly small bump spacing, i.e. D< 0:2d0, ac-

cording to numerical simulation of the detailed CANmodel (Burak and Fiete, 2009). Nomore primary peaks

appeared atD>d0 in all theMI curves (Figure S4G). It was also reported that the bump spacing inmice is 60–

260 mm, less than d0 (Gu et al., 2018) (no such data are available for rats). Thus, D was constrained between

0.18d0 and 1.1d0.

So far, one patch contains only one pyramidal cell, and all patches neatly line up, forming an ideal hexag-

onal lattice. Actually, one patch comprises much more pyramidal cells (Brecht et al., 2014; Naumann et al.,
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2016), and patches may deviate from their ideal locations (distortion) or even get lost (defect) (Ray et al.,

2014). We found that those MI peaks were largely robust against the change in patch size, distortion

and defect of the lattice over a certain range (Figures S4H–S4J). Collectively, we identify 22 pairs of (q,

D), around which pyramidal cells can exhibit synchrony to diverse extents, with each allowing for a specific

alignment of the bump lattice to the pyramidal patch lattice.

A

C

D E

B

Figure 3. Conditions for acquiring high mutual information (MI)

(A) Heatmap of the MI as a function of the normalized spacing and orientation of the activation bump lattice. Larger dots

correspond to MI > 0.5 bits. D-axis is in log scale, and d0 denotes the physical distance between neighboring pyramidal

patches.

(B) Shown are four representative orientations of the activation pattern, labeled by colored dashed lines.

(C) The MI versus D for different q, with the same color code as in (B). D-axis is in log scale. There exist 22 peaks in total,

including 9 primary peaks.

(D) Relations between the activation bump lattice and the pyramidal patch lattice under four representative conditions.

Marked are twominimal matching units of the activation pattern (colored rhombus) and the patch lattice (white rhombus).

The same notation is used as in (C).

(E) Spatiotemporal firing patterns of pyramidal cells under the four conditions in (D). Neurons are sorted according to

their synchrony.

See also Figures S3 and S4.
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Discretized modules of grid cells

The results above raise the possibility that synchronous firing of pyramidal cells may be engaged in spatial

representation and the activation bump lattice in individual modules may derive from the 22 scenarios

above. Indeed, synchronous firing has been recorded in mEC, involved in spatial navigation (O’Neill

et al., 2017) and development of specific cell types (Dawitz et al., 2020; Unichenko et al., 2015). To test

this idea, we need infer the firing fields of grid cells and make comparison with existing experimental

data. Meanwhile, we sought to unravel the principle for modular organization in a large network of

mEC-L2; mostly, the network comprised four modules. Under this supposition, each module was repre-

sented by a pair (D, q), one of the 22 pairs in Table 1 (i.e., (D, q) ˛fðD1a; q1aÞ; ðD1b; q1bÞ;.; ðD4b; q4bÞg),
and modules were numbered with increasing the bump scale in each combination of multiple modules.

We first derived the grid spacing ratios and orientation differences between modules. According to Equa-

tion (2), the firing fields of a cell were related to the activation bump lattice as follows (see also Figures S1J–

S1L). For a neuron in modulem characterized with ðDm;qmÞ, its grid spacing Sm and orientationOm equaled

Dm=a and qm, respectively. Another neuron was from module n characterized with ðDn;qnÞ. Since a was the

same for all modules of an animal as shown later, their spacing ratio and orientation difference were

separately

Sm

Sn
=
Dm=a

Dn=a
=
Dm

Dn
; (Equation 3)

jOm �Onj = jqm � qnj: (Equation 4)

Thus, both the grid spacing ratio and orientation difference between twomodules were determined by the

features of hexagonal bump lattices involved, which were conferred by the pyramidal patch lattice as

shown previously.

We then calculated the spacing ratios and orientation differences for all possible combinations of modules.

Given each module characterized with (D, q) from the 22 pairs, we explored all (C4
22 = 7315) combinations of

four modules and calculated the spacing ratios between successive modules within each combination us-

ing Equation (3). We got 1.32 G 0.31, 1.41 G 0.39, and 1.59 G 0.52 (mean G s.d., here and elsewhere) for

S2=S1, S3=S2, and S4=S3, respectively, which roughly agreed with the data from four-module measurement

(Stensola et al., 2012), as well as other experimental observations (Barry et al., 2007; Gu et al., 2018; Krupic

et al., 2015) (Figure 4A). We also calculated the orientation difference between any two modules using

Equation (4). The histogram showed two peaks at 0� and 30�, as well as some intermediate values (Fig-

ure 4B), consistent with the experimental result (Krupic et al., 2015). Such agreements support our specu-

lation about the representation of activation bump lattices among the 22 scenarios.

Table 1. Essential features of 22 scenarios with MI peaks

Case qð�Þ D=d0 r Case qð�Þ D=d0 r

Primary peak 1a 0 1 1 2a �30
ffiffiffi
3

p
=3 3

1b 0 1=2 4 2b �30
ffiffiffi
3

p
=6 12

1c 0 1=3 9 3a* �19
ffiffiffi
7

p
=7 7

1d 0 1=4 16 4a* �14
ffiffiffiffiffiffi
13

p
=13 13

1e 0 1=5 25

Secondary peak 2c �30
ffiffiffi
3

p
=2 4=3 2f �30

ffiffiffi
3

p
=7 49=3

2d �30
ffiffiffi
3

p
=4 16=3 2g �30

ffiffiffi
3

p
=8 64=3

2e �30
ffiffiffi
3

p
=5 25=3

Tertiary peak 1f 0 2=3 9=4 2h �30 2
ffiffiffi
3

p
=9 27=4

1g 0 2=5 25=4 3b* �19 2
ffiffiffi
7

p
=7 7=4

1h 0 2=7 49=4 3c* �19 2
ffiffiffi
7

p
=21 63=4

1i 0 2=9 81=4 4b* �14 2
ffiffiffiffiffiffi
13

p
=13 13=4

*Note that the orientations for 3- and 4-labeled cases were actually�arcsin

 ffiffiffi
3

p

2
ffiffiffi
7

p
!
3
180�

p
ðz�19�Þ and � arcsin

 ffiffiffi
3

p

2
ffiffiffiffiffiffi
13

p
!
3

180�

p
ðz�14�Þ respectively.
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We further estimated the spacing and orientations of activation bump lattices according to the experi-

mental recordings of grid spacing and orientation in individual animals, MR = fðS1;O1Þ; ðS2;O2Þ; ðS3;O3Þ;
ðS4;O4Þg. Although multiple empirical studies ascertained more than one grid module in individual animals

(Barry et al., 2007; Gu et al., 2018; Krupic et al., 2015; Stensola et al., 2012), only four rats were reported to

comprise four modules (Stensola et al., 2012). For each such rat (rats 1–4 in Table S2), we identified a com-

bination CE of four modules such that CE was most associated with MR in terms of both the spacing ratios

and orientation differences between modules (see transparent methods and Figures S5A and S5B). For

example, CE1 =Cð1e; 4a; 1g; 1bÞ=�ðD1e; q1eÞ; ðD4a; q4aÞ;
�
D1g; q1g

�
; ðD1b; q1bÞ

�
was the most possible

A

B

C E

D

Figure 4. Discretized modules of grid cells

(A) Mean ratios of grid spacing between successive modules. Red bars denote experimental data from Stensola et al.

(2012), while blue bars represent the average over all 7315 combinations of 4 modules from the 22 scenarios. Error bars

represent the standard deviations.

(B) Distribution of grid orientation difference between two modules. Top, simulation results; bottom, experimental data

from Krupic et al. (2015).

(C) Grid spacing and orientations of four modules for rat 1: experimental data from Stensola et al. (2012) (black star) and

estimates (solid). Open symbols represent the estimates for other cases from the 22 scenarios; circle, triangle and square

correspond to the cases featuring a primary, secondary or tertiary MI peak, respectively.

