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This study aimed to investigate sex differences in cerebral blood flow (CBF) and serum

inflammatory cytokines, as well as their correlations in patients with acute-stage mild

traumatic brain injury (mTBI). Forty-one patients with mTBI and 23 matched healthy

controls underwent 3D-pseudo-continuous arterial spin labeling imaging on 3T magnetic

resonance imaging. The patients underwent cognitive evaluations and measurement of

a panel of ten serum cytokines: interleukin (IL)-1I, IL-4, IL-6, IL-8, IL-10, IL-12, C–C

motif chemokine ligand 2, interferon-gamma, nerve growth factor-beta (β-NGF), and

tumor necrosis factor-alpha (TNF-α). Spearman rank correlation analysis was performed

to evaluate the relationship between inflammation levels and CBF. We found that both

male and female patients showed increased IL-1L and IL-6 levels. Female patients also

demonstrated overexpression of IL-8 and low expression of IL-4. As for CBF levels, three

brain regions [the right superior frontal gyrus (SFG_R), left putamen, and right precuneus]

increased in male patients while three brain regions [the right superior temporal gyrus

(STG_R), left middle occipital gyrus, and right postcentral (PoCG_R)] decreased in female

patients. Furthermore, the STG_R in female controls was positively correlated with β-NGF

while the right PoCG_R in female patients was negatively correlated with IL-8. In addition,

compared with male patients, female patients showed decreased CBF in the right

pallidum, which was negatively correlated with IL-8. These findings revealed abnormal

expression of serum inflammatory cytokines and CBF levels post-mTBI. Females may be

more sensitive to inflammatory and CBF changes and thus more likely to get cognitive

impairment. This may suggest the need to pay closer attention to the female mTBI group.
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INTRODUCTION

Traumatic brain injury (TBI), which is often referred to as
a silent epidemic, is defined as a neurotrauma caused by a
mechanical force applied to the head (1). TBI is a significant
public health issue with an increasing worldwide incidence (2).
Mild TBI (mTBI) comprises more than 80% of all TBI cases
(3) and often presents diagnostic and therapeutic challenges
(4), especially in asymptomatic patients with mTBI-indicative
imaging characteristics. Sex differences after mTBI has become
a popular research topic recently. Animal experiments have
claimed that compared with males, females have a higher survival
rate and cognitive function post-TBI (5, 6), suggesting that female
sexuality plays a neuroprotective role to some extent. In contrast,
multiple human observational studies reported poorer outcomes
in females after TBI (7). The role of sex differences in mTBI in
humans is indeed an interesting topic to explore.

Secondary brain injury such as hypotension, hypoxia,
fever, and intracranial hypertension, can impair brain tissue
oxygenation and cerebral blood flow (CBF) (8). However,
owing to the heterogeneity and complexity of the mechanisms
underlying traumatic brain injury (9), CBF levels differ
across patients with mTBI. 3D-pseudo-continuous arterial spin
labeling technology allows for non-invasive and quantitative
measurement (10, 11) and can directly reflect CBF changes,
which yields a wide range of potential clinical application.
Cunningham et al. (12), Kawai et al. (13), and Rostami et
al. (14) have assessed CBF changes on moderate and severe
TBI. Studies with respect to cognitive function, functional
connections, and cortical thickness (15–18) in response to mTBI
have also been focused on, some of which paid special attention
to sex differences. For example, Bai et al. (16) suggested that
increased CBF in the posterior parietal cortex could predict
worse cognitive performance in male patients, which indicated a
protective effect against neuropsychological impairments among
females. However, the CBF changes in these brain regions in
response to sex differences remain unclear, and there have
been inconsistent results on mTBI. Therefore, further analysis
is necessary.

Extensive evidence suggests that immune system activation
and inflammation are central mediators of secondary injury after
TBI (19), and emerging data showing that blood-based TBI
biomarkers have the potential to predict the TBI outcome (20).
Previous studies on biomarkers usually focused on neuronal cell
body injury (UHL-L1, NSE) (21, 22), astroglial injury (GFAP,
S100B) (23, 24), neuronal cell death (alpha II-spectrin breakdown
products) (25, 26), and post-injury neurodegeneration (Tau)
(27). However, there has been relatively little discussion on
inflammatory cytokines in patients with mTBI. Within a few
minutes of TBI trauma, various inflammatory cytokines are
released into the central nervous system and peripheral blood
(20, 28). A growing body of evidence supports the idea that
limiting inflammatory response can improve the outcome of
many diseases (29), including autoimmune diseases and multi-
system trauma.

