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Abstract

Neurodegenerative disorders such as Alzheimer’s disease (AD), Lewy body diseases (LBD), and 

the amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD) spectrum are defined 

by the accumulation of specific misfolded protein aggregates. However, the mechanisms by which 

each proteinopathy leads to neurodegeneration remain elusive. We hypothesized that there is a 

common “pan-neurodegenerative” gene expression signature driving pathophysiology across these 

clinically and pathologically diverse proteinopathies. To test this hypothesis, we performed a 

systematic review of human CNS transcriptomics datasets from AD, LBD, and ALS-FTD patients 

and age-matched controls in the Gene Expression Omnibus (GEO) and ArrayExpress databases, 

followed by consistent processing of each dataset, meta-analysis, pathway enrichment, and overlap 

analyses. After applying pre-specified eligibility criteria and stringent data pre-processing, a total 

of 2600 samples from 26 AD, 21 LBD, and 13 ALS-FTD datasets were included in the meta-

analysis. The pan-neurodegenerative gene signature is characterized by an upregulation of innate 

immunity, cytoskeleton, and transcription and RNA processing genes, and a downregulation of the 

mitochondrial electron transport chain. Pathway enrichment analyses also revealed the 
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upregulation of neuroinflammation (including Toll-like receptor, TNF, and NFκB signaling) and 

phagocytosis, and the downregulation of mitochondrial oxidative phosphorylation, lysosomal 

acidification, and ubiquitin-proteasome pathways. Our findings suggest that neuroinflammation 

and a failure in both neuronal energy metabolism and protein degradation systems are consistent 

features underlying neurodegenerative diseases, despite differences in the extent of neuronal loss 

and brain regions involved.
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1. Introduction

Neurodegenerative disorders such as Alzheimer’s disease (AD), Lewy body diseases (LBD), 

and the amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD) spectrum are 

all defined by the accumulation of specific misfolded protein aggregates. AD is 

characterized by the presence of both amyloid plaques – which are extracellular deposits of 

the amyloid-β peptide (Aβ), a by-product cleaved from the amyloid-β precursor protein 

(AβPP) (Glenner and Wong, 1984) – and intraneuronal neurofibrillary tangles (NFTs) of 

hyperphosphorylated microtubule-associated protein tau (Brion et al., 1986; Grundke-Iqbal 

et al., 1986). Accumulation of α-synuclein (αSyn) in Lewy bodies and neurites is the 

hallmark feature of LBD, an umbrella term which includes Parkinson’s disease (PD), 

Parkinson’s disease dementia (PDD), and dementia with Lewy bodies (DLB) (Spillantini et 

al., 1997). Finally, an array of proteins form neuronal inclusions characteristic of ALS-FTD, 

including the RNA-binding proteins TAR DNA-binding protein 43 (TDP-43) (Neumann et 

al., 2006) and fused in sarcoma (FUS) (Kwiatkowski et al., 2009), as well as dipeptide 

repeats (DPRs) formed by RAN translation of the hexanucleotide repeat expansion in the 

C9orf72 gene (Mori et al., 2013).

One proposed common mechanism underlying all neurodegenerative proteinopathies is the 

intrinsically disordered nature of the aggregating proteins in native conditions (i.e., lack of a 

stable tertiary structure), which would render them prone to misfolding and subsequent 

aggregation in pathological conditions (Jarosz and Khurana, 2017), for example upon certain 

abnormal post-translational modifications (Toth-Petroczy et al., 2016; Wesseling et al., 

2020). Another proposed mechanism is a failure in proteostasis, including the autophagy and 

ubiquitin-proteasome systems, which has been posited as a hallmark of aging (López-Otín et 

al., 2013; Walther et al., 2017). Although both protein misfolding and proteostatic stress 

mechanisms are supported by mounting evidence, our understanding of the extent to which 

these processes play analogous roles across multiple neurodegenerative diseases remains 

speculative. We reasoned that recent advances in -omics technologies, coupled with the 

public availability of a large number of neurodegenerative gene expression datasets, could 

enable the discovery of drivers of neurodegeneration across proteinopathies in large patient 

cohorts. Specifically, we hypothesized that there is a “pan-neurodegenerative” gene 
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expression signature shared by different neurodegenerative diseases regardless of the 

underlying proteinopathy, together with disease-specific signatures which could be 

explained by the individual aggregating protein and/or neuronal type or CNS region 

involved. To test this hypothesis, we conducted a systematic review and meta-analysis of 

publicly available human brain transcriptomics datasets of AD, LBD, ALS-FTD and control 

individuals, followed by pathway enrichment and overlap analyses.

Previous meta-analyses of brain transcriptomic studies have focused on one 

neurodegenerative disease, such as AD (Ciryam et al., 2016; Patel et al., 2019; Wan et al., 

2020) or PD (Kelly et al., 2019; Oerton and Bender, 2017; Wang et al., 2019; Zheng et al., 

2010), in some instances comparing with other neurodegenerative diseases or mouse models 

(Das et al., 2020; Kelly et al., 2019; Patel et al., 2019; Wan et al., 2020), but did not pursue a 

common neurodegenerative signature. Moreover, prior studies investigating pan-

neurodegenerative transcriptional changes have been constrained by comparatively small 

sample sizes (Durrenberger et al., 2015; Labadorf et al., 2018; Li et al., 2014). In this study, 

we analyzed 2600 samples from AD, LBD, and ALS-FTD patients and age-matched 

controls across 60 datasets to identify signatures of pan-neurodegeneration.

2. Materials and methods

Briefly, the data analysis pipeline consisted of (1) systematic review and dataset selection, 

(2) quality control, (3) differential expression analysis, (4) meta-analysis, and (5) gene set 

enrichment analysis (GSEA). Fig. 1 provides a graphical summary of the workflow applied 

in this study. Unless otherwise indicated, all analyses were performed in the R programming 

language and statistical computing environment (version 4.0.2).

2.1. Systematic review

To identify datasets for inclusion in a comprehensive fashion, we followed the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, as 

explained below (Liberati et al., 2009).

2.2. Eligibility criteria

Datasets were selected based on pre-specified inclusion and exclusion criteria. Inclusion 

criteria were: (1) original datasets and (2) human microarray expression profiling datasets 

from relevant CNS regions in AD, LBD, and ALS-FTD. Exclusion criteria were: (1) non-

original datasets (e.g., duplicate studies, re-analyses of pre-existing datasets); (2) not human 

brain tissue; (3) not pertaining to disease in question (i.e., AD, LBD, or ALS-FTD); (4) 

patient-derived in vitro cell lines or disease models; (5) study design other than case/control; 

(6) brain region not significantly affected by neurodegeneration (e.g., cerebellum in AD); 

and (7) incompatible technologies.

2.3. Information sources

We interrogated two databases: The National Center for Biotechnology Information (NCBI) 

Gene Expression Omnibus (GEO) and the European Bioinformatics Institute (EMBL-EBI) 

ArrayExpress.
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2.4. Search strategies and dataset selection

We inquired the two databases on the same day (July 1, 2020) with no date filters applied. 

Full details of search terms used and screening rationale for each dataset are available in 

Tables S1 and S2 for GEO and ArrayExpress, respectively. Fig. 2 describes the systematic 

review according to PRISMA guidelines. Eligible datasets were those meeting all the 

inclusion criteria and none of the exclusion criteria. Duplicate records were removed in R, 

rendering n = 530 identified datasets. Within each dataset, only CNS regions relevant to 

neuropathology and involved in neurodegeneration were included, as listed in the exclusion 

criteria. To ensure the specificity of each disease expression signature, we excluded 

intermediate phenotypes whenever reported, i.e. only disease AD samples classified as 

Braak V/VI (corresponding to a neocortical NFT stage) were included. We also excluded 

familial AD and LBD datasets to increase data homogeneity, however, familial ALS-FTD 

datasets were considered eligible and included C9orf72, PGRN, SOD1, and CHMP2B 
mutations. Included datasets are described in Table S3.