(D) Schematic of modular organization of grid cells in mEC-L2 of rat 1. Different colors label distinct modules. The colored

shadow, colored dots and gray circles separately represent grid cells, centers of activation bumps and pyramidal patches.

The boundary of each module is arbitrary. Note that the alignment of bump lattices to the patch lattice is based on our

simulation results.

(E) Shown are the bump spacing versus grid spacing (left) and probability density function (PDF) versus the bump spacing

(right). Left: Red circles denote the data from mice in Gu et al. (2018), while the red dashed line is a fit to the data with p=

3:4310�5 and R2 = 0:48. The bump spacing was normalized by d0 = 300 mm. Blue symbols denote the data for rats: the

grid spacing was obtained experimentally, while the bump spacing was an estimate. Right: The red and blue solid lines

represent the data frommice and rats, respectively. The probability density is the kernel density estimate with Scott’s rule.

See also Figure S5.
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correspondence of the MR1 for rat 1; accordingly, the average ratio of the bump to grid spacing equaled

d0=2:34 m�1 - estimate for a. Once a was known, we in turn obtained the estimate of grid spacing via

dividing D by a. The estimates for rat 1 are shown in Figure 4C, while those for rats 2–4 are displayed in

Figure S5C. Most of the estimates coincided well with the experimental data. Such high consistency in pair-

wise comparison further suggests the rationality behind our speculation.

On basis of these estimates, we could infer themaximal number of gridmodules. Of note, three, two, three,

and two of four modules, respectively, for rats 1–4 were characterized with (D, q) featuring a primaryMI peak

in Figure 3C, indicating that the 22 scenarios could be involved in spatial representation to distinct extents.

Diverse combinations of modules may yield different spacing ratios and orientation differences from the

existing data, which awaits experimental validation. Possibly, only some scenarios could be engaged

and the others should be excluded for specific animals, which may be related to other mechanisms; for

instance, it was reported that the best decoding performance was achieved when the spacing ratio was

close to 1.5 (Stemmler et al., 2015). Indeed, all the spacing ratios recorded experimentally ranged from

1.25 to 1.51 for rats 1–4, and the mean was around 1.36, according to which we were able to predict the

maximal number of grid modules. For fixed spacing ratio of 1.5, there might be 5 (z1+ log1:5
d0

0:2d0
) modules

withD ranging from 0:2d0 to d0. For fixed spacing ratio of 1.36, there could be 6 (z1+ log 1:36
d0

0:2d0
) modules.

Alternatively, considering that there were separately 16, 12, 17, and 11 cases available for rats 1–4 (each

with the grid spacing in the range of S1-S4; see Figures 4C and S5C), the average usage rate per case

was roughly

	
4
16 +

4
12 +

4
17 +

4
11


�
4z0:295. Consequently, the maximal number of grid modules could be 6

(z223 0:295).

Integrating the results above, we illustrated four grid modules together relative to the pyramidal patch lat-

tice to depict the modular organization (for rat 1 in Figure 4D and for rats 2–4 in Figure S5D). There were

four common features. First, grid cells in each module were organized as a topographic map (Gu et al.,

2018; Hafting et al., 2005; Heys et al., 2014). Second, four modules were located from the dorsal to ventral

with increasing the grid spacing (Hafting et al., 2005; Stensola et al., 2012). Third, the activation bump lat-

tice in eachmodule was governed by the pyramidal patch lattice. Fourth, the grid spacing was proportional

to the bump spacing for each rat, with S=D in the range of 1:35� 2:34 m=d0. This linear relationship was also

observable in mice; Figure 4E shows both the estimated bump spacing versus the grid spacing measured

from four rats and the bump spacing versus grid spacing recorded frommice (Gu et al., 2018). Furthermore,

the probability distribution of estimated bump spacing for rats was highly consistent with that for mice.

These results suggest that rats and mice may have similar preference for grid patterns across modules.

Reliability of estimation

Here, we further assessed the reliability of inferring the features of activation bump lattices according to the

measurements of firing fields. First, we reasoned that the association between MR and CE was non-acci-

dental. For comparison, we generated 10,000 sets of four pairs of lengths and angles; they were all random

numbers, uniformly distributed in the ranges of 40–120 cm and 0�–30�, respectively, which were numerically

comparable with empirical data (Krupic et al., 2015; Stensola et al., 2012). We obtained the resultant esti-

mate for each dataset using the samemethod as before, and used rE to gauge the consistency in estimation

in terms of both the spacing ratios and orientation differences. The closer rE was to 2, themore accurate the

estimation was (see transparent methods).
ffiffiffiffiffi
rE

p
was 6.63 G 1.89 for the real experimental data, whereas it

was 9.44 G 3.39 for the artificial data (Figure 5A); thus, the estimations from the experimental data were

much more coherent (p < 0.05, two-sample t test). Such comparison indeed highlights the intrinsic corre-

lation between the estimates and experimental data, confirming the feasibility of the estimation method.

Second, we quantified the reliability of estimation. Grid modulesMR actually conferred by combination CR

may be incorrectly estimated to be dictated by combination Cn, i.e., CE = CnsCR , owing to noise in mea-

surement and combinatorial degeneracy. This noise originated from errors in recording grid spacing and

orientation due to limited numbers of grid cells per animal and in module identification (Stensola et al.,

2012). Degeneracy refers to that diverse combinations of four modules share the spacing ratios and orien-

tation differences (transparent methods). Thus, one method to evaluate the estimation was to calculate the

probability of CR =Cm under the condition of CE = Cn, i.e., PðCR = CmjCE = CnÞ; PðCR =CnjCE =CnÞ re-
flects the reliability of estimation. Figure 5B shows 10 leading conditional probabilities based on the
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data from rat 1, and PðCR =CE1jCE =CE1Þ was 0.565. The results for rats 2–4 are presented in Figures S6A–

S6C. All the previously estimated CE for each rat had the highest probability, overwhelming any other com-

bination. This justified our estimation and confirmed the conclusions drawn.

Last, although there was no technical difficulty in applying the estimationmethod to data from rats with only two

modules recorded, the estimationwould beunreliable for two reasons. First, combinations of twomoduleswere

heavily degenerate, which could result in several undistinguishable estimates simultaneously (Figure S6D). Sec-

ond, even if two pairs of grid spacing and orientation were randomly chosen, it was still possible to identify a

combination with perfect correspondence (Figure S6E). In fact,
ffiffiffiffiffi
rE

p
was 3:00G1:05 for random data sets, com-

parable to that for the empirical data, 3:02G0:19; this made such estimationmeaningless (Stensola et al., 2012).

Thus, to correctly infer the features of bump attractor lattices from the data on grid spacing and orientation,

information about four grid modules per animal may be required.

DISCUSSION

The present work was built on the CANmodel. In CANmodels, pyramidal cells discharge synchronously to

different extents when the activation bump lattice fully or partially matches the pyramidal patch lattice, and

22 such cases are identified. Provided the bump attractor lattice in each module originates from the 22 sce-

narios, the grid spacing and orientation for each module can be reproduced. This study provides insight

into the modularity of grid cells.

Our detailed analyses reveal fine structures in grid spacing and orientation. The spacing ratios between

successive modules are predicted to be 1.32–1.59, and the distribution of orientation differences exhibits

two peaks around 30� and 0�, as well as some intermediate values. Further, the spacing ratios (S2= S1, S3= S2,

and S4=S3) can take distinct values for individual animals and exhibit variability between animals. Although

rats and mice have different numbers of pyramidal patches and cells per patch (Naumann et al., 2016), they

show a similar distribution of bump spacing normalized by the scale of the pyramidal patch lattice (Gu et al.,

2018). Moreover, it was speculated that there could be up to 10 modules from dorsal to ventral mEC-L2

(Stensola et al., 2012), whereas our work suggests that the number could be 6.