Serum biomarkers are currently being used clinically to
diagnose some diseases, for instance, such as troponin in

myocardial infarction, brain naturetic peptide in congestive heart
failure, and amylase/lipase in pancreatitis (30). In addition,
reverse phase protein microarray has identified modulation of
inflammatorymarkers, especially interleukins in TBI studies (30).
Although no single or panel of biomarkers of brain injury has
unequivocally passed the specificity test across insults, these
previously identified markers may help guide therapy in a
variety of clinical settings (31), which leads us to the idea
that there are some important members of the inflammatory
cytokines possibly associated with mTBI. Trauma-related serum
inflammatory cytokines, which include tumor necrosis factor-
alpha (TNF-α), interleukin (IL)−1β, IL-2, IL-4, IL-6, IL-8, IL-
18, IL-7, and IL-10, which may exert anti-inflammatory effects
(32–34). However, the pro-inflammatory and anti-inflammatory
effects in cellular damage and protection remain unclear, and
most of them are focused on moderate-to-severe TBI (30). Our
team previously studied 52 patients with mTBI and observed
an increase in IL-1β, IL-6, and C–C motif chemokine ligand
2 (CCL2) levels over a period of 3 months (35). Based on
these findings, we want to further explore the sex differences
of inflammatory cytokines in the acute phase and evaluate their
effects on cognitive impairments in combination with changes of
CBF levels.

This study aimed to determine how the serum inflammatory
cytokines and cerebral blood flow changed with sex differences
post-mTBI. Additionally, we aimed to further evaluate their
clinical utility by analyzing the correlation between these
two factors. This may provide some valuable information for
facilitating early clinical prediction and targeted treatment
of mTBI.

MATERIALS AND METHODS

Participants
We enrolled patients with mTBI who visited the Second
Affiliated Hospital of Wenzhou Medical University Emergency
Department between August 2016 and June 2017. The inclusion
criteria were based on the principles of the World Health
Organization’s Collaborating Centre for Neurotrauma Task Force
as follows (36): (i) an initial Glasgow Coma Scale (GCS) score
of 13–15; (ii) loss of consciousness (LOC) episode for < 30min,
post-traumatic amnesia (PTA) < 24 h, and other transient
neurological abnormalities, including focal signs, seizures, and
intracranial lesions not requiring surgery; (iii) mTBI onset within
the previous 1 week; (iv) age >18 years; and (v) agreement to
communicate by telephone or email and to return to the hospital
for follow-up assessment. During initial screening, priority was
given to patients with mTBI who were already examined and
were negative for chest and abdominal abnormalities. At the
same time, there were no abnormalities on CT scans of all
the patients. The exclusion criteria were as follows: (i) LOC
> 30min, PTA > 24 h, and a GCS score < 13 after 30min;
(ii) history of TBI, neurological disorders, chronic psychiatric
conditions, and substance abuse; (iii) intracranial hemorrhage,
hematoma formation, cerebral hernia, etc. (abnormal CT and
MRI findings); (iv) intubation and/or presence of skull fracture
and sedation use; (v) mTBI manifestation as a complication
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of other injuries (e.g., systemic, facial, or spinal cord injuries);
(vi) other problems (e.g., psychological trauma, language barrier,
or coexisting medical conditions); and (vii) mTBI caused by
penetrating craniocerebral injury.

We enrolled a total of 41 patients (17 females and 24 males)
with mTBI who completed the initial assessments. We recruited
23 sex-, age-, and education-matched healthy participants (13
females and 10 males) without psychiatric disorders from local
imaging research facilities. All the participants were right-
handed based on the Edinburgh Handedness Inventory (37). All
participants provided in-person written informed consent. This
study was approved by the Research Ethics Committee of the
Second Affiliated Hospital of Wenzhou Medical University and
conducted in accordance with the Declaration of Helsinki.