2.5. Quality control

We categorized each included dataset by both disease and brain region and studied them 

individually, entailing 89 separate analyses. For each analysis, we normalized expression 

data as needed using the Robust Multichip Average approach implemented in the oligo 
package (Carvalho and Irizarry, 2010; Irizarry et al., 2003). We generated data quality 

reports with diagnostic plots via the arrayQualityMetrics package (Kauffmann et al., 2009; 

Kauffmann and Huber, 2010), which were used to discard outliers as described in our 

accompanying Data in Brief article. Probes were capped at the 20th percentile to filter for 

low expression. Finally, we used surrogate variable analysis to remove unknown latent 

variation in the data (Leek et al., 2012; Leek and Storey, 2007).

2.6. Differential expression analysis

For each dataset, differentially expressed genes (DEGs) were identified via the limma 
package in R (Ritchie et al., 2015). We used the mean difference between cases and controls 

and the empirical Bayes estimated variance from limma to calculate z-scores of differential 

expression (Phipson et al., 2016). Microarray probes were converted to ENTREZ IDs using 

Bioconductor annotation packages (Maglott et al., 2007). In the event that multiple probes 

mapped to the same gene, the single probe with the greatest interquartile range (IQR) was 

retained (Walsh et al., 2015; Wang et al., 2012).

2.7. Meta-analysis

Z-scores of differential expression were tabulated separately across AD, LBD, and ALS-

FTD. For each disease, genes represented in at least 50% of the datasets were retained. Next, 

we calculated meta-analytic z-scores using Lipták’s weighted Z-test, viz. a weighted average 

of z-scores (Lipták, 1958; Zaykin, 2011). If multiple tissue samples were derived from the 

same patient (i.e., different CNS regions), we corrected for multiple comparisons using the 

Bonferroni method. The top 1000 upregulated and top 1000 downregulated genes in each 

ranked gene list comprised the disease-predominant gene signatures for each disease, which 

were intersected to identify possible pan-neurodegenerative genes (Table S4).
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2.8. Gene set enrichment analysis

We performed Gene Set Enrichment Analysis (GSEA) on the ranked meta-analytic z-score 

lists of each disease (Subramanian et al., 2007, 2005). Enrichment was calculated against the 

Gene Ontology: Biological Processes (GO: BP) available from the Molecular Signatures 

Database (MSigDB) (Ashburner et al., 2000; Liberzon et al., 2011; The Gene Ontology 

Consortium, 2019).

For each disease, the top 200 enriched pathways by Normalized Enrichment Score (NES) 

were intersected to define the pan-neurodegenerative and disease-predominant pathways. To 

reduce redundancy of reported pathways and combine parent-child ontology terms 

describing the same biological phenomenon, the GO: Biological Processes were aggregated 

by hierarchical clustering based on the Jac-card similarity coefficient and were manually 

expert-annotated to assign representative labels. Genes with the top z-scores comprising 

these pathways were visualized in heatmaps as well as protein-protein interaction (PPI) 

functional networks constructed via the STRING biological database (version 11.0) 

(Szklarczyk et al., 2019).

2.9. Validation

To validate these results, we performed three separate sensitivity analyses. First, we repeated 

steps described in sections 2.5 to 2.8 for all datasets after randomly permuting the phenotype 

label prior to differential expression analysis, and hence removing control/disease 

classification information (Fig. S1). Second, we re-computed GSEA against the Reactome 

database also available via MSigDB (Jassal et al., 2020), and compared the resulting 

enriched pathways with those obtained from the GSEA against GO: BP.

Lastly, using a previously published dataset of immuno-panned human brain cell 

subpopulations (Zhang et al., 2016), we investigated whether neuronal loss was driving the 

downregulated pathways. Specifically, we identified a cassette of 280 neuron-predominant 

genes, each with an average expression of ≥5 times the sum of their expression in all other 

cell types. For each disease, we corrected the meta-analytic z-score of each gene by the 

median meta-analytic z-score of the neuron-predominant genes. We then re-performed 

GSEA against GO: BP with these corrected z-scores.

3. Results

3.1. Systematic review of AD, LBD, and ALS-FTD microarray datasets

After application of pre-specified inclusion and exclusion criteria following PRISMA 

guidelines, our systematic review in the GEO and ArrayExpress repositories yielded 1648 

control and 1586 disease samples from 26 AD, 21 LBD, and 13 ALS-FTD datasets (Fig. 2, 

Table S3). During our stringent data pre-processing pipeline, 355 control and 279 disease 

samples failed to meet the data quality requirements and were discarded. Hence, a total of 

2600 samples – 1293 control and 1307 disease – were included in the subsequent analyses.
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3.2. Meta-analysis of AD, LBD, and ALS-FTD microarray datasets reveals a pan-
neurodegenerative gene signature

We next performed differential expression analysis of diseased versus control individuals in 

each of the 60 included datasets, followed by a meta-analysis of differentially expressed 

genes (DEGs) across datasets of each disease. This rendered meta-analytic gene expression 

signatures for AD, LBD, and ALS-FTD. Overlap analysis of the top genes in each disease 

signature revealed an intersection of 88 upregulated and 45 downregulated genes (Fig. 3, 

Table S4). To examine cell-type enrichment of these genes, we used a public dataset of 

immuno-panned human brain cell subpopulations as reference (Zhang et al., 2016). In Fig. 

3, the color of each gene corresponds to the cell-type with the highest expression for that 

gene. As expected, upregulated pan-neurodegenerative genes were predominantly glial, 

while downregulated genes were predominantly neuronal.

A close inspection of these 88 upregulated genes revealed gene cassettes related to innate 

immunity (C3, CEBPB, CEBPD, CSF1R, CXCR4, FCGR2A, FKBP5, IL10RA, ITGB2, 

MS4A6A, NFKBIA, SASH1, TLR5); extracellular matrix and cell adhesion/tight junction 

(EMP3, GJA1, PLOD2, SPARC, TJP2, TMEM47, VCAN); cytoskeleton, including actin 

(CSRP1, EZR, FAM107A, HCLS1, KANK1, ITPRID2, MSN, S100A4, S100A10, SCIN, 

WASF2), intermediate filament (GFAP, SYNM) and microtubule (MID1IP1); ubiquitin-

proteasome system (FBXW4, PELI1, TRIM8) and autophagy (CTSH, CTSS, SERPINB6); 

copper/zinc homeostasis (MT1F and MT1H); cell cycle/apoptosis (BTG1, CFLAR, STAG1, 

TOB1, TOB2); RNA processing (HNRNPF, PABPC1, PNISR, RNASET2, SERBP1, 

SRRM2, THOC2); and regulation of transcription (AEBP1, BAZ1A, BCL6, CHD9, 

KAT6A, LARP7, MXI1, SIRT1, SPEN, TBL1X, TCF12, TRPS1, VEZF1, YBX1, ZBTB1, 

ZBTB16, ZBTB20, ZNF217).

Similarly, the 45 pan-neurodegenerative downregulated genes included mitochondrial 

electron transport chain and energy metabolism (ATP5MF, NDUFA7, NDUFB8, PDHB, 

UQCRFS1, UQCRQ); protein degradation genes, including ubiquitin-proteasome system 

(COPS5, PSMA1) and lysosome acidification (ATP6V1G2); cytoskeleton/axon transport 

(ACTR10, ACTR6, TUBA1A, DNM3, TUBB3, TUBB4B); cell cycle and DNA replication 

and repair (CDKN2D, CDKN3, FIBP, MCM4, MSH2, ORC3, PTP4A1, STYK1); 

intracellular trafficking (GOLT1B, SNX10, SPCS1); cell adhesion/extracellular matrix 

(B3GALNT1, CGREF1, CHL1, ITFG1); and regulation of transcription (BEX3, TCEAL4, 

TM7SF2).