Previous studies have explored the discretization of spacing ratio from various aspects. In terms of scale

relationship across modules, the spacing ratio of
ffiffiffi
2

p
implies a doubling of the area of a grid hexagon (Sten-

sola et al., 2012), but the underlying mechanism for the scalar progression and its implications are still

obscure. From the perspective of spatial encoding, grid modularity allows for precise position estimation

A B

Figure 5. Reliability of estimation

(A) Comparison of
ffiffiffiffiffi
rE

p
between real and artificial datasets. rE reflects the extent of consistency between the grid spacing

and orientations and estimates. The gray violin plot shows the distribution of
ffiffiffiffiffi
rE

p
for 10,000 sets of artificial data. The

black circle marks the mean value and two bars separately mark the minimum and maximum of
ffiffiffiffiffi
rE

p
. Red circles show

ffiffiffiffiffi
rE

p
for the data from four rats. *p < 0.05, two-sample t test.

(B) Conditional probabilities for 10 combinations given the estimate CE1 = Cð1e;4a;1g;1bÞ for rat 1. PðCR =CE1jCE =CE1Þ
is far greater than the others, indicating the reliability of our estimation.

See also Figure S6.
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in a broad environment when the spacing ratio is maintained at 1.5, and the grid orientations were pre-

dicted to be identical for different modules (Stemmler et al., 2015). Discretized grid spacing could also

be attained via self-organization within a local or global network, while the predicted spacing ratios

were less than 1.4 in the local network and too many neurons were required in the global network (Kang

and Balasubramanian, 2019; Urdapilleta et al., 2017). Notably, these studies mostly assumed large numbers

of grid cells with uniformly distributed grid phases, which actually correspond to stellate cells in our model.

Here, we present a different mechanism depending on the geometry of hexagonal lattices. We found that

the hexagonal lattice of pyramidal patches endows eachmodule with a specific hexagonal lattice of activity

bumps, which further shapes the hexagonal lattice of firing fields. Our work sheds light on the grid modu-

larity besides the mean values of spacing ratios and orientation differences and unravels the modular or-

ganizations in four rats within a unifying framework.

The current work not only recapitulates the empirical data on grid spacing and orientation (Figure 4), but

also makes the following testable predictions. First, strong synchrony should exist among pyramidal cells

rather than stellate cells. Moreover, pyramidal cells from the samemodule have similar grid phases, or they

are divided into subgroups sharing the phase. This is consistent with the report that pyramidal cells in mEC-

L2 are phase locked to the theta rhythm of the local field potential and discharge around the same phase

(Ray et al., 2014). Second, given the alignment of bump attractors to the patch lattice is intrinsically

determined, those quantitative relationships between modules such as spacing ratios and orientation dif-

ferences should remain the same in different environments. This agrees with the argument that the low-

dimensional representation from grid cells is repeatedly used across environments (Fyhn et al., 2007).

Third, given the important role for the pyramidal patch lattice, grid modularization and spatial navigation

could be interfered with if the activity of pyramidal cells were persistently suppressed. With increasing the

duration or degree of pyramidal cell suppression, the modular scale relationships might gradually disinte-

grate before the grid representation fully disappears. The breakdown of modular scale relationships may

not occur before the suppression of stellate cells fully abolishes the bump attractors.

Wemade three key assumptions in this work. First, eachmodule is organized as a topographic map in mEC,

which was suggested by early experiments (Hafting et al., 2005; Heys et al., 2014) and is natural in CAN

models (Burak and Fiete, 2009). A recent work provides clear evidence (Gu et al., 2018). Second, pyramidal

and stellate cells are connected to constitute a CAN. Although this has not been confirmed directly, accu-

mulating evidence indicates that those pyramidal cells classified as grid cells are located at the edge of

patches, closer to stellate cells than other pyramidal cells, and that their firing rates and dynamic features

are also similar to those of stellate grid cells (Gu et al., 2018; Ray et al., 2014). Third, bump attractors in

different modules maintain the same response to the animal’s movement, or equivalently, the grid spacing

is proportional to the bump spacing for an animal. The data frommice running on a linear track support this

assumption (Gu et al., 2018), and to further justify it may necessitate collecting data from animals running in

the 2D environment and analyzing the data at the individual animal level.

It is noteworthy that several issues remain unresolved. First, we provided an intuitive explanation for MI be-

tween the animal’s location and firing rates of cells, but how that information is further processed is unclear.

It is possible that, given the strong synchrony of pyramidal cells, downstream neurons might serve as coin-

cidence detectors (König et al., 1996) and both spike timing and firing-rate coding could be feasible (Li

et al., 2009; Wang et al., 2006). Second, while we assume that the large network comprises four modules

with increasing the grid spacing along the dorsal-ventral axis of mEC, the underlying mechanism remains

elusive. The increase in grid spacing might result from interactions between modules (Kang and Balasubra-

manian, 2019; Urdapilleta et al., 2017) or a gradient of increasing inhibition along the dorsal-ventral axis

(Beed et al., 2013). Third, the influence of stellate cells on grid formation still remains unclear. Apart

from the constraints imposed by the pyramidal patch lattice, other mechanisms should be at play to deter-

mine specific grid patterns in individual animals. Whether stellate cells play a role in this regard is worth

probing. Investigation of these issues may provide further insight into how the network architecture and

function can be intimately correlated.

In summary, the current work suggests that the pyramidal patch lattice may be a geometrical template for

evoking neuronal activation patterns. This study is the first to unravel how the pyramidal patch lattice

guides the discreteness in grid spacing and orientation. Our approach integrating the anatomical architec-

ture and firing dynamics proves useful in figuring out the modularity of grid maps.
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Limitations of the study

Our model was built on the empirical data on topographical organization of grid cells (Gu et al., 2018),

which were collected only when rats ran on a linear track. The lack of experimental data from animals tested

in more situations, such as 2D environments or open fields, suggests that the conclusion of topographical

map in the mEC awaits further experimental validation.
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Figure S1. Emergence of hexagonally distributed activation bumps and firing 
fields (related to Figure 1). 



(A and B) Surface plots of two one-dimensional (1D) von Mises function 𝑓𝑓1(𝑖𝑖, 𝑗𝑗) 

with 𝒖𝒖1 = (0,1)  (A) and 𝑓𝑓2(𝑖𝑖, 𝑗𝑗)  with 𝒖𝒖2 = (√3/2,−1/2)  (B). The green 

triangles and gray dots at the bottom represent pyramidal patches and stellate cells, 
respectively, and their activation states are marked in z-axis.  

(C) Surface plot of the product of 𝑓𝑓1(𝑖𝑖, 𝑗𝑗) and 𝑓𝑓2(𝑖𝑖, 𝑗𝑗). The activation bumps are 
hexagonally distributed because of specific choices of u1 and u2.  

(D and E) Heat map of 𝑓𝑓1(𝑖𝑖, 𝑗𝑗) (D) and 𝑓𝑓2(𝑖𝑖, 𝑗𝑗) (E). The black arrow denotes the 
direction of 𝒖𝒖1 and 𝒖𝒖2, while dashed lines mark the zero phases. As 𝑓𝑓1(𝑖𝑖, 𝑗𝑗) and 
𝑓𝑓2(𝑖𝑖, 𝑗𝑗) involve the cosine function, zero phase corresponds to the highest firing rate.  

(F) Heat map of the product of 𝑓𝑓1(𝑖𝑖, 𝑗𝑗) and 𝑓𝑓2(𝑖𝑖, 𝑗𝑗). Bumps are centered at cross 
points of zero phase lines of 𝑓𝑓1(𝑖𝑖, 𝑗𝑗) and 𝑓𝑓2(𝑖𝑖, 𝑗𝑗), representing the points with the 
highest firing rate. Notably, the bumps are in the shape of ellipse because only two 
directions are considered.  

(G) Heat map of the product of 𝑓𝑓1(𝑖𝑖, 𝑗𝑗), 𝑓𝑓2(𝑖𝑖, 𝑗𝑗) and 𝑓𝑓3(𝑖𝑖, 𝑗𝑗). The bumps are of 
perfect circular shape.  

(H) A larger neural square with quadruple areas. The other parameters are the same as 
in (G), and the enclosed area by dash-dotted lines corresponds to that in (G).  