Neuropsychological Tests
All the participants underwent comprehensive cognitive
assessments within 48 h of blood sample collection and MRI
acquisition. This regimen was based on a previous study on
TBI-related brain structural alterations (38). The cognitive
assessments performed were as follows: (i) Trail Making Test
Part A and Digit Symbol Coding score from the Wechsler
Adult Intelligence Scale-III (WAIS-III) for measuring cognitive
information processing speed; (ii) Forward Digit Span and
Backward Digit Span from the WAIS-III to assess working
memory and executive function (39); (iii) Language Fluency
Test to assess verbal fluency, including language ability and
executive function (40); (iv) Beck Depression Inventory-II to
assess depression severity (41); (v) PTSD Checklist-Civilian
Version (PCL-C) (42); and (vi) Fatigue Severity Scale (FSS) (43)
(FSS) and Insomnia Severity Index (ISI) (44). Additionally, the
Rivermead Post-Concussion Symptom Questionnaire (RPCS)
was used to measured the post-concussive symptoms (45).

Serum Collection and Separation
Serum samples were collected within 48 h after injury in the
patients’ group and depending on the controls’ will within
the same time period, usually in the early morning at 07:00–
08:00A.M. Before sample collection, participants were not
allowed to take medicine or eat food for almost about 8 h. Take
5mL of subjects’ fasting peripheral blood in BD vacuum flask
(red top) (Cat#367812) (preservative-free, 8mL). The blood was
first left standing at room temperature for 30–60min. After blood
coagulation, the serum was then separated at room temperature
(4,000 rpm, 5min). The serum was injected into 2mL cryotube
at the rate of 500 µL per sample, and labeled. All the sample
tubes were transferred to −80◦C for subsequent detection of
inflammatory factors. Blood samples containing inflammatory
cytokines were processed using the Luminex kit (Luminex,
Austin, TX, USA) following the manufacturer’s instructions (46).
A fluorescence detection system was used to simultaneously
detect the binding of each protein onto microspheres, which
allowed determination of several analytes within a single sample.
The intra- and inter-assay coefficients of variation for Luminex
quantification were< 20 and 25%, respectively, and the detection
limit was < 0.01 pg/mL. Further, the detection limit was < 0.01
pg/mL.We analyzed inflammatory cytokines that reflect different

TABLE 1 | Summary of demographics and neuropsychological information for

patients with mTBI and control subjects.

mTBI (n = 41) Controls (n = 23) P-value

Demographic

Age (y) 37.4 ± 2.5 36.2 ± 2.7 0.120a

Gender (M/F) 24/17 10/13 0.226a

Education (Y) 8.4 ± 4.0 9.1 ± 6.3 0.725a

Neuropsychological tests

TMT-A (s) 64.1 ± 44.3 55.8 ± 32.9 0.409b

RPCS 10.1 ± 7.5 2.4 ± 2.9 <0.001*b

PCL-C 24.6 ± 6.1 17.0 ± 0.0 <0.001*b

DCS 33.5 ± 16.2 38.8 ± 17.9 0.142b

FDS 7.8 ± 1.5 7.8 ± 1.7 0.657b

BDS 4.0 ± 1.5 4.3 ± 1.9 0.359b

LF 10.3 ± 2.5 17.4 ± 5.7 < 0.001*b

Beck 4.3 ± 4.0 0.03 ± 0.2 < 0.001*b

FSS 9.8 ± 4.1 9.0 ± 0.0 0.127b

ISI 6.8 ± 5.9 1.5 ± 2.2 <0.001*b

MTBI severity n (%)

Loss of conscious 36 (87.8%) NA

Post-traumatic amnesia 5 (12.2%) NA

GCS = 15 41 (100%) NA

GCS = 13, 14 0 (0%) NA

Causes for mTBI n (%)

Acceleration/deceleration 24 (58.5%) NA

Ground level fall 3 (7.0%) NA

Fall from height 5 (12.2%) NA

Assaults 8 (19.5%) NA

Direct impact blow to head 1 (2.0%) NA

aChi-square test; btwo-independent-sample t-test; TMT-A, Trail-Making Test Part A;

RPCS, Rivermead Post-Concussion Symptom Questionnaire; PCL-C, Post-traumatic

stress disorder Checklist civilian; DSC, Digit Symbol Coding; FDS, Forward Digit Span

Task; BDS, Backward Digit Span Task; LF, Language Fluency Test; Beck, Beck Depression

Inventory; FSS, Fatigue Severity Scale; ISI, Insomnia Severity Index; GCS, Glasgow Coma

Scale; mTBI, mild traumatic brain injury; NA, non-available. *Significant at p < 0.05.

aspects of TBI injury, including pro-inflammatory cytokines (IL-
1β, IL-6, and IL-12), anti-inflammatory cytokines (IL-4 and IL-
10), CCL2, IL-8, TNF-α, and interferon-gamma.