3.3. Gene set enrichment analysis identifies pan-neurodegenerative functional pathways

Because transcriptional changes are more likely to be consistent across datasets at a pathway 

rather than at an individual gene level, and since genes are co-expressed in a pathway, we 

investigated the overlap between these three disease signatures at the functional pathway 

level. We performed Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2007, 

2005) on the ranked meta-analytic gene sets across AD, LBD, and ALS-FTD. Top enriched 

pathways were then intersected to obtain the pan-neurodegenerative pathway signature. 

These pathways were grouped and expert-annotated based on the similarity of their 

constituent genes (see Methods) to obtain specific up- and downregulated functions relevant 
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to neurodegeneration (Table S5). Genes with the top z-scores in these pathways were 

visualized in heatmaps (Fig. 4) and protein-protein functional interaction networks (Fig. S2).

Upregulated pathways in the pan-neurodegenerative signature were “response to zinc,” “toll-

like receptor, TNF, and NFκB signaling,” “phagocytosis,” and “vasculature development.” 

Thus, phagocytosis and inflammatory responses emerge as the main functional gains in all 

three neurodegenerative diseases. The majority of the constituent genes of these pathways 

are enriched in glial cells: 58.5% of the genes have highest expression in either microglia 

(39.2%) or astrocytes (19.3%), followed by endothelial cells (14.4%), neurons (12.4%), and 

oligodendrocytes (5.1%); the remaining 9.6% were not enriched in any particular cell-type 

(Zhang et al., 2016).

In contrast, downregulated pathways included “respiratory electron transport chain,” “NAD 

metabolism,” “ATP biosynthesis,” “aerobic respiration and Krebs cycle,” “mitochondrial 

translation,” “aerobic electron transport chain,” “mitochondrion organization and axonal 

transport,” “calcium ion regulated catecholamine exocytosis,” “lysosome acidification,” and 

“ubiquitin-proteasome pathway.” Hence, the main functional losses are related to energy 

metabolism and proteostasis (both autophagy and ubiquitin-proteasome system). Many of 

these genes are neuronal: 38.9% of these genes have highest expression in neurons, followed 

by astrocytes (23.2%), microglia (9.9%), endothelial cells (8.2%), and oligodendrocytes 

(7.3%); the remaining 12.5% were not enriched in any particular cell-type (Zhang et al., 

2016).

Several sensitivity analyses validated our pan-neurodegenerative signature. First, to ensure 

that our pan-neurodegenerative pathway signature was not merely the result of chance, we 

randomly permuted the disease and control labels corresponding to the individual samples in 

each dataset. After re-running all analyses, we obtained zero pathways at the intersection 

between the three diseases, supporting the robustness of our pan-neurodegenerative pathway 

signature (Fig. S1). Second, to demonstrate the reproducibility of our results with an 

independent pathway database, we conducted pathway enrichment analysis against the 

Reactome database and obtained very similar results to those from GO: BP (Table S6). 

Third, to account for any influence of neuron loss in our bulk RNA meta-analysis, we 

corrected the z-scores of the meta-analytic gene signatures using a set of genes expressed 

predominantly in neurons as described in the Methods section. These analyses yielded 

nearly identical results to those obtained without this correction, thus suggesting that our 

pan-neurodegenerative signature cannot be merely explained by a shift in cell-type 

proportions.

3.4. Meta-analysis of AD, LBD, and ALS-FTD microarray datasets also reveals disease-
predominant transcriptomic signatures

Besides identifying a shared expression signature, this meta-analysis offered the opportunity 

to evaluate the transcriptomic changes characteristic of each of these three 

neurodegenerative diseases. GSEA followed by similarity-based clustering and expert 

annotation of resulting grouped pathways revealed distinct functional gains and losses in 

each disease (Table S5). Average normalized enrichment scores corresponding to key 

disease-predominant pathways are shown in Fig. 5.
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The AD-predominant signature was characterized by an upregulation of “cholesterol 

transport,” “extracellular matrix organization,” “extrinsic apoptotic signaling pathway,” and 

“T cell activation” among other functions, and a downregulation of “GABAergic 

transmission,” “glutamatergic synaptic transmission and learning,” “calcium ion regulated 

neurotransmitter exocytosis,” “neurotransmitter uptake regulation,” “action potential 

depolarization,” “regulation of calcium and potassium transmembrane transport,” “dendrite 

extension,” and “synaptic plasticity.”

The LBD-predominant signature consisted of an upregulation of “chaperone-mediated 

protein folding by heat shock proteins” and “interferon response,” and a downregulation of 

“catecholamine biosynthesis,” “response to amphetamine,” “catecholamine reuptake,” 

“pigment granule localization,” “dopaminergic neuron differentiation,” and “cholinergic 

synaptic transmission,” based on the most salient grouped pathways.

Finally, the ALS-FTD-predominant signature consisted of an upregulation of “response to 

reactive nitrogen species and steroids” and “superoxide anion generation,” and a 

downregulation of “microtubule-dependent axonal transport,” “microtubule-dependent cell 

motility,” and “microtubule nucleation,” among other pathways. Importantly, these pathways 

were largely conserved after correcting for neuron loss (see Methods), supporting the 

disease specificity of neurodegenerative processes in particular neuron types (i.e., 

glutamatergic in AD, cholinergic and catecholaminergic in LBD, and motor neurons – in 

which axonal transport is critical – in ALS-FTD).

4. Discussion

The use of bioinformatics tools on a large number of AD, LBD, and ALS-FTD 

transcriptomic datasets comprising a total of 1293 control and 1307 disease samples from 

diverse, pathologically relevant CNS regions (e.g., hippocampus, entorhinal cortex, and 

association cortex in AD; substantia nigra and striatum in LBD; and spinal cord and motor 

cortex in ALS-FTD) enabled the identification of a pan-neurodegenerative expression 

signature common to all three neurodegenerative diseases. This pan-neurodegenerative gene 

signature consisted of an upregulation of genes involved in innate immunity, cytoskeleton, 

RNA processing, and transcriptional regulation mainly in microglia, astrocytes and, to a 

lesser extent, oligodendrocytes, and a downregulation of genes involved in mitochondrial 

electron transport chain and energy metabolism, cytoskeleton/axon transport, and cell 

cycle/DNA repair, mainly in neurons. The overrepresentation of genes encoding for innate 

immune, actin-interacting, and other cytoskeleton proteins, together with extracellular 

matrix, cell adhesion/tight junction, and autophagy genes (e.g., cathepsins H and S) in the 

upregulated pan-neurodegenerative signature could be explained by an increase in cell 

motility and phagocytosis, since microglia are actively surveilling the neuropil and removing 

synapses and dead neurons (Fuhrmann et al., 2010), likely in concert with astrocytes 

(Damisah et al., 2020).