(I) Heat map of the product of 𝑓𝑓1′(𝑖𝑖, 𝑗𝑗) and 𝑓𝑓2′(𝑖𝑖, 𝑗𝑗) with 𝒖𝒖1′ = (0,1) and 𝒖𝒖2′ =

(√2/2,−√2/2). The bumps are not hexagonally distributed in this case.  

(J) The animal’s movement in a 1 × 1 m2 box at 𝑡𝑡0-𝑡𝑡5. The black arrows denote the 
animal’s path, and the distance between 𝑡𝑡𝑖𝑖−1 and 𝑡𝑡𝑖𝑖 is marked with Δ𝒓𝒓𝑖𝑖.  

(K) Snapshots of the neural sheet corresponding to J. The firing rate at each point is 
represented in blue scale. Pyramidal and stellate cells are not distinguished here. The 
center of a bump is indicated by black dot, and its shift by white arrow.  

(L) Firing fields of the star-labeled neuron in (K). The firing activity is color coded. 
The black cross marks the animal’s location, and the black arrow indicates the 
animal’s movement. Panels (J-L) exemplify how the activation bumps and the 
animal’s movement are correlated.  

  



 
 
Figure S2. Firing rates of stellate cells and the joint probability between the 
animal’s position and firing rates of pyramidal cells, 𝑃𝑃(𝒓𝒓,𝑓𝑓) (related to Figure 
2).   

(A) Shown are the firing rates of five stellate cells versus the position along the 
dashed line in Figure 2C on a trial. The center of firing field is marked by star. Stellate 
cells are equidistantly selected along the i-axis with a distance of 0.25𝑑𝑑0 and 0.1𝑑𝑑0, 
respectively, for the upper and lower panels.  

(B) 𝑃𝑃(𝒓𝒓,𝑓𝑓) was estimated from 3900 firing fields (39 pyramidal cells and 100 trials 
per cell). 𝑃𝑃(𝒓𝒓,𝑓𝑓) is a 3D matrix, and its slice over the x-axis is shown. The upper and 
lower panels correspond to the cases of synchronous and asynchronous firing, 
respectively, in Figure 2.  

  



 
 

Figure S3. Geometrical and spiking features of all 22 cases (related to Figure 3). 



The left column of each case shows the relationship between the activation pattern 
and the pyramidal patch lattice. Displayed are matching units of the activation pattern 
(colored rhombus) and the patch lattice (white rhombus). The right column of each 
case shows the spatiotemporal firing pattern of pyramidal cells. Neurons are sorted 
according to their synchrony in each panel. The ordinate and abscissa are the neural 
label and time, respectively.   



 
 

Figure S4. Robustness of MI peaks under complex conditions (related to Figure 3).  



(A-F) Results for six situations of the pyramidal patch lattice with different scales and 
shapes. The left column displays the schematic, where each triangle labels a 
pyramidal patch, and stellate cells are hidden for simplicity. The number of pyramidal 
patches is marked on the top. The black triangle is the initial position of a bump 
attractor’s center, i.e., 𝒑𝒑Max(𝑡𝑡 = 0). The right column shows the corresponding MI 
curves, where four colors represent four distinct orientations as in Figure 3. 22 MI 
peaks are robustly present in each case.  

(G) Curves of the MI versus 𝐷𝐷 with 𝐷𝐷 > 𝑑𝑑0 for different orientations. Only one 
secondary peak (2i) and two tertiary peaks (1j and 2j) appear. Here, 𝛼𝛼 = 2.67 was 
set to ensure the scale of firing fields in a reasonable range relative to the 2 × 2 m2 
box.  

(H) Results for the cases with more pyramidal cells per patch in an ideal lattice. The 
MI peak height drops with increasing the number of pyramidal cells per patch. Top 
plots show the structure of individual patches comprising 1, 4, 9, 16 and 25 pyramidal 
cells. The second, third, fourth rows show the results for the cases with a primary, 
secondary, or tertiary MI peak in Figure 3C, respectively (here and thereafter).  

(I) Comparison of peak heights between the cases with normal and distorted lattices. 
Each patch comprised four cells. In the distortion case the MI was averaged over 10 
independent simulations, where the lattice was distorted differently.  

(J) The peak height versus the fraction of defect vertexes. Each patch comprised four 
cells. The MI was calculated by averaging over 10 independent simulations, where 
different vertexes got lost. In all cases, apart from the scale and shape of the lattice, 
details of each patch and the specified modification, other parameters remained the 
same.  

  



 
 
Figure S5. Estimation of the grid spacing and orientation (related to Figure 4).  



(A) Schematic of calculating the 𝐶𝐶𝐶𝐶(𝑀𝑀𝑅𝑅 ,𝐶𝐶𝑛𝑛) and Δ𝑂𝑂(𝑀𝑀𝑅𝑅 ,𝐶𝐶𝑛𝑛). The left and right 
panels separately illustrate the normal and inverse manner of correspondence. Four 
colored solid symbols label a combination 𝐶𝐶𝑛𝑛, and the corresponding bump spacing 
𝐷𝐷𝑖𝑖 is marked on the left axis. Four hollow stars label the experimental recording of 
grid modules, 𝑀𝑀𝑅𝑅, and the corresponding grid spacing 𝑆𝑆𝑖𝑖 is marked on the right axis. 
The solid and dashed gray lines indicate the mean orientation of 𝐶𝐶𝑛𝑛  and 𝑀𝑀𝑅𝑅 , 
respectively. The solid stars denote 𝑀𝑀𝑅𝑅 after the redefinition of zero-orientation of 
the environment. Thus, the four Δ𝑂𝑂𝑖𝑖′𝑠𝑠 are illustrated in purple, and 𝑆𝑆𝑖𝑖/𝐷𝐷𝑖𝑖 can be 
easily obtained. In the right panel, the original experimental recordings are not shown.  

(B) The rank method for determining 𝐶𝐶𝐸𝐸 . 𝐶𝐶𝐶𝐶(𝑀𝑀𝑅𝑅 ,𝐶𝐶𝑛𝑛)  and Δ𝑂𝑂(𝑀𝑀𝑅𝑅 ,𝐶𝐶𝑛𝑛)  were 
separately ranked in an ascending order. Given 𝐶𝐶𝐶𝐶(𝑀𝑀𝑅𝑅 ,𝐶𝐶3) = 𝐶𝐶𝐶𝐶(𝑀𝑀𝑅𝑅 ,𝐶𝐶4), they were 
assigned the same rank 197 (green), and the next number 198 was skipped. It was 
similarly done with Δ𝑂𝑂(𝑀𝑀𝑅𝑅 ,𝐶𝐶𝑛𝑛) (yellow). The combination with the minimum 𝑟𝑟𝐸𝐸 
(purple column) was selected as the estimate 𝐶𝐶𝐸𝐸.  

(C) Relationship between the grid spacing and orientation for the three rats in 
Stensola et al. 2012. Shown are the experimental data (black stars) and the estimates 
(solid symbols). Open symbols represent the results for other cases featuring a 
primary (circle), secondary (triangle) or tertiary (square) MI peak.  

(D) Schematic of modularization of grid cells in mEC-L2 for the three rats in 
(Stensola et al., 2012). Different colors label distinct modules. The shadow, dots, and 
circles represent grid cells, activation bumps, and pyramidal patches, respectively. 
The boundary of each module is arbitrary.  

  



 
 

Figure S6. Reliability of estimation (related to Figure 5).  