Image Acquisition
After acute head injury, all the patients underwent non-contrast
CT scans (LightSpeed VCT, GE Healthcare, Milwaukee, WI,
USA) scans to exclude other intracranial lesions. All MRI scans
were obtained on a 3.0T MR system (Discovery MR750 3.0T; GE
Healthcare) equipped with a custom-built head holder for the
prevention of head movement. The following scan parameters
were chosen based on previous studies and the Equipment
Parameter Recommendation Guide (47): time of repetition (TR)
= 5,046ms, time of echo (TE) = 11ms, slice thickness = 3mm,
field-of-view (FOV) = 24 × 24 mm2, labeling time =1.5 s, and
post-labeling delay = 2,000ms. Moreover, a separate M0 image
used for CBF quantification was obtained without magnetization
preparation. Subsequently, we obtained high-resolution, sagittal,
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TABLE 2 | Neuropsychological tests outcomes in patients with mTBI and healthy controls.

Neuropsychological tests Males P-value Females P-value

Patient

(n = 24)

Control

(n = 17)

Patient

(n = 10)

Control

(n = 13)

TMT-A 74.2 ± 12 48.8 ± 4.5 0.250 51.6 ± 4.5 33.2 ± 4.4 0.002*

RPCS 9.2 ± 1.1 1.1 ± 0.3 <0.001* 11.3 ± 1.6 3.5 ± 0.7 <0.001*

PCL-C 23.2 ± 0.7 17.0 ± 0.0 <0.001* 25.7 ± 1.4 17.0 ± 0.0 <0.001*

PCS 36.9 ± 3.7 42.9 ± 3.6 0.242 34.5 ± 2.9 52.3 ± 2.8 <0.001*

FDS 7.9 ± 0.4 7.9 ± 0.3 0.982 7.9 ± 0.3 9.3 ± 0.3 0.006*

BDS 3.8 ± 0.3 3.9 ± 0.2 0.656 3.8 ± 0.3 5.5 ± 0.5 0.004*

LF 10.5 ± 1.0 20.8 ± 1.4 <0.001* 10.4 ± 1.2 18.6 ± 1.4 <0.001*

Beck 3.9 ± 0.5 0.0 ± 0.0 <0.001* 5 ± 1.2 0.0 ± 0.0 <0.001*

FSS 11.9 ± 1.6 9.0 ± 0.0 0.043* 9.5 ± 0.4 9.0 ± 0.0 0.186

ISI 7.1 ± 0.9 1.0 ± 0.5 <0.001* 7.1 ± 1.6 1.9 ± 0.4 0.029*

TMT-A, Trail-Making Test Part A; RPCS, Rivermead Post-Concussion Symptom Questionnaire; PCL-C, Post-traumatic stress disorder Checklist civilian; DSC, Digit Symbol Coding;

FDS, Forward Digit Span Task; BDS, Backward Digit Span Task; LF, Language Fluency Test; Beck, Beck Depression Inventory; FSS, Fatigue Severity Scale; ISI, Insomnia Severity Index;

mTBI, mild traumatic brain injury. *Significant at p < 0.05.

TABLE 3 | MTBI inflammatory cytokines detection outcomes in patients with mTBI and healthy controls.

Serum cytokine Males P-value Females P-value

Patient

(n = 24)

Control

(n = 17)

Patient

(n = 10)

Control

(n = 13)

β-NGF 6.4 ± 11.3 3.9 ± 4.0 0.373 10.1 ± 22.7 2.8 ± 1.1 0.859

CCL2 225.7 ± 85.1 247.2 ± 48.3 0.163 228.7 ± 70.6 236.4 ± 85.4 0.965

IL-1β 3.2 ± 1.3 1.5 ± 0.6 0.038* 7.5 ± 2.6 2.7 ± 0.5 0.026*

IL-4 13.6 ± 19.2 10.0 ± 7.8 0.983 7.2 ± 13.6 16.0 ± 8.1 0.007*

IL-6 2.6 ± 3.5 0.8 ± 0.3 0.004* 4.2 ± 2.6 1.2 ± 0.3 0.009*

IL-8 9.7 ± 5.0 7.5 ± 1.8 0.197 9.8 ± 4.2 6.4 ± 2.4 0.025*

IL-10 0.8 ± 0.7 1.1 ± 0.9 0.512 0.5 ± 0.5 0.7 ± 0.4 0.088

IL-12 37.0 ± 67.4 26.3 ± 22.4 0.330 31.5 ± 46.1 43.1 ± 73.2 0.410

INF-γ 24.1 ± 67.8 15.4 ± 13.7 0.226 23.1 ± 28.8 14.7 ± 8.2 0.893

TNF-α 3.4 ± 2.9 2.5 ± 1.5 0.626 3.2 ± 3.7 2.7 ± 0.9 0.315

Bold indicates a statistically significant difference; mTBI, mild traumatic brain injury; β-NGF, nerve growth factor beta; CCL2, C–C motif chemokine ligand 2; IL-1β, interleukin-1 beta;