At the pathway level, the pan-neurodegenerative signature was defined by an upregulation of 

pro-inflammatory (including Toll-like receptor, TNF, and NFκB signaling) and phagocytic 

pathways, and a downregulation of mitochondrial oxidative phosphorylation. Intriguingly, 
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lysosomal acidification (exemplified by ATP6V1G2 in the pan-neurodegenerative gene 

signature) and ubiquitin-proteasome pathways were also downregulated. This finding is 

noteworthy as aging itself may be associated with the existence of a metastable sub-

proteome comprised of proteins whose physiologic concentration exceeds their solubility 

and are, therefore, prone to aggregation (Ciryam et al., 2016; Walther et al., 2017). Thus, our 

results suggest that the clearance pathways for these aggregated proteins may also be 

impaired in neurodegenerative diseases; experimental data on all three diseases support this 

conclusion (Gao et al., 2017; Scrivo et al., 2018; Vilchez et al., 2014). Furthermore, both 

autophagy and proteasome-mediated protein degradation require high levels of ATP, which 

may be in short supply in neurons due to the failure of energy metabolism (suggested by the 

downregulation of energy metabolism genes). Besides being an energy source, at high 

concentrations ATP may act as a biological hydro-trope, keeping proteins soluble or 

dissolving previously formed protein aggregates (Patel et al., 2017); therefore, an ATP 

deficit may favor further protein aggregation.

In addition, our meta-analysis enabled us to evaluate the functional gains and losses 

characteristic of each disease. Among the most distinct gains in AD were cholesterol 

transport – which has also been implicated in AD pathogenesis by genome-wide association 

studies (Kunkle et al., 2019) – and extracellular matrix organization. Similarly, protein 

chaperone activity and response to oxidative stress were upregulated in LBD and ALS-FTD, 

respectively. Conversely, the main functional losses were GABAergic and glutamatergic 

neurotransmission and synaptic plasticity in AD, catecholaminergic and cholinergic 

neurotransmission in LBD, and microtubule organization and axonal transport in ALS-FTD.

Importantly, while a shift in cell-type proportions associated with neuron loss could have 

partially contributed to the observed findings, our analyses aimed at correcting for this shift 

reinforce the conclusion that this pan-neurodegenerative signature is related to a dysfunction 

of surviving neurons rather than neuronal loss. Several other lines of evidence support this 

conclusion. First, recent single nuclei RNA-seq studies from human postmortem AD and 

control brains have shown that most DEGs assigned to nuclei from excitatory and inhibitory 

neurons are downregulated (Mathys et al., 2019). Second, a failure of energy metabolism, 

specifically glucose utilization, can be seen in disease-affected CNS regions of AD, LBD 

and ALS-FTD patients with [18F]-deoxy-glucose (FDG)-PET imaging, even after co-

registering with MRI and correcting for severity of atrophy, and FDG-PET scans are helpful 

for the clinical diagnosis of AD (McKhann et al., 2011), DLB (McKeith et al., 2017) and 

FTD (Rascovsky et al., 2011). Third, a recent CSF and brain proteomic study in a large 

cohort of control and AD subjects has reported a downregulation of neuronal and 

mitochondrial proteins in AD as well as an upregulation of astrocyte and microglial proteins, 

suggesting that our results derived from transcriptomics hold true at the proteomics level 

(Johnson et al., 2020). Finally, although the 18 kDa translocator protein (TSPO) is not only 

expressed by microglia (Gui et al., 2020), an increased uptake of TSPO radiotracers in 

disease-relevant CNS areas has been shown for AD (Fan et al., 2015), LBD (Fan et al., 2015; 

Gerhard et al., 2006) and ALS-FTD (Alshikho et al., 2018), supporting microglial activation.

Some limitations of our study should be acknowledged. Combining datasets from different 

CNS regions obviates the regional heterogeneity in gene expression of the brain (Sjöstedt et 
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al., 2020), however we discarded datasets from regions generally spared by the 

neurodegenerative process and assumed that the progression of the proteinopathy through 

the affected neural networks would attenuate those regional differences. Further, bulk RNA 

data analyses are inherently affected by shifts in cell-type proportion and cannot reliably 

account for transcripts that are upregulated by one cell type and downregulated by another. 

While our correction for neuron-predominant gene expression yielded similar results, future 

meta-analyses of existing single-nuclei RNA-seq studies are required to resolve these 

outstanding questions. Finally, as we filtered for duplicate probe mappings, spliced isoform-

specific signal may have been omitted from our analyses. Nonetheless, our study has several 

strengths. We conducted a systematic review of microarray transcriptomic datasets in two 

different repositories following PRISMA guidelines to minimize selection bias. We 

rigorously meta-analyzed a large number of datasets of disease-affected CNS regions from 

three neurodegenerative diseases, totaling 1293 control and 1307 diseased samples (to our 

knowledge, the largest transcriptomics meta-analysis across AD, LBD, and ALS-FTD to 

date), and overlapped the three resulting meta-analytic signatures to obtain a robust, 

common neurodegenerative signature shared by all three.

In summary, our meta-analysis of AD, LBD, and ALS-FTD microarray transcriptomic 

studies identified neuroinflammation, together with a failure in neuronal energy metabolism 

and protein degradation, as the substrates underlying neurodegeneration. These results imply 

a gain of function in microglia and loss of function in neurons. Additional single-cell and 

single-nuclei RNA-seq studies in postmortem specimens from patients with various 

neurodegenerative diseases, as well as healthy subjects across the lifespan, are needed to 

confirm these findings and contrast them with normal aging.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

The authors would like to thank Lori Chibnik, Rosemary J. Jackson, Townley Chisholm, and Alison Hobbie for 
useful discussions. The graphical abstract was created using BioRender.com.

Funding

This work was supported by the Alzheimer’s Association (AACF-17-524184 to AS-P), the National Institute of 
Aging (K08AG064039 to AS-P and P30AG062421 to BTH and SD), the Rainwater Charitable Foundation (to 
BTH), and a MassLife Sciences MassCATS award (to BTH and SD). The funding sources had no role in study 
design; data collection, analysis and interpretation; or manuscript preparation.

References

Alshikho MJ, Zürcher NR, Loggia ML, Cernasov P, Reynolds B, Pijanowski O, Chonde DB, Izquierdo 
Garcia D, Mainero C, Catana C, Chan J, Babu S, Paganoni S, Hooker JM, Atassi N, 2018 Integrated 
magnetic resonance imaging and [11 C]-PBR28 positron emission tomographic imaging in 
amyotrophic lateral sclerosis. Ann. Neurol 83, 1186–1197. 10.1002/ana.25251. [PubMed: 
29740862] 

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, 
Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, 

Noori et al. Page 10

Neurobiol Dis. Author manuscript; available in PMC 2021 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://biorender.com/


Ringwald M, Rubin GM, Sherlock G, 2000 Gene ontology: tool for the unification of biology. Nat. 
Genet 25, 25–29. 10.1038/75556. [PubMed: 10802651] 

Brion JP, Flament-Durand J, Dustin P, 1986 Alzheimer’s disease and tau proteins. Lancet Lond. Engl 
2, 1098 10.1016/s0140-6736(86)90495-2.

Carvalho BS, Irizarry RA, 2010 A framework for oligonucleotide microarray preprocessing. 
Bioinformatics 26, 2363–2367. 10.1093/bioinformatics/btq431. [PubMed: 20688976] 

Ciryam P, Kundra R, Freer R, Morimoto RI, Dobson CM, Vendruscolo M, 2016 A transcriptional 
signature of Alzheimer’s disease is associated with a metastable subproteome at risk for 
aggregation. Proc. Natl. Acad. Sci. U. S. A 113, 4753–4758. 10.1073/pnas.1516604113. [PubMed: 
27071083] 

Damisah EC, Hill RA, Rai A, Chen F, Rothlin CV, Ghosh S, Grutzendler J, 2020 Astrocytes and 
microglia play orchestrated roles and respect phagocytic territories during neuronal corpse removal 
in vivo. Sci. Adv 6 10.1126/sciadv.aba3239 eaba3239.