(A-C) Conditional probabilities when the estimated combinations were 𝐶𝐶𝐸𝐸2 =
𝐶𝐶(2𝑏𝑏,2ℎ, 2𝑎𝑎, 3𝑏𝑏) , 𝐶𝐶𝐸𝐸3 = 𝐶𝐶(2𝑔𝑔, 2𝑏𝑏, 3𝑎𝑎, 2𝑎𝑎) , and 𝐶𝐶𝐸𝐸4 = 𝐶𝐶(1𝑐𝑐, 2𝑑𝑑, 2𝑎𝑎, 3𝑏𝑏) , 
respectively, for Rats 2-4 in Stensola et al., 2012. For each rat, the probability of the 
estimate, 𝑃𝑃(𝐶𝐶𝑅𝑅 = 𝐶𝐶𝐸𝐸𝐸𝐸|𝐶𝐶𝐸𝐸 = 𝐶𝐶𝐸𝐸𝐸𝐸), predominates.  

(D) Degeneracy for combinations of four (top) and two (bottom) modules, 
respectively. Numbers to the right denote the total number of combinations with that 
degeneracy.  



(E) Comparison of √𝑟𝑟𝐸𝐸 between the empirical and artificial data sets. The grey violin 
plot shows the distribution of √𝑟𝑟𝐸𝐸 for 10000 sets of two artificial pairs of spacing 
and orientation. Red circles show √𝑟𝑟𝐸𝐸 for the experimental data on two modules 
from five rats in Stensola et al., 2012. P=0.42, two-sample t-test.  
  



Supplemental Tables 
 
Table S1:  Experiments on grid cell modules (related to Figure 4). 

Reference Barry et al. 
(2007) 

Stensola et al. 
(2012) 

Krupic et al. 
(2015) 

Gu et al.  
(2018) 

# of animals 6 rats 15 rats 11 rats 6 mice 

# of module 
pairs recorded 6 24 11 10 

Mean spacing 
ratio 1.7 1.42 1.56 1.51 

Orientation data 
available  No Yes Yes No 

 

Table S2:   Experimental data from Stensola et al. (2012) (related to Figure 4). 

Rat 1 Rat 2  Rat 3  Rat 4  

𝑆𝑆 (cm) 𝑂𝑂 (°) 𝑆𝑆 (cm) 𝑂𝑂 (°) 𝑆𝑆 (cm) 𝑂𝑂 (°) 𝑆𝑆 (cm) 𝑂𝑂 (°) 

46.6 -0.43 39.2 4.44 38.8 -3.97 44.4 14.9 

63.9 6.21 51.2 4.44 48.4 -3.97 56.7 -15.1 

93.4 -2.81 76.8 -0.51 65.0 5.69 81.7 -9.6 

118.9 -3.49 103.1 -5.30 98.4 -3.97 104.5 -9.6 

  



Table S3:  Vertexes of the pyramidal patch lattice in a module (related to Figure 1). 

Patch 
Location 

(i, j) 
Patch 

Location 
(i, j) 

Patch 
Location 

(i, j) 
Patch 

Location 
(i, j) 

1 (-2.5,-2.60) 11 (2,-1.73) 21 (1,0) 31 (0,1.73) 

2 (-1.5,-2.60) 12 (-2.5,-0.87) 22 (2,0) 32 (1,1.73) 

3 (-0.5,-2.60) 13 (-1.5,-0.87) 23 (-2.5,0.87) 33 (2,1.73) 

4 (0.5,-2.60) 14 (-0.5,-0.87) 24 (-1.5,0.87) 34 (-2.5,2.60) 

5 (1.5,-2.60) 15 (0.5,-0.87) 25 (-0.5,0.87) 35 (-1.5,2.60) 

6 (2.5,-2.60) 16 (1.5,-0.87) 26 (0.5,0.87) 36 (-0.5,2.60) 

7 (-2,-1.73) 17 (2.5,-0.87) 27 (1.5,0.87) 37 (0.5,2.60) 

8 (-1,-1.73) 18 (-2,0) 28 (2.5,0.87) 38 (1.5,2.60) 

9 (0,-1.73) 19 (-1,0) 29 (-2,1.73) 39 (2.5,2.60) 

10 (1,-1.73) 20 (0,0) 30 (-1,1.73)   

 

Table S4:  Default parameter values and initial condition of the model (related 
to Figures 1-5). 

Parameter Value Unit 

𝐹𝐹𝑚𝑚 15 Hz 

𝜅𝜅 1.0  

𝛼𝛼 1/1.6 𝑑𝑑0 m-1 

Box area 2×2 m2 

Variable Initial value Unit 

𝒑𝒑Max (0,0)  

𝒓𝒓 (1,1) m 
  



TRANSPARENT METHODS 

Simulating the animal’s movement in a box  

Without experimental data available, we simulated the running path of an animal in a 

square box of 2×2 m2 as follows. The animal ran at a speed of s(t) in the direction of 

ψ(t), and its position 𝒓𝒓 = (𝑥𝑥,𝑦𝑦) obeyed the differential equations:  

 
( ) cos( ( ))

( ) sin( ( ))

dx s t t
dt
dy s t t
dt

y

y

 = ⋅

 = ⋅


  (5) 

where the x-axis was further assumed to parallel one of the box boundaries  (the 

equation numbering here is a continuation of that in the main text). s(t) and ψ(t) 

slightly changed over each time step, following  

 ( ) ( )
( ) ( ) ,
s t t s t s
t t t

δ
ψψ  δψ

+ ∆ = +
 + ∆ = +

 (6) 

where 𝛿𝛿𝛿𝛿  and 𝛿𝛿𝛿𝛿  were assumed to obey the normal distributions, 

𝛿𝛿𝛿𝛿 ∼ 𝑁𝑁(0, ( 1
1000

)2)  and 𝛿𝛿𝛿𝛿 ∼ 𝑁𝑁(0, ( 𝜋𝜋
180

)2) , and the time step Δ𝑡𝑡 = 4 ms . Two 

factors should be taken into account: the animal cannot run out of the box and thus 

has to make a turn at the boundary, and the running speed is not high, 0.2-0.8 m/s, 

according to the experimental protocol (Góis and Tort, 2018; Hinman et al., 2016; 

Kropff et al., 2015; Sun et al., 2015). Ten virtual paths of 4096 s were generated.  

Firing maps of cells on single trials  

Firing map of a grid cell characterizes its firing activity on a single trial, different 

from its firing field obtained via averaging over many trials. With the box of 2×2 m2 

divided into 64×64 bins, the firing rate was defined as the number of spikes in each 

bin divided by the total time when the animal stayed in this bin. Figure 2D shows one 

example of firing maps for all 39 pyramidal cells along the x-axis.  

Mutual information (MI) between spatial location and firing rate  



To calculate the mutual information between the animal’s position and firing rates of 

all pyramidal cells, we performed 100 simulations with 10 different virtual paths and 

10 trials per path under the same initial condition, recording the spikes of pyramidal 

cells. We got 3900 firing maps altogether. The firing rate from 0 to 32 Hz was 

uniformly divided into 32 bins. The MI between the spatial position (𝒓𝒓) and firing 

rates of pyramidal cells (𝑓𝑓) was given by  

 
2

  

( , )( ; ) ( , ) log ( )
( ) ( )all all f

P fMI f P f
P P f

= ⋅∑∑
r

rr r
r

 (7) 

where the base-2 logarithm allows the MI to be measured in units of bits. The 

probabilities 𝑃𝑃(𝒓𝒓,𝑓𝑓) , 𝑃𝑃(𝒓𝒓)  and 𝑃𝑃(𝑓𝑓)  were estimated by conducting statistical 

analysis of firing maps in each 3D (2D for space and 1D for firing rate), 2D (space) 

and 1D (firing rate) bin, respectively. A slice of 𝑃𝑃(𝒓𝒓,𝑓𝑓) is shown in Figure S2B.  

More pyramidal cells per patch, lattice distortion and defect  

Apart from the simplest case of one pyramidal cell per patch, four more situations 

with a larger patch size were considered, where the number of representative 

pyramidal cells per patch was 4, 9, 16 and 25, respectively. These patches were 

modeled by equidistantly adding more cells around the original one with a distance of 

0.1𝑑𝑑0   (Figure S4H). For 𝑑𝑑0 = 300 μm, the patch comprising 4, 9, 16 or 25 

pyramidal cells covered the area of 30 × 30 , 60 × 60 , 90 × 90 , and 120 ×

120 μm2, respectively.  