IL-4, interleukin 4; IL-6, interleukin 6; IL-8, interleukin 8; IL-10, interleukin 10; IL-12, interleukin 12; INF-γ, interferon gamma; TNF-α, tumor necrosis factor alpha. *Significant at p < 0.05.

three-dimensional T1 images using the following parameters:
TR = 2,100ms, TE = 3ms, slice thickness = 1mm, FOV
= 25.6 × 25.6 mm2, and flip angle = 9◦. Additionally, axial
susceptibility-weighted imaging (SWI) was performed to exclude
micro-bleeding using the following parameters: TR = 37.8ms,
TE= 25ms, flip angle= 15◦, slice thickness= 2mm, slices= 70,
FOV= 230× 230 mm2, and matrix size= 512× 512 mm2.

3D-Arterial Spin Cerebral Blood Flow
Analysis
The images were processed at the Wellcome Centre for Human
Neuroimaging, UCL Queen Square Institute of Neurology,
London, UK) on the MATLAB platform (R2013a; MathWorks,
Natick, MA, USA). First, the images were registered to the
standard template (NIST,MNI,McGill University,Montreal, QC,
Canada). This was followed by resetting of arterial spin-labeling
(ASL) images and centering of the structural images on the image

matrix. Cerebral blood flow maps (units: mL/100 g tissue/min)
were generated using batch scripts available on ASLtbx (48). T1
images were segmented into gray matter, white matter, and CSF
tissue probability maps (TPMs); furthermore, we generated a
binary mask to extract the mean CBF. Next, the ASL images were
remapped onto individual T1 spaces. Finally, themean CBFmaps
were smoothened using a 6-mm full-width-at-half-maximum
isotropic Gaussian filter.

Statistical Analyses
Statistical analyses were performed using SPSS (version 23, IBM,
Armonk, NY, USA) and Prism 7 (GraphPad Software, San Diego,
CA, USA). For all continuous variables, the normality of data
distribution was examined using the Shapiro-Wilk test. Between-
group comparisons of normally and non-normally distributed
data were performed using the independent two-sample t-test
and theMann-WhitneyU-test, respectively. Categorical variables
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TABLE 4 | The significantly altered CBF brain regions between the patients with mTBI and healthy controls.

Brain regions CBF units: mL/100g

tissue/min

Peak MNI coordinate t-value number of

voxels

x y z

Decreased CBF in female patients vs. female controls

Superior Temporal Gyrus(R) 42.676 68 −18 12 −3.662 71

Middle Occipital Gyrus (L) 57.053 −24 −58 36 −4.158 103

Postcentral Gyrus(R) 52.662 36 −30 40 −3.710 43

Increased CBF in male patients vs. male controls

Superior Frontal Gyrus (R) 64.030 −14 26 58 3.343 28

Putamen(L) 48.713 −28 −2 4 4.003 375

Precuneus(R) 58.787 10 −46 66 3.889 202

Decreased CBF in male patients vs. female patients

Precuneus (L) 49.127 −16 −56 36 −3.421 77

Increased CBF in male patients vs. female patients

Pallidum(R) 55.917 12 10 −4 3.433 34

CBF, cerebral blood flow; mTBI, mild traumatic brain injury; MNI, Montreal Neurological Institute; L, left; R, right; x, y, z, coordinates of peak voxel.

were assessed using the chi-square test. Statistical significance
was set at p < 0.05. For brain regions with varying mean
CBF measurements, we extracted values using REST (http://
restfmri.net/forum/RESTplusV1.2). Spearman rank correlation
analysis was performed to determine correlations between serum
cytokine levels and CBF levels in patients withmTBI. Here, serum
levels of inflammatory factors, age, sex, and educational level
were considered as independent variables while CBF was the
dependent variable.