Das S, Li Z, Noori A, Hyman BT, Serrano-Pozo A, 2020 Meta-analysis of mouse transcriptomic 
studies supports a context-dependent astrocyte reaction in acute CNS injury versus 
neurodegeneration. J. Neuroinflammation 17, 227 10.1186/s12974-020-01898-y. [PubMed: 
32736565] 

Durrenberger PF, Fernando FS, Kashefi SN, Bonnert TP, Seilhean D, Nait-Oumesmar B, Schmitt A, 
Gebicke-Haerter PJ, Falkai P, Grünblatt E, Palkovits M, Arzberger T, Kretzschmar H, Dexter DT, 
Reynolds R, 2015 Common mechanisms in neurodegeneration and neuroinflammation: A BrainNet 
Europe gene expression microarray study. J. Neural Transm. Vienna Austria 1996 122, 1055–1068. 
10.1007/s00702-014-1293-0.

Fan Z, Aman Y, Ahmed I, Chetelat G, Landeau B, Ray Chaudhuri K, Brooks DJ, Edison P, 2015 
Influence of microglial activation on neuronal function in Alzheimer’s and Parkinson’s disease 
dementia. Alzheimers Dement. J. Alzheimers Assoc 11, 608–621 e7. 10.1016/j.jalz.2014.06.016.

Fuhrmann M, Bittner T, Jung CKE, Burgold S, Page RM, Mitteregger G, Haass C, LaFerla FM, 
Kretzschmar H, Herms J, 2010 Microglial Cx3cr1 knockout prevents neuron loss in a mouse 
model of Alzheimer’s disease. Nat. Neurosci 13, 411–413. 10.1038/nn.2511. [PubMed: 20305648] 

Gao F-B, Almeida S, Lopez-Gonzalez R, 2017 Dysregulated molecular pathways in amyotrophic 
lateral sclerosis-frontotemporal dementia spectrum disorder. EMBO J. 36, 2931–2950. 10.15252/
embj.201797568. [PubMed: 28916614] 

Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A, Eggert K, Oertel W, Banati RB, 
Brooks DJ, 2006 In vivo imaging of microglial activation with [11C](R)-PK11195 PET in 
idiopathic Parkinson’s disease. Neurobiol. Dis 21, 404–412. 10.1016/j.nbd.2005.08.002. [PubMed: 
16182554] 

Glenner GG, Wong CW, 1984 Alzheimer’s disease: initial report of the purification and 
characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun 
120, 885–890. 10.1016/s0006-291x(84)80190-4. [PubMed: 6375662] 

Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM, 1986 Microtubule-
associated protein tau. A component of Alzheimer paired helical filaments. J. Biol. Chem 261, 
6084–6089. [PubMed: 3084478] 

Gui Y, Marks JD, Das S, Hyman BT, Serrano-Pozo A, 2020 Characterization of the 18 kDa 
translocator protein (TSPO) expression in post-mortem normal and Alzheimer’s disease brains. 
Brain Pathol. Zurich Switz 30, 151–164. 10.1111/bpa.12763.

Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP, 2003 
Exploration, normalization, and summaries of high density oligonucleotide array probe level data. 
Biostat. Oxf. Engl 4, 249–264. 10.1093/biostatistics/4.2.249.

Jarosz DF, Khurana V, 2017 Specification of physiologic and disease states by distinct proteins and 
protein conformations. Cell 171, 1001–1014. 10.1016/j.cell.2017.10.047. [PubMed: 29149602] 

Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, Sidiropoulos K, Cook J, Gillespie M, 
Haw R, Loney F, May B, Milacic M, Rothfels K, Sevilla C, Shamovsky V, Shorser S, Varusai T, 
Weiser J, Wu G, Stein L, Hermjakob H, D’Eustachio P, 2020 The reactome pathway knowledge 
base. Nucleic Acids Res. 48, D498–D503. 10.1093/nar/gkz1031. [PubMed: 31691815] 

Noori et al. Page 11

Neurobiol Dis. Author manuscript; available in PMC 2021 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Johnson ECB, Dammer EB, Duong DM, Ping L, Zhou M, Yin L, Higginbotham LA, Guajardo A, 
White B, Troncoso JC, Thambisetty M, Montine TJ, Lee EB, Trojanowski JQ, Beach TG, Reiman 
EM, Haroutunian V, Wang M, Schadt E, Zhang B, Dickson DW, Ertekin-Taner N, Golde TE, 
Petyuk VA, De Jager PL, Bennett DA, Wingo TS, Rangaraju S, Hajjar I, Shulman JM, Lah JJ, 
Levey AI, Seyfried NT, 2020 Large-scale proteomic analysis of Alzheimer’s disease brain and 
cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and 
astrocyte activation. Nat. Med 26, 769–780. 10.1038/s41591-020-0815-6. [PubMed: 32284590] 

Kauffmann A, Huber W, 2010 Microarray data quality control improves the detection of differentially 
expressed genes. Genomics 95, 138–142. 10.1016/j.ygeno.2010.01.003. [PubMed: 20079422] 

Kauffmann A, Gentleman R, Huber W, 2009 arrayQualityMetrics - A bioconductor package for quality 
assessment of microarray data. Bioinformatics 25, 415–416. 10.1093/bioinformatics/btn647. 
[PubMed: 19106121] 

Kelly J, Moyeed R, Carroll C, Albani D, Li X, 2019 Gene expression meta-analysis of Parkinson’s 
disease and its relationship with Alzheimer’s disease. Mol. Brain 12, 16 10.1186/
s13041-019-0436-5. [PubMed: 30819229] 

Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC, Boland A, Vronskaya M, van der 
Lee SJ, Amlie-Wolf A, Bellenguez C, Frizatti A, Chouraki V, Martin ER, Sleegers K, 
Badarinarayan N, Jakobsdottir J, Hamilton-Nelson KL, Moreno-Grau S, Olaso R, Raybould R, 
Chen Y, Kuzma AB, Hiltunen M, Morgan T, Ahmad S, Vardarajan BN, Epelbaum J, Hoffmann P, 
Boada M, Beecham GW, Garnier J-G, Harold D, Fitzpatrick AL, Valladares O, Moutet M-L, 
Gerrish A, Smith AV, Qu L, Bacq D, Denning N, Jian X, Zhao Y, Del Zompo M, Fox NC, Choi S-
H, Mateo I, Hughes JT, Adams HH, Malamon J, Sanchez-Garcia F, Patel Y, Brody JA, Dombroski 
BA, Naranjo MCD, Daniilidou M, Eiriksdottir G, Mukherjee S, Wallon D, Uphill J, Aspelund T, 
Cantwell LB, Garzia F, Galimberti D, Hofer E, Butkiewicz M, Fin B, Scarpini E, Sarnowski C, 
Bush WS, Meslage S, Kornhuber J, White CC, Song Y, Barber RC, Engelborghs S, Sordon S, 
Voijnovic D, Adams PM, Vandenberghe R, Mayhaus M, Cupples LA, Albert MS, De Deyn PP, Gu 
W, Himali JJ, Beekly D, Squassina A, Hartmann AM, Orellana A, Blacker D, Rodriguez-
Rodriguez E, Lovestone S, Garcia ME, Doody RS, Munoz-Fernadez C, Sussams R, Lin H, 
Fairchild TJ, Benito YA, Holmes C, Karamujić-Čomić H, Frosch MP, Thonberg H, Maier W, 
Roshchupkin G, Ghetti B, Giedraitis V, Kawalia A, Li S, Huebinger RM, Kilander L, Moebus S, 
Herńandez I, Kamboh MI, Brundin R, Turton J, Yang Q, Katz MJ, Concari L, Lord J, Beiser AS, 
Keene CD, Helisalmi S, Kloszewska I, Kukull WA, Koivisto AM, Lynch A, Tarraga L, Larson EB, 
Haapasalo A, Lawlor B, Mosley TH, Lipton RB, Solfrizzi V, Gill M, Longstreth WT, Montine TJ, 
Frisardi V, Diez-Fairen M, Rivadeneira F, Petersen RC, Deramecourt V, Alvarez I, Salani F, 
Ciaramella A, Boerwinkle E, Reiman EM, Fievet N, Rotter JI, Reisch JS, Hanon O, Cupidi C, 
Andre Uitterlinden AG, Royall DR, Dufouil C, Maletta RG, de Rojas I, Sano M, Brice A, 
Cecchetti R, George-Hyslop PS, Ritchie K, Tsolaki M, Tsuang DW, Dubois B, Craig D, Wu C-K, 
Soininen H, Avramidou D, Albin RL, Fratiglioni L, Germanou A, Apostolova LG, Keller L, 
Koutroumani M, Arnold SE, Panza F, Gkatzima O, Asthana S, Hannequin D, Whitehead P, 
Atwood CS, Caffarra P, Hampel H, Quintela I, Carracedo Á, Lannfelt L, Rubinsztein DC, Barnes 
LL, Pasquier F, Frölich L, Barral S, McGuinness B, Beach TG, Johnston JA, Becker JT, Passmore 
P, Bigio EH, Schott JM, Bird TD, Warren JD, Boeve BF, Lupton MK, Bowen JD, Proitsi P, Boxer 
A, Powell JF, Burke JR, Kauwe JSK, Burns JM, Mancuso M, Buxbaum JD, Bonuccelli U, Cairns 
NJ, McQuillin A, Cao C, Livingston G, Carlson CS, Bass NJ, Carlsson CM, Hardy J, Carney RM, 
Bras J, Carrasquillo MM, Guerreiro R, Allen M, Chui HC, Fisher E, Masullo C, Crocco EA, 
DeCarli C, Bisceglio G, Dick M, Ma L, Duara R, Graff-Radford NR, Evans DA, Hodges A, Faber 
KM, Scherer M, Fallon KB, Riemenschneider M, Fardo DW, Heun R, Farlow MR, Kölsch H, 
Ferris S, Leber M, Foroud TM, Heuser I, Galasko DR, Giegling I, Gearing M, Hüll M, Geschwind 
DH, Gilbert JR, Morris J, Green RC, Mayo K, Growdon JH, Feulner T, Hamilton RL, Harrell LE, 
Drichel D, Honig LS, Cushion TD, Huentelman MJ, Hollingworth P, Hulette CM, Hyman BT, 
Marshall R, Jarvik GP, Meggy A, Abner E, Menzies GE, Jin L-W, Leonenko G, Real LM, Jun GR, 
Baldwin CT, Grozeva D, Karydas A, Russo G, Kaye JA, Kim R, Jessen F, Kowall NW, Vellas B, 
Kramer JH, Vardy E, LaFerla FM, Jöckel KH, Lah JJ, Dichgans M, Leverenz JB, Mann D, Levey 
AI, Pickering-Brown S, Lieberman AP, Klopp N, Lunetta KL, Wichmann H-E, Lyketsos CG, 
Morgan K, Marson DC, Brown K, Martiniuk F, Medway C, Mash DC, Nöthen MM, Masliah E, 
Hooper NM, McCormick WC, Daniele A, McCurry SM, Bayer A, McDavid AN, Gallacher J, 
McKee AC, van den Bussche H, Mesulam M, Brayne C, Miller BL, Riedel-Heller S, Miller CA, 

Noori et al. Page 12

Neurobiol Dis. Author manuscript; available in PMC 2021 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Miller JW, Al-Chalabi A, Morris JC, Shaw CE, Myers AJ, Wiltfang J, O’Bryant S, Olichney JM, 
Alvarez V, Parisi JE, Singleton AB, Paulson HL, Collinge J, Perry WR, Mead S, Peskind E, Cribbs 
DH, Rossor M, Pierce A, Ryan NS, Poon WW, Nacmias B, Potter H, Sorbi S, Quinn JF, 
Sacchinelli E, Raj A, Spalletta G, Raskind M, Caltagirone C, Bossù P, Orfei MD, Reisberg B, 
Clarke R, Reitz C, Smith AD, Ringman JM, Warden D, Roberson ED, Wilcock G, Rogaeva E, 
Bruni AC, Rosen HJ, Gallo M, Rosenberg RN, Ben-Shlomo Y, Sager MA, Mecocci P, Saykin AJ, 
Pastor P, Cuccaro ML, Vance JM, Schneider JA, Schneider LS, Slifer S, Seeley WW, Smith AG, 
Sonnen JA, Spina S, Stern RA, Swerdlow RH, Tang M, Tanzi RE, Trojanowski JQ, Troncoso JC, 
Van Deerlin VM, Van Eldik LJ, Vinters HV, Vonsattel JP, Weintraub S, Welsh-Bohmer KA, 
Wilhelmsen KC, Williamson J, Wingo TS, Woltjer RL, Wright CB, Yu C-E, Yu L, Saba Y, Pilotto 
A, Bullido MJ, Peters O, Crane PK, Bennett D, Bosco P, Coto E, Boccardi V, De Jager PL, Lleo A, 
Warner N, Lopez OL, Ingelsson M, Deloukas P, Cruchaga C, Graff C, Gwilliam R, Fornage M, 
Goate AM, Sanchez-Juan P, Kehoe PG, Amin N, Ertekin-Taner N, Berr C, Debette S, Love S, 
Launer LJ, Younkin SG, Dartigues J-F, Corcoran C, Ikram MA, Dickson DW, Nicolas G, Campion 
D, Tschanz J, Schmidt H, Hakonarson H, Clarimon J, Munger R, Schmidt R, Farrer LA, Van 
Broeckhoven C, O’Donovan M, DeStefano AL, Jones L, Haines JL, Deleuze J-F, Owen MJ, 
Gudnason V, Mayeux R, Escott-Price V, Psaty BM, Ramirez A, Wang L-S, Ruiz A, van Duijn CM, 
Holmans PA, Seshadri S, Williams J, Amouyel P, Schellenberg GD, Lambert J-C, Pericak-Vance 
MA, Alzheimer Disease Genetics Consortium (ADGC), European Alzheimer’s Disease Initiative 
(EADI), Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium 
(CHARGE), Genetic and Environmental Risk in AD/Defining Genetic, Polygenic and 
Environmental Risk for Alzheimer’s Disease Consortium (GERAD/PERADES), 2019 Genetic 
meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, 
immunity and lipid processing. Nat. Genet 51, 414–430. 10.1038/s41588-019-0358-2. [PubMed: 
30820047] 

Kwiatkowski TJ, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, 
Kasarskis EJ, Munsat T, Valdmanis P, Rouleau GA, Hosler BA, Cortelli P, de Jong PJ, Yoshinaga 
Y, Haines JL, Pericak-Vance MA, Yan J, Ticozzi N, Siddique T, McKenna-Yasek D, Sapp PC, 
Horvitz HR, Landers JE, Brown RH, 2009 Mutations in the FUS/TLS gene on chromosome 16 
cause familial amyotrophic lateral sclerosis. Science 323, 1205–1208. 10.1126/science.1166066. 
[PubMed: 19251627] 

Labadorf A, Choi SH, Myers RH, 2018 Evidence for a pan-neurodegenerative disease response in 
Huntington’s and Parkinson’s disease expression profiles. Front. Mol. Neurosci 10 10.3389/
fnmol.2017.00430.

Leek JT, Storey JD, 2007 Capturing heterogeneity in gene expression studies by surrogate variable 
analysis. PLoS Genet. 3, e161 10.1371/journal.pgen.0030161.

Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD, 2012 The sva package for removing batch 
effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883. 
10.1093/bioinformatics/bts034. [PubMed: 22257669] 

Li MD, Burns TC, Morgan AA, Khatri P, 2014 Integrated multi-cohort transcriptional meta-analysis of 
neurodegenerative diseases. Acta Neuropathol. Commun 2, 93 10.1186/s40478-014-0093-y. 
[PubMed: 25187168] 

Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, Clarke M, Devereaux PJ, 
Kleijnen J, Moher D, 2009 The PRISMA statement for reporting systematic reviews and meta-
analyses of studies that evaluate healthcare interventions: Explanation and elaboration. The BMJ 
339.

Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP, 2011 Molecular 
signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740. 10.1093/bioinformatics/btr260. 
[PubMed: 21546393] 

Lipták T, 1958 On the combination of independent tests. Magy. Tud Akad Mat Kut. Int. Kozl 3, 171–
197.

López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G, 2013 The hallmarks of aging. Cell 
153, 1194–1217. 10.1016/j.cell.2013.05.039. [PubMed: 23746838] 

Maglott D, Ostell J, Pruitt KD, Tatusova T, 2007 Entrez gene: Gene-centered information at NCBI. 
Nucleic Acids Res. 35, D26–D31. 10.1093/nar/gkl993. [PubMed: 17148475] 

Noori et al. Page 13

Neurobiol Dis. Author manuscript; available in PMC 2021 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Mathys H, Davila-Velderrain J, Peng Z, Gao F, Mohammadi S, Young JZ, Menon M, He L, Abdurrob 
F, Jiang X, Martorell AJ, Ransohoff RM, Hafler BP, Bennett DA, Kellis M, Tsai L-H, 2019 Single-
cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337. 10.1038/
s41586-019-1195-2. [PubMed: 31042697] 

McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor J-P, Weintraub D, Aarsland D, Galvin J, 
Attems J, Ballard CG, Bayston A, Beach TG, Blanc F, Bohnen N, Bonanni L, Bras J, Brundin P, 
Burn D, Chen-Plotkin A, Duda JE, El-Agnaf O, Feldman H, Ferman TJ, Ffytche D, Fujishiro H, 
Galasko D, Goldman JG, Gomperts SN, Graff-Radford NR, Honig LS, Iranzo A, Kantarci K, 
Kaufer D, Kukull W, Lee VMY, Leverenz JB, Lewis S, Lippa C, Lunde A, Masellis M, Masliah E, 
McLean P, Mollenhauer B, Montine TJ, Moreno E, Mori E, Murray M, O’Brien JT, Orimo S, 
Postuma RB, Ramaswamy S, Ross OA, Salmon DP, Singleton A, Taylor A, Thomas A, Tiraboschi 
P, Toledo JB, Trojanowski JQ, Tsuang D, Walker Z, Yamada M, Kosaka K, 2017 Diagnosis and 
management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. 
Neurology 89, 88–100. 10.1212/WNL.0000000000004058. [PubMed: 28592453] 

McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, Klunk WE, Koroshetz 
WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, 
Weintraub S, Phelps CH, 2011 The diagnosis of dementia due to Alzheimer’s disease: 
recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on 
diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. J. Alzheimers Assoc 7, 263–
269. 10.1016/j.jalz.2011.03.005.

Mori K, Weng S-M, Arzberger T, May S, Rentzsch K, Kremmer E, Schmid B, Kretzschmar HA, Cruts 
M, Van Broeckhoven C, Haass C, Edbauer D, 2013 The C9orf72 GGGGCC repeat is translated 
into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339, 1335–1338. 10.1126/
science.1232927. [PubMed: 23393093] 

Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, 
Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden 
W, Kretzschmar HA, Trojanowski JQ, Lee VM-Y, 2006 Ubiquitinated TDP-43 in frontotemporal 
lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133. 10.1126/
science.1134108. [PubMed: 17023659] 

Oerton E, Bender A, 2017 Concordance analysis of microarray studies identifies representative gene 
expression changes in Parkinson’s disease: A comparison of 33 human and animal studies. BMC 
Neurol. 17, 58 10.1186/s12883-017-0838-x. [PubMed: 28335819] 

Patel A, Malinovska L, Saha S, Wang J, Alberti S, Krishnan Y, Hyman AA, 2017 ATP as a biological 
hydrotrope. Science 356, 753–756. 10.1126/science.aaf6846. [PubMed: 28522535] 

Patel H, Dobson RJB, Newhouse SJ, 2019 A meta-analysis of Alzheimer’s disease brain 
transcriptomic data. J. Alzheimers Dis 68, 1635–1656. 10.3233/JAD-181085. [PubMed: 
30909231] 

Phipson B, Lee S, Majewski IJ, Alexander WS, Smyth GK, 2016 Robust hyperparameter estimation 
protects against hypervariable genes and improves power to detect differential expression. Ann. 
Appl. Stat 10, 946–963. 10.1214/16-AOAS920. [PubMed: 28367255] 

Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, van Swieten JC, Seelaar 
H, Dopper EGP, Onyike CU, Hillis AE, Josephs KA, Boeve BF, Kertesz A, Seeley WW, Rankin 
KP, Johnson JK, Gorno-Tempini M-L, Rosen H, Prioleau-Latham CE, Lee A, Kipps CM, Lillo P, 
Piguet O, Rohrer JD, Rossor MN, Warren JD, Fox NC, Galasko D, Salmon DP, Black SE, 
Mesulam M, Weintraub S, Dickerson BC, Diehl-Schmid J, Pasquier F, Deramecourt V, Lebert F, 
Pijnenburg Y, Chow TW, Manes F, Grafman J, Cappa SF, Freedman M, Grossman M, Miller BL, 
2011 Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal 
dementia. Brain J. Neurol 134, 2456–2477. 10.1093/brain/awr179.

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK, 2015 Limma powers differential 
expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 
10.1093/nar/gkv007. [PubMed: 25605792] 

Scrivo A, Bourdenx M, Pampliega O, Cuervo AM, 2018 Selective autophagy as a potential therapeutic 
target for neurodegenerative disorders. Lancet Neurol. 17, 802–815. 10.1016/
S1474-4422(18)30238-2. [PubMed: 30129476] 

Noori et al. Page 14

Neurobiol Dis. Author manuscript; available in PMC 2021 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Sjöstedt E, Zhong W, Fagerberg L, Karlsson M, Mitsios N, Adori C, Oksvold P, Edfors F, Limiszewska 
A, Hikmet F, Huang J, Du Y, Lin L, Dong Z, Yang L, Liu X, Jiang H, Xu X, Wang J, Yang H, 
Bolund L, Mardinoglu A, Zhang C, von Feilitzen K, Lindskog C, Pontén F, Luo Y, Hökfelt T, 
Uhlén M, Mulder J, 2020 An atlas of the protein-coding genes in the human, pig, and mouse brain. 
Science 367 10.1126/science.aay5947.

Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M, 1997 Alpha-synuclein in 
Lewy bodies. Nature 388, 839–840. 10.1038/42166. [PubMed: 9278044] 

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy 
SL, Golub TR, Lander ES, Mesirov JP, 2005 Gene set enrichment analysis: A knowledge-based 
approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A 102, 
15545–15550. 10.1073/pnas.0506580102. [PubMed: 16199517] 

Subramanian A, Kuehn H, Gould J, Tamayo P, Mesirov JP, 2007 GSEA-P: A desktop application for 
gene set enrichment analysis. Bioinform. Oxf. Engl 23, 3251–3253. 10.1093/bioinformatics/
btm369.