In the case of lattice distortion, some patches, comprising four pyramidal cells, 

randomly deviated from vertexes, with the deviation ranging from −0.2𝑑𝑑0 to 0.2𝑑𝑑0 

along the i- and j-axis (Figure S4I). In the case of lattice defect, some patches were 

discarded randomly (Figure S4J). Each retained patch comprised four pyramidal cells.  

Estimating the bump spacing and orientation according to empirical data on 

grid spacing and orientations  

𝑀𝑀𝑛𝑛 = {(𝑆𝑆𝑛𝑛1,𝑂𝑂𝑛𝑛1), (𝑆𝑆𝑛𝑛2,𝑂𝑂𝑛𝑛2), (𝑆𝑆𝑛𝑛3,𝑂𝑂𝑛𝑛3), (𝑆𝑆𝑛𝑛4,𝑂𝑂𝑛𝑛4)} (𝑆𝑆𝑛𝑛4 > 𝑆𝑆𝑛𝑛3 > 𝑆𝑆𝑛𝑛2 > 𝑆𝑆𝑛𝑛1) denoted the four 

grid modules conferred by the combination of four scenarios 



𝐶𝐶𝑛𝑛 = {(𝐷𝐷𝑛𝑛1,𝜃𝜃𝑛𝑛1), (𝐷𝐷𝑛𝑛2,𝜃𝜃𝑛𝑛2), (𝐷𝐷𝑛𝑛3,𝜃𝜃𝑛𝑛3), (𝐷𝐷𝑛𝑛4,𝜃𝜃𝑛𝑛4)}  ( 𝐷𝐷𝑛𝑛4 > 𝐷𝐷𝑛𝑛3 > 𝐷𝐷𝑛𝑛2 > 𝐷𝐷𝑛𝑛1 ), with 

𝑛𝑛 = 1,2, … ,7315. According to Eqs. (3) and (4) in the main text, we got 

 𝑆𝑆𝑛𝑛
𝑗𝑗

𝑆𝑆𝑛𝑛𝑖𝑖
= 𝐷𝐷𝑛𝑛

𝑗𝑗

𝐷𝐷𝑛𝑛𝑖𝑖
, ∀ 𝑖𝑖, 𝑗𝑗 = 1 − 4 

and 𝑗𝑗 > 𝑖𝑖 

(8) 

 �𝑂𝑂𝑛𝑛
𝑗𝑗 − 𝑂𝑂𝑛𝑛𝑖𝑖 � = �𝜃𝜃𝑛𝑛

𝑗𝑗 − 𝜃𝜃𝑛𝑛𝑖𝑖 �. (9) 

For another 𝑀𝑀𝑚𝑚  conferred by 𝐶𝐶𝑚𝑚  (𝑚𝑚 ≠ 𝑛𝑛), 𝑀𝑀𝑚𝑚  and 𝐶𝐶𝑛𝑛  usually did not satisfy 

Eqs. (8) and (9). 

Theoretically, we could obtain 𝐶𝐶𝑛𝑛 directly using Eqs. (8) and (9) given 𝑀𝑀𝑛𝑛. In 

fact, we did not do that for two reasons. First, there were actually 12 identities 

following Eqs. (8) and (9), which made the calculation extremely time-consuming. 

Second, the recorded 𝑀𝑀𝑛𝑛 was always noisy, such that Eqs. (8) and (9) could not 

strictly hold simultaneously. Thus, we had to transform these two equations. Eq. (8) 

gave  

 𝑆𝑆𝑛𝑛𝑖𝑖

𝐷𝐷𝑛𝑛𝑖𝑖
= 𝑆𝑆𝑛𝑛

𝑗𝑗

𝐷𝐷𝑛𝑛
𝑗𝑗 = 1

𝛼𝛼𝑛𝑛
, 𝑖𝑖, 𝑗𝑗 = 1 − 4 (10) 

For 𝑀𝑀𝑚𝑚  and 𝐶𝐶𝑛𝑛  (𝑚𝑚 ≠ 𝑛𝑛 ), 𝑆𝑆𝑚𝑚𝑖𝑖 /𝐷𝐷𝑛𝑛𝑖𝑖  usually took different values from  1/𝛼𝛼𝑛𝑛  for 

i=1-4. Thus, the coefficient of variation of 𝑆𝑆𝑚𝑚𝑖𝑖 /𝐷𝐷𝑛𝑛𝑖𝑖 , denoted as 𝐶𝐶𝐶𝐶(𝑀𝑀𝑚𝑚,𝐶𝐶𝑛𝑛), could be 

used to characterize the spacing relation between 𝑀𝑀𝑚𝑚 and 𝐶𝐶𝑛𝑛. 𝐶𝐶𝐶𝐶(𝑀𝑀𝑚𝑚,𝐶𝐶𝑛𝑛) = 0 for 

𝑚𝑚 = 𝑛𝑛.  

Eq. (9) could be transformed into 

 𝑂𝑂𝑛𝑛𝑖𝑖 − (±𝜃𝜃𝑛𝑛𝑖𝑖 ) = 𝑂𝑂𝑛𝑛
𝑗𝑗 − (±𝜃𝜃𝑛𝑛

𝑗𝑗). 𝑖𝑖, 𝑗𝑗 = 1 − 4 (11) 

± represents the normal and the inverse manner of correspondence between 𝑀𝑀𝑛𝑛 and 

𝐶𝐶𝑛𝑛 (see Figure S5A for details), which were mutually exclusive in general. Thus, 

𝑂𝑂𝑛𝑛𝑖𝑖 − (±𝜃𝜃𝑛𝑛𝑖𝑖 )  was identical for 𝑖𝑖 = 1 − 4 , whereas 𝑂𝑂𝑚𝑚𝑖𝑖 − (±𝜃𝜃𝑛𝑛𝑖𝑖 )  usually took 

different values for 𝑀𝑀𝑚𝑚 and 𝐶𝐶𝑛𝑛 (𝑚𝑚 ≠ 𝑛𝑛). Actually, the offsets between 𝑂𝑂𝑚𝑚𝑖𝑖  and 

(±𝜃𝜃𝑛𝑛𝑖𝑖 ) largely depended on the definition of zero-orientation of the environment. To 

eliminate the effect due to distinct definition and further simplify the equation, we 

considered the grid orientation relative to the mean bump orientation, which was 

essentially a redefinition of zero-orientation of the environment according to the 



bump orientation (Figure S5A):  

  𝑂𝑂�𝑛𝑛𝑖𝑖 = 𝑂𝑂𝑛𝑛𝑖𝑖 + 〈±𝜃𝜃〉𝑛𝑛 − 〈𝑂𝑂〉n, 𝑖𝑖 = 1 − 4 (12) 

where 〈±𝜃𝜃〉𝑛𝑛 = ±∑ 𝜃𝜃𝑛𝑛𝑖𝑖4
𝑖𝑖=1 /4 and 〈𝑂𝑂〉𝑛𝑛 = ∑ 𝑂𝑂𝑛𝑛𝑖𝑖4

𝑖𝑖=1 /4. Consequently, we had 

 𝑂𝑂�𝑛𝑛𝑖𝑖 − �±𝜃𝜃𝑛𝑛𝑖𝑖 � = 0, 𝑖𝑖 = 1 − 4 (13) 

Thus, ∑ �𝑂𝑂�𝑛𝑛𝑖𝑖 − �±𝜃𝜃𝑛𝑛𝑖𝑖 ��4
𝑖𝑖=1 = 0,  whereas  ∑ �𝑂𝑂�𝑚𝑚𝑖𝑖 − �±𝜃𝜃𝑛𝑛𝑖𝑖 ��4

𝑖𝑖=1 > 0  for 𝑀𝑀𝑚𝑚  and 𝐶𝐶𝑛𝑛 

( 𝑚𝑚 ≠ 𝑛𝑛 ). Δ𝑂𝑂(𝑀𝑀𝑚𝑚,𝐶𝐶𝑛𝑛), min�∑ �𝑂𝑂�𝑚𝑚𝑖𝑖 − 𝜃𝜃𝑛𝑛𝑖𝑖 �4
𝑖𝑖=1 ,∑ �𝑂𝑂�𝑚𝑚𝑖𝑖 − �−𝜃𝜃𝑛𝑛𝑖𝑖 ��4

𝑖𝑖=1 �,  was used to 

characterize the orientation relation between 𝑀𝑀𝑚𝑚  and 𝐶𝐶𝑛𝑛 . Δ𝑂𝑂(𝑀𝑀𝑚𝑚,𝐶𝐶𝑛𝑛) = 0  for 

𝑚𝑚 = 𝑛𝑛.  