RESULTS

Demographics and Neuropsychological
Data
We enrolled 41 patients (17 females and 24 males) with mTBI,
with a mean age of 37.4 ± 2.5 years and 23 controls (13
females and 10 males) with a mean age of 36.2 ± 2.7 years.
There were no between-group differences in age, education level,
and sex (p > 0.05). Table 1 presents the demographic and
clinical characteristics of both groups. All the patients with mTBI
had an initial GCS score of 15. The causes of injury included
acceleration/deceleration (58.5%), assault (19.5%), falls (19.2%,
ground-level falls and falls from height), and direct-impact blows
to the head (2.0%).

Compared with all the controls, the patients with mTBI
performed worse in the RPCS, PCL–C, LF, Beck, and ISI (p <

0.001, Table 1). Compared with female controls, female patients
performed worse on almost all neuropsychological tests except
for the FSS (p < 0.01 for all tests, Table 2). Compared with male
controls, male patients performed worse on the RPCS, PCL–C,
LF, Beck, FSS, and ISI (p < 0.05, Table 2).

Serum Cytokine Levels
Compared with male controls, male patients showed significantly
increased levels of IL-1β (p = 0.038) and IL-6 (p = 0.004) in the
acute phase. On the contrary, compared with female controls,

female patients showed significantly decreased levels of IL-4
(p=0.007), as well as increased levels of IL-1β (p= 0.026), IL-6 (p
= 0.009), and IL-8 (p = 0.025). Table 3 presents the descriptive
statistics for serum cytokine levels.

Differences in Changes in Cerebral Blood
Flow Levels
Post-mTBI CBF changes occurred in different brain regions
in male and female patients. Compared with female controls,
female patients showed three decreased CBF regions in the
right superior temporal gyrus (STG_R), left middle occipital
gyrus (MOG_L), and right postcentral gyrus (PoCG_R) (Table 4
and Figure 1). In contrast, compared with male controls, male
patients showed three increased CBF regions in the right superior
frontal gyrus (SFG_R), left putamen, and right precuneus
(Figure 2). Additionally, compared with male patients, female
patients showed lower and higher CBF levels in the pallidus and
left precuneus, respectively (Figure 3).

Correlation Between Cerebral Blood Flow
and Serum Inflammatory Factors
Figure 4 presents the relationships between CBF levels and
serum inflammatory cytokines. There was a positive correlation
between decreased CBF levels in the STG_R with β-NGF
downregulation in female controls (r = 0.618, p = 0.024).
Moreover, CBF levels in the PoCG_R were negatively correlated
with IL-8 levels in female patients (r = −0.555, p = 0.021).
Specifically, compared with the male patients, female patients
showed a negative correlation of CBF levels in the pallidus with
IL-8 levels (r =−0.634, p= 0.006).

DISCUSSION

This study investigated post-mTBI changes in CBF levels and
serum inflammatory cytokines, as well as their correlations.
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FIGURE 1 | Results of brain region changes in mTBI female patients compared with female controls. The CBF of female patients in right superior temporal gyrus (A),

left middle occipital gyrus (B), and right postcentral gyrus (C) showed decreased perfusion levels compared with female controls. mTBI, mild traumatic brain injury;

CBF, cerebral blood flow.

We observed some differences in serum inflammatory cytokines
and CBF levels post-mTBI between the two sexes. To the best
of our knowledge, this is the first study to investigate sex
differences in inflammatory cytokines expression and CBF levels
in patients withmTBI. Using supplementary neurocognitive tests,
we further explored relationships among these factors, which
may provide some valuable information for facilitating early
clinical prediction and targeted treatment of mTBI.

In the acute phase, we discovered some sex differences in
inflammatory cytokines post-mTBI. We found that both male
and female patients had increased IL-1β and IL-6 levels, which
was consistent with our previous team works (35). It has
been reported that pattern recognition receptors can induce
the transcription of inflammatory cytokines, including TNF-
α, and interleukins (such as IL-1β, IL-6, and IL-18), which
orchestrate a systemic inflammatory response (49). IL-6 and IL-
1β have been found to be significantly elevated in the acute
phase after mTBI (50). Literature suggested that TNF-α, IL-1β,

and IL-8 are released early (within hours to 2 days) after the
traumatic injury, reflecting their putative roles as inflammatory
response initiators (51). Increased expression of IL-1β and IL-
6, which are classic pro-inflammatory cytokines, are suggestive
of post-mTBI inflammatory responses and presents significant
danger to patients. IL-1β has similar functions as TNF-α,
which is associated with mTBI-related cognitive impairment
in acute working memory (35). Another report found that
neutralizing IL-6 can reduce the neuroinflammatory response,
significantly reduce brain damage, and completely eliminate the
loss of motor coordination ability after mTBI (52). Multiple
neuropsychological scale abnormalities in the patient group
suggested that elevated levels of IL-1β and IL-6 may indeed have
an impact on cognition in patients with mTBI.