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, 
Morris JH, Bork P, Jensen LJ, von Mering C, 2019 STRING v11: Protein–protein association 
networks with increased coverage, supporting functional discovery in genome-wide experimental 
datasets. Nucleic Acids Res. 47, D607–D613. 10.1093/nar/gky1131. [PubMed: 30476243] 

The Gene Ontology Consortium, 2019 The gene ontology resource: 20 years and still GOing strong. 
Nucleic Acids Res. 47, D330–D338. 10.1093/nar/gky1055. [PubMed: 30395331] 

Toth-Petroczy A, Palmedo P, Ingraham J, Hopf TA, Berger B, Sander C, Marks DS, 2016 Structured 
states of disordered proteins from genomic sequences. Cell 167, 158–170 e12. 10.1016/
j.cell.2016.09.010. [PubMed: 27662088] 

Vilchez D, Saez I, Dillin A, 2014 The role of protein clearance mechanisms in organismal ageing and 
age-related diseases. Nat. Commun 5, 5659 10.1038/ncomms6659. [PubMed: 25482515] 

Walsh CJ, Hu P, Batt J, Santos CCD, 2015 Microarray meta-analysis and cross-platform normalization: 
Integrative genomics for robust biomarker discovery. Microarrays Basel Switz. 4, 389–406. 
10.3390/microarrays4030389.

Walther DM, Kasturi P, Zheng M, Pinkert S, Vecchi G, Ciryam P, Morimoto RI, Dobson CM, 
Vendruscolo M, Mann M, Hartl FU, 2017 Widespread proteome remodeling and aggregation in 
aging C. elegans. Cell 168, 944 10.1016/j.cell.2016.12.041.

Wan Y-W, Al-Ouran R, Mangleburg CG, Perumal TM, Lee TV, Allison K, Swarup V, Funk CC, 
Gaiteri C, Allen M, Wang M, Neuner SM, Kaczorowski CC, Philip VM, Howell GR, Martini-
Stoica H, Zheng H, Mei H, Zhong X, Kim JW, Dawson VL, Dawson TM, Pao P-C, Tsai L-H, 
Haure-Mirande J-V, Ehrlich ME, Chakrabarty P, Levites Y, Wang X, Dammer EB, Srivastava G, 
Mukherjee S, Sieberts SK, Omberg L, Dang KD, Eddy JA, Snyder P, Chae Y, Amberkar S, Wei W, 
Hide W, Preuss C, Ergun A, Ebert PJ, Airey DC, Mostafavi S, Yu L, Klein H-U, Accelerating 
Medicines Partnership-Alzheimer’s Disease Consortium, Carter GW, Collier DA, Golde TE, 
Levey AI, Bennett DA, Estrada K, Townsend TM, Zhang B, Schadt E, De Jager PL, Price ND, 
Ertekin-Taner N, Liu Z, Shulman JM, Mangravite LM, Logsdon BA, 2020 Meta-analysis of the 
Alzheimer’s disease human brain transcriptome and functional dissection in mouse models. Cell 
Rep. 32, 107908 10.1016/j.celrep.2020.107908. [PubMed: 32668255] 

Wang X, Lin Y, Song C, Sibille E, Tseng GC, 2012 Detecting disease-associated genes with 
confounding variable adjustment and the impact on genomic meta-analysis: With application to 
major depressive disorder. BMC Bioinform. 13, 52 10.1186/1471-2105-13-52.

Wang Q, Zhang Y, Wang M, Song W-M, Shen Q, McKenzie A, Choi I, Zhou X, Pan P-Y, Yue Z, 
Zhang B, 2019 The landscape of multiscale transcriptomic networks and key regulators in 
Parkinson’s disease. Nat. Commun 10, 5234 10.1038/s41467-019-13144-y. [PubMed: 31748532] 

Wesseling H, Mair W, Kumar M, Schlaffner CN, Tang S, Beerepoot P, Fatou B, Guise AJ, Cheng L, 
Takeda S, Muntel J, Rotunno MS, Dujardin S, Davies P, Kosik KS, Miller BL, Berretta S, Hedreen 
JC, Grinberg LT, Seeley WW, Hyman BT, Steen H, Steen JA, 2020 Tau PTM profiles identify 
patient heterogeneity and stages of Alzheimer’s disease. Cell. 10.1016/j.cell.2020.10.029.

Zaykin DV, 2011 Optimally weighted Z-test is a powerful method for combining probabilities in meta-
analysis. J. Evol. Biol 24, 1836–1841. 10.1111/j.1420-9101.2011.02297.x. [PubMed: 21605215] 

Noori et al. Page 15

Neurobiol Dis. Author manuscript; available in PMC 2021 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, Vogel H, Steinberg GK, 
Edwards MSB, Li G, Duncan JA, Cheshier SH, Shuer LM, Chang EF, Grant GA, Gephart MGH, 
Barres BA, 2016 Purification and characterization of progenitor and mature human astrocytes 
reveals transcriptional and functional differences with mouse. Neuron 89, 37–53. 10.1016/
j.neuron.2015.11.013. [PubMed: 26687838] 

Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS, Watt ML, Eklund AC, Zhang-James Y, Kim 
PD, Hauser MA, Grünblatt E, Moran LB, Mandel SA, Riederer P, Miller RM, Federoff HJ, 
Wüllner U, Papapetropoulos S, Youdim MB, Cantuti-Castelvetri I, Young AB, Vance JM, Davis 
RL, Hedreen JC, Adler CH, Beach TG, Graeber MB, Middleton FA, Rochet J-C, Scherzer CR, 
Global PD Gene Expression (GPEX) Consortium, 2010 PGC-1α, a potential therapeutic target for 
early intervention in Parkinson’s disease. Sci. Transl. Med 2, 52–73. 10.1126/
scitranslmed.3001059.

Noori et al. Page 16

Neurobiol Dis. Author manuscript; available in PMC 2021 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. Methods Overview.
Summary of the data analysis pipeline applied in this study.
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Fig. 2. Dataset Selection Workflow.
Description of the systematic review of human transcriptomics from AD, LBD, and ALS-

FTD patients in the Gene Expression Omnibus (GEO) and ArrayExpress databases 

according to PRISMA guidelines. After applying pre-specified inclusion and exclusion 

criteria, our systematic review yielded 1677 control and 1563 disease samples from 26 AD, 

21 LBD, and 13 ALS-FTD datasets.
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Fig. 3. Pan-Neurodegenerative Genes.
The top 1000 upregulated and top 1000 downregulated genes by meta-analytic z-score for 

AD, LBD, and ALS-FTD were intersected to define the pan-neurodegenerative gene 

signature, which was composed of 88 upregulated and 45 downregulated genes. The color 

for each gene corresponds to the cell-type with the highest expression for that gene by 

average FPKM (Zhang et al., 2016).
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Fig. 4. Pan-Neurodegenerative Pathways.
Genes with the top z-scores of the pan-neurodegenerative pathways were visualized in 

heatmaps, where columns represent individual datasets included in the meta-analysis, and 

rows represent moderated z-scores of differential expression for a specific gene across these 

datasets. Annotation bars represent z-scores, disease label, and CNS region (EC = entorhinal 

cortex, HIPP = hippocampus, PCG = posterior cingulate gyrus, TEMP = temporal cortex, 

FRONT = frontal cortex, PAR = parietal cortex, DMNV = dorsal motor nucleus of the 

vagus, LC = locus coeruleus, SN = substantia nigra, STR = striatum, MOT = motor cortex, 

SC = spinal cord).

Noori et al. Page 21

Neurobiol Dis. Author manuscript; available in PMC 2021 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. Disease-Predominant Pathways.
Gene set enrichment analysis (GSEA) normalized enrichment scores (NES) for 

representative disease-predominant pathways, averaged across the grouped GO: Biological 

Processes, are shown.
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