Ideally, given 𝑀𝑀𝑅𝑅, the correspondence 𝐶𝐶𝑅𝑅 should satisfy 𝐶𝐶𝐶𝐶(𝑀𝑀𝑅𝑅 ,𝐶𝐶𝑅𝑅) = 0 and 

Δ𝑂𝑂(𝑀𝑀𝑅𝑅 ,𝐶𝐶𝑅𝑅) = 0. In the presence of noise, 𝐶𝐶𝐶𝐶(𝑀𝑀𝑅𝑅 ,𝐶𝐶𝑅𝑅) and Δ𝑂𝑂(𝑀𝑀𝑅𝑅 ,𝐶𝐶𝑅𝑅) could not 

be zero generally. If noise was not so large, they should be much smaller than 

𝐶𝐶𝐶𝐶(𝑀𝑀𝑅𝑅 ,𝐶𝐶𝑛𝑛) and Δ𝑂𝑂(𝑀𝑀𝑅𝑅 ,𝐶𝐶𝑛𝑛) (𝐶𝐶𝑛𝑛 ≠ 𝐶𝐶𝑅𝑅), respectively. Thus, a rank method was used 

to identify an estimate of 𝐶𝐶𝑅𝑅 , denoted as 𝐶𝐶𝐸𝐸 . We calculated 𝐶𝐶𝐶𝐶(𝑀𝑀𝑅𝑅 ,𝐶𝐶𝑛𝑛)  and 

Δ𝑂𝑂(𝑀𝑀𝑅𝑅 ,𝐶𝐶𝑛𝑛) for all 𝐶𝐶𝑛𝑛 and then ranked them in an ascending order; in this way we 

got (𝐶𝐶𝐶𝐶𝑛𝑛),  𝑟𝑟(Δ𝑂𝑂𝑛𝑛) , and their sum 𝑟𝑟𝐸𝐸 = 𝑟𝑟(𝐶𝐶𝐶𝐶𝑛𝑛) + 𝑟𝑟(Δ𝑂𝑂𝑛𝑛) . If 𝐶𝐶𝐶𝐶(𝑀𝑀𝑅𝑅 ,𝐶𝐶𝑛𝑛) =

𝐶𝐶𝐶𝐶(𝑀𝑀𝑅𝑅 ,𝐶𝐶𝑚𝑚), they were assigned the same rank, 𝑟𝑟(𝐶𝐶𝐶𝐶𝑛𝑛) = 𝑟𝑟(𝐶𝐶𝐶𝐶𝑚𝑚) = 𝑎𝑎, and the next 

rank number, 𝑎𝑎 + 1 , should be skipped, as was done with Δ𝑂𝑂(𝑀𝑀𝑅𝑅 ,𝐶𝐶𝑛𝑛) . The 

combination with 𝑟𝑟𝐸𝐸 being the minimum was chosen as the estimate 𝐶𝐶𝐸𝐸 (Figure 

S5B). Without noise, 𝑟𝑟(𝐶𝐶𝐶𝐶𝑅𝑅) = 1 and 𝑟𝑟(Δ𝑂𝑂𝑅𝑅) = 1, leading to 𝑟𝑟𝐸𝐸 = 2. Thus, 𝑟𝑟𝐸𝐸 

reflects the reliability of estimation; the closer 𝑟𝑟𝐸𝐸 was to 2, the more reliable the 

estimate was.  

Degenerate combinations of modules from the 22 scenarios  

Apart from the noise, combinational degeneracy was another factor affecting 

estimation. There were totally 𝐶𝐶222 = 231  combinations of two modules and 

𝐶𝐶224 = 7315 combinations of four modules from all the 22 scenarios. Although each 

combination had its own set of bump spacing and orientation, these combinations 

might be undistinguishable in terms of spacing ratio and orientation difference 



between modules. For example, two combinations 𝐶𝐶(1𝑏𝑏, 2𝑐𝑐) and 𝐶𝐶(1𝑐𝑐, 2𝑎𝑎) had the 

same spacing ratio and orientation difference, i.e. 𝐷𝐷2𝑐𝑐
𝐷𝐷1𝑏𝑏

= 𝐷𝐷2𝑎𝑎
𝐷𝐷1𝑐𝑐

= √3 and |𝜃𝜃2𝑐𝑐 − 𝜃𝜃1𝑏𝑏| =

|𝜃𝜃2𝑎𝑎 − 𝜃𝜃1𝑐𝑐| = 30°. Thus, if two grid modules of an animal had the spacing ratio of 
𝑆𝑆2
𝑆𝑆1

= √3  and orientation difference of |𝑂𝑂2 − 𝑂𝑂1| = 30° , it would be unable to 

determine whether the two grid modules were conferred by 𝐶𝐶(1𝑏𝑏, 2𝑐𝑐) or 𝐶𝐶(1𝑐𝑐, 2𝑎𝑎) 

with our rank method. Hence, 𝐶𝐶(1𝑏𝑏, 2𝑐𝑐) and 𝐶𝐶(1𝑐𝑐, 2𝑎𝑎) were termed degenerate 

combinations.  

Mathematically, two combinations 𝐶𝐶(𝑥𝑥1, 𝑥𝑥2)  = ��𝐷𝐷𝑥𝑥1 ,𝜃𝜃𝑥𝑥1�, �𝐷𝐷𝑥𝑥2 ,𝜃𝜃𝑥𝑥2��  and 

𝐶𝐶(𝑦𝑦1,𝑦𝑦2) = ��𝐷𝐷𝑦𝑦1 ,𝜃𝜃𝑦𝑦1�, �𝐷𝐷𝑦𝑦2 ,𝜃𝜃𝑦𝑦2�� were degenerate when 

 
𝐷𝐷𝑥𝑥2
𝐷𝐷𝑥𝑥1

= 𝐷𝐷𝑦𝑦2
𝐷𝐷𝑦𝑦1

,  (14)  

and �𝜃𝜃𝑥𝑥2 − 𝜃𝜃𝑥𝑥1� = �𝜃𝜃𝑦𝑦2 − 𝜃𝜃𝑦𝑦1�, (15) 

with 𝐷𝐷𝑥𝑥2 > 𝐷𝐷𝑥𝑥1 and 𝐷𝐷𝑦𝑦2 > 𝐷𝐷𝑦𝑦1. Under this definition, combinations like 𝐶𝐶(2𝑏𝑏, 1𝑏𝑏) 

and 𝐶𝐶(1𝑑𝑑, 2𝑑𝑑) were also degenerate: the orientation differences took opposite signs 

(|𝜃𝜃1𝑏𝑏 − 𝜃𝜃2𝑏𝑏| = |30°| and |𝜃𝜃2𝑑𝑑 − 𝜃𝜃1𝑑𝑑| = |−30°|), or these two combinations were of 

mirror symmetry.  