However, in our female patients, mTBI-mediated
neuroinflammation was characterized by high and low IL-8
and low IL-4 expression, respectively. Previous studies have
reported that IL-8, excreted by monocytes and endothelial
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FIGURE 2 | Results of brain region changes in mTBI male patients compared with male controls. The CBF of male patients in right superior frontal gyrus (A), left

putamen (B), and right precuneus (C) showed increased perfusion levels compared with male controls. mTBI, mild traumatic brain injury; CBF, cerebral blood flow.

cells, can induce both regenerative and degenerative processes,
and numerous studies have shown that IL-8 can aggravate
TBI-induced damage (53–55). Serum IL-8 levels can be used to
assess TBI severity with IL-8 overexpression often predicting a
poor prognosis for patients with TBI (54). IL-4, which is secreted
by T helper 2 cells, is crucially involved in higher brain functions,
including spatial memory, learning, and neurological disorders
(56). Studies on stroke and multiple sclerosis have shown that
IL-4 has a protective factor against spinal cord injury (57). A
study on IL-4 knockout mice reported that IL-4 injection into
the spinal cord induced microglial and macrophagic expression,
which promotes anti-inflammatory effects (58). In our study,
high and low IL-8 and low IL-4 expression, respectively, indicated
greater mTBI severity in female patients, which suggests that
females have a greater risk of post-trauma inflammatory cytokine
imbalance and worse prognosis compared with males.

Although there is a lot of literature pointing to the role of
individual inflammatory cytokiness in TBI, previous reviews also
concluded that “no biomarker has consistently demonstrated the
ability to predict post-concussive syndrome after mTBI” (59) and
“the discriminative power of the biomarkers alone was limited”
(60), which prompted us to do more research in depth.

There has been increasing research on brain microcirculation
in patients with TBI (61), however, sex differences in the
regulation of CBF and serum inflammatory cytokines remain
unclear. Generally, in our present study, we found that there
were significant differences in CBF levels between different sex
groups. In female patients with mTBI, there was a decrease in
CBF levels in the STG_R, MOG_L, and PoCG_R. In contrast,
in male patients, there were increased CBF levels in the SFG_L,
left putamen, and right precuneus. The precuneus and frontal
cortex are important parts of the default mode network (DMN)
(62). Previous studies have shown that after mTBI injury, the
balance between DMN and other brain regions seems to be
partially disrupted, which may lead to cognitive fatigue (61).
Increased CBF in the precuneus and frontal cortex may be a
potentially compensatory response, suggesting protection from
the DMN against more severe cognitive impairment in males.
The putamen, a component of the striatum, receives input
information from the prefrontal cortex, and plays a larger role in
working memory (63). The increased CBF levels in these three
regions in the male patients may represent a neuroprotective
mechanism where the brain attempts to maintain its energy
balance during the acute mTBI phase to compensate for
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FIGURE 3 | Results of brain region changes in mTBI male patients compared with female patients. The CBF of male patients in left precuneus (A) is lower than female

patients, while the right pallidum (B) showed increased perfusion levels. mTBI, mild traumatic brain injury; CBF, cerebral blood flow.

FIGURE 4 | Results of correction between CBF and serum inflammatory factors. (A) Decreased CBF perfusion in the right superior temporal gyrus in female controls

was associated with decreased β-NGF, which was positively correlated. (B) In female patients, CBF level in the right posterior central gyrus was negatively correlated

with inflammatory factor IL-8. (C) In the right pallidum, the higher the IL-8 concentration is, the lower the blood volume level in that area. CBF, cerebral blood flow;

β-NGF, nerve growth factor beta; IL-8, interleukin 8.

decreased ATP production in the damaged regions (16). STG is
known as a region associated with many auditory language tasks,
involving the integration of information from auditory and visual
tasks (64). PoCG (Brodmann area 1,2,3) is the primary sensory
receptive area of touch and kinesthesia, and a correlation has
been found between PoCG volume and hallucination severity
(65). The occipital cortex is the visual perception and processing
center, which responsible for the multi-sensory integration
of visual, auditory, and tactile information (66). These three

decreased CBF levels in females patients may indicate inhibition
or damage of neuroprotective mechanisms. One major biological
difference between females andmales may be the cyclical changes
in the steroid estrogen and progestin levels in females during
their menstrual periods (67). It is thus possible that normal
physiological post-mTBI in these gonadal hormones may be the
basis for the relatively poor outcomes observed.

Our team previously assessed the relationship between CBF
levels and neuropsychological scales (16). In this present
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study, we found that both female and male patients with
mTBI presented complaints on self-reported symptomatology;
however, there were sex differences in neuropsychological
performance and CBF changes with sex displaying a salient
modulatory. Consequently, we conducted further research
on post-mTBI CBF levels, inflammatory factor levels, and
neuropsychological tests.

In the current study, we found that female patients exhibited
a negative correlation between CBF levels in the PoCG_R with
IL-8 levels. Furthermore, female controls showed a positive
correlation between CBF levels in the STG_R with β-NGF
expression. Although PoCG received little attention in the brain
imaging literature, some studies also found PoCG abnormalities
in patients with degenerative diseases (65), and some also
showed that PoCG was the main sensory receptive area (68).
In female patients, the negative correlation between CBF levels
in the PoCG_R with IL-8 levels may affect their spatial-
perception ability, which results in dizziness and fatigue. In this
study, neurocognitive tests revealed that female patients were
more prone to fatigue. The STG is associated with numerous
auditory language tasks, including speech and hearing, as well
as comprehension of metaphors (69). Studies have reported
the neuroprotective and regenerative effects of β-NGF (70);
moreover, NGF gene therapy has been shown to selectively
improve post-mTBI cognitive function (71). Therefore, normal
NGF expression for stimulating the central nervous system after
TBI is crucial for cell survival (72). In female controls, there
was a positive correlation of CBF levels in the STG_R CBF
with β-NGF levels. This positive correlation may disappeared,
and neuropsychological tests revealed that female patients had
significantly impaired language fluency. This suggests that
decreased β-NGF expression and CBF in the STG may have
synergistic effects, which reflect metabolic abnormalities and
language deficits, and therefore lead to more severe injury.

In this study, female patients also showed a negative
correlation between CBF levels in the pallidus with IL-8 levels.
Pallidus is part of the basal ganglia circuit connecting the
striatum and the subthalamic nucleus, and is the most important
deep central brain structure (73, 74). It has been reported that
Parkinson’s-like pathology observed in TBI may be related to
basal ganglia dysfunction (75), and this area has been shown to
be highly sensitive to injuries following focal brain trauma in
humans. Deep brain stimulation of the pallidus has been shown
to improve depressive symptoms in patients with Parkinson’s
disease (76). However, as IL-8 levels increased, CBF to the
pallidus decreased, which reduced the function of this region and
caused corresponding neurocognitive degeneration.

This study has several limitations. First, we only examined
changes in serum inflammatory cytokines and CBF perfusion
levels during the acute phase. Given that microglial cells may
remain active in the central nervous system for long periods,
even months or years, there is a need for a longitudinal study on
sex differences in post-mTBI changes in inflammatory cytokines

and CBF levels. Second, this study had a relatively small sample
size, which could be attributed to missing data resulting from
loss to follow-up. Future studies should enroll a higher number
of participants with regular follow-ups. Finally, a particular
cytokine may have a variety of different functional roles,
depending on when it is released after the initial traumatic event,
other co-releasing factors, and different injury mechanisms.
Because mTBI has a complex pathophysiology, correlation
analysis of inflammatory factors and CBF levels alone cannot
accurately reflect the underlying mTBI mechanisms. Therefore,
further research and clarification are warranted.

CONCLUSIONS

This study found sex differences in post-mTBI changes in serum
levels of inflammatory cytokines and CBF levels in specific brain
regions. Furthermore, mTBI-mediated neuroinflammation was
characterized by abnormal expression of serum inflammatory
factors. In females, IL-4 underexpression and IL-8 overexpression
might lead to poor prognosis. The increased CBF in male
patients may be a compensatory effect, which plays a cognitive
protective role in males. However, females may be more sensitive
to inflammatory changes and more likely to have cognitive
impairment. This suggests the need to pay closer attention to the
female patients with mTBI.
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