Similarly, 𝐶𝐶(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4) and 𝐶𝐶(𝑦𝑦1,𝑦𝑦2,𝑦𝑦3,𝑦𝑦4) were degenerate when 

 
𝐷𝐷𝑥𝑥𝑗𝑗
𝐷𝐷𝑥𝑥𝑖𝑖

=
𝐷𝐷𝑦𝑦𝑗𝑗
𝐷𝐷𝑦𝑦𝑖𝑖

, ∀ 𝑖𝑖, 𝑗𝑗 = 1 − 4 

and 𝑗𝑗 > 𝑖𝑖 

(16) 

and �𝜃𝜃𝑥𝑥𝑗𝑗 − 𝜃𝜃𝑥𝑥𝑖𝑖� = �𝜃𝜃𝑦𝑦𝑗𝑗 − 𝜃𝜃𝑦𝑦𝑖𝑖�. (17) 

with 𝐷𝐷𝑥𝑥𝑗𝑗 > 𝐷𝐷𝑥𝑥𝑖𝑖 ,𝐷𝐷𝑦𝑦𝑗𝑗 > 𝐷𝐷𝑦𝑦𝑖𝑖 for 𝑗𝑗 > 𝑖𝑖. Degeneracy of each combination was defined 

as the number of combinations sharing the bump spacing ratio and orientation 

difference with itself. Figure S6D illustrates the degeneracy of each combination of 

four or two modules. On average, the combinations of four modules were much less 

degenerate than those of two modules. 

Reliability of estimation  

As mentioned above, the rank method worked well with small noise in grid spacing 



and orientation recorded and combinational non-degeneracy. With relatively large 

noise or degeneracy, there might be a combination 𝐶𝐶𝑛𝑛 satisfying both 𝐶𝐶𝐶𝐶(𝑀𝑀𝑅𝑅 ,𝐶𝐶𝑛𝑛) ≤

𝐶𝐶𝐶𝐶(𝑀𝑀𝑅𝑅 ,𝐶𝐶𝑅𝑅) and Δ𝑂𝑂(𝑀𝑀𝑅𝑅 ,𝐶𝐶𝑛𝑛) ≤ Δ𝑂𝑂(𝑀𝑀𝑅𝑅 ,𝐶𝐶𝑅𝑅), which would result in an incorrect 

estimate 𝐶𝐶𝐸𝐸 = 𝐶𝐶𝑛𝑛 ≠ 𝐶𝐶𝑅𝑅 based on the rank method.  

To assess the reliability of estimation, we calculated the probability of 𝐶𝐶𝑅𝑅 = 𝐶𝐶𝑚𝑚 

under the condition of 𝐶𝐶𝐸𝐸 = 𝐶𝐶𝑛𝑛 , i.e., 𝑃𝑃(𝐶𝐶𝑅𝑅 = 𝐶𝐶𝑚𝑚|𝐶𝐶𝐸𝐸 = 𝐶𝐶𝑛𝑛) . 𝑃𝑃(𝐶𝐶𝑅𝑅 = 𝐶𝐶𝑛𝑛|𝐶𝐶𝐸𝐸 =

𝐶𝐶𝑛𝑛) reflects the reliability of estimation. In the presence of noise, the recorded grid 

modules 𝑀𝑀𝑅𝑅 conferred by 𝐶𝐶𝑅𝑅 = 𝐶𝐶𝑚𝑚 should obey 

 𝐷𝐷𝑚𝑚𝑖𝑖 /𝑆𝑆𝑅𝑅𝑖𝑖 = 𝛼𝛼𝑚𝑚 + 𝜂𝜂𝑚𝑚𝑖𝑖  
𝑖𝑖 = 1 − 4 

(18) 

and 𝑂𝑂�𝑅𝑅𝑖𝑖 = (±𝜃𝜃𝑚𝑚𝑖𝑖 ) + 𝜀𝜀𝑚𝑚𝑖𝑖 , (19) 

where 𝜂𝜂𝑚𝑚𝑖𝑖  and 𝜀𝜀𝑚𝑚𝑖𝑖  denoted the noise in grid spacing and orientation. Given the noise 

strength, we calculated 𝑃𝑃(𝐶𝐶𝐸𝐸 = 𝐶𝐶𝑛𝑛|𝐶𝐶𝑅𝑅 = 𝐶𝐶𝑚𝑚)  by performing large numbers of 

simulations. It was further assumed that all 𝐶𝐶𝑚𝑚 had the same chance to constitute 

grid modules, i.e., 𝑃𝑃(𝐶𝐶𝑅𝑅 = 𝐶𝐶𝑚𝑚) = 𝑝𝑝 (𝑚𝑚 = 1 − 7315). Then, we got 𝑃𝑃(𝐶𝐶𝐸𝐸 = 𝐶𝐶𝑛𝑛 ∩

𝐶𝐶𝑅𝑅 = 𝐶𝐶𝑚𝑚) = 𝑃𝑃(𝐶𝐶𝐸𝐸 = 𝐶𝐶𝑛𝑛|𝐶𝐶𝑅𝑅 = 𝐶𝐶𝑚𝑚)𝑃𝑃(𝐶𝐶𝑅𝑅 = 𝐶𝐶𝑚𝑚) , 𝑃𝑃(𝐶𝐶𝐸𝐸 = 𝐶𝐶𝑛𝑛) = ∑ 𝑃𝑃(𝐶𝐶𝐸𝐸 = 𝐶𝐶𝑛𝑛 ∩𝑚𝑚

𝐶𝐶𝑅𝑅 = 𝐶𝐶𝑚𝑚), and  

 𝑃𝑃(𝐶𝐶𝑅𝑅 = 𝐶𝐶𝑚𝑚|𝐶𝐶𝐸𝐸 = 𝐶𝐶𝑛𝑛) =
𝑃𝑃(𝐶𝐶𝐸𝐸 = 𝐶𝐶𝑛𝑛 ∩ 𝐶𝐶𝑅𝑅 = 𝐶𝐶𝑚𝑚)

𝑃𝑃(𝐶𝐶𝐸𝐸 = 𝐶𝐶𝑛𝑛)
 (20) 

with 𝑚𝑚, 𝑛𝑛 = 1 − 7315.  

For animal 𝑎𝑎  with 𝑀𝑀𝑅𝑅 = 𝑀𝑀𝑎𝑎  and 𝐶𝐶𝐸𝐸 = 𝐶𝐶𝑎𝑎 , we just needed to focus on 

𝑃𝑃(𝐶𝐶𝑅𝑅 = 𝐶𝐶𝑚𝑚|𝐶𝐶𝐸𝐸 = 𝐶𝐶𝑎𝑎). For simplicity, we only calculated the probability of the first 

20 combinations with relatively small r. For each 𝐶𝐶𝑅𝑅 = 𝐶𝐶𝑚𝑚, the noise strength was 

assumed to be comparable to its difference from 𝑀𝑀𝑎𝑎. That is, 𝜂𝜂𝑚𝑚𝑖𝑖 ~𝑁𝑁(0,𝜎𝜎𝑚𝑚2 ), where 

𝜎𝜎𝑚𝑚  equaled the standard deviation of 𝐷𝐷𝑚𝑚𝑖𝑖

𝑆𝑆𝑎𝑎𝑖𝑖
− 〈𝐷𝐷𝑚𝑚

𝑆𝑆𝑎𝑎
〉  ( 𝑖𝑖 = 1 − 4 ) and 𝜀𝜀𝑚𝑚𝑖𝑖 ′𝑠𝑠  were 

assumed to be random positive numbers satisfying ∑ 𝜀𝜀𝑚𝑚𝑖𝑖4
i=1 = ∑ �±𝜃𝜃𝑚𝑚𝑖𝑖 − 𝑂𝑂�𝑎𝑎𝑖𝑖 �4

i=1 . 500 

trials were taken for each 𝐶𝐶𝑅𝑅 = 𝐶𝐶𝑚𝑚 . After calculating all 𝑃𝑃(𝐶𝐶𝐸𝐸 = 𝐶𝐶𝑎𝑎|𝐶𝐶𝑅𝑅 = 𝐶𝐶𝑚𝑚), 

𝑃𝑃(𝐶𝐶𝑅𝑅 = 𝐶𝐶𝑚𝑚|𝐶𝐶𝐸𝐸 = 𝐶𝐶𝑎𝑎) could be obtained according to Eq. (20). 
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