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Abstract

Fluorescence molecular tomography in the near-infrared region is becoming a powerful modality for mapping the three-
dimensional quantitative distributions of fluorochromes in live small animals. However, wider application of fluorescence
molecular tomography still requires more accurate and stable reconstruction tools. We propose a shape-based
reconstruction method that uses spherical harmonics parameterization, where fluorophores are assumed to be distributed
as piecewise constants inside disjointed subdomains and the remaining background. The inverse problem is then
formulated as a constrained nonlinear least-squares problem with respect to shape parameters, which decreases ill-
posedness because of the significantly reduced number of unknowns. Since different shape parameters contribute
differently to the boundary measurements, a two-step and modified block coordinate descent optimization algorithm is
introduced to stabilize the reconstruction. We first evaluated our method using numerical simulations under various
conditions for the noise level and fluorescent background; it showed significant superiority over conventional voxel-based
methods in terms of the spatial resolution, reconstruction accuracy with regard to the morphology and intensity, and
robustness against the initial estimated distribution. In our phantom experiment, our method again showed better spatial
resolution and more accurate intensity reconstruction. Finally, the results of an in vivo experiment demonstrated its
applicability to the imaging of mice.
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Introduction

Near-infrared fluorescence molecular tomography (FMT) is

used for the three-dimensional (3D) localization and quantification

of fluorescent targets deep inside turbid tissue. As a convenient and

cost-effective small animal imaging modality, it can provide

accurate visualization and quantification of the distribution of

fluorescent tracers. Various applications have been proposed or

carried out using this tool to monitor diseases at the molecular

level, such as enzyme activity [1], mapping expressions of cancer

markers [2], [3], and monitoring targeted drug delivery [4]. Davis

et al. recently presented multicolor imaging to monitor two cancer

markers simultaneously [5]. Although some devices for FMT are

commercially available, the need for higher spatial resolution and

more quantitative and reliable reconstruction hinders the wider

application of this technique.

The recovery of 3D fluorescence distribution from boundary

measurements is a nonlinear inverse problem. Because of the

scattered light propagation inside turbid tissue media, the problem

is highly ill posed and thus susceptible to data noise and model

errors. The ill-posedness makes FMT reconstruction a significant

challenge. As a solution, additional prior information is generally

applied through different regularization techniques. Smooth

distribution constraints are typically imposed through methods

such as Tikhonov regularization [6]. Information on the sparse

distribution is utilized through different compressed sensing

techniques [7], [8]. Edge enhancement priors are utilized by

penalizing the fluorescence intensity gradient as a regularized

term, such as in the total variation method [9], [10], [11], [12].

The development of multimodality FMT systems [13], [14] has

boosted the fusion of information derived from anatomical

structures [15], [16]. High-density sampling [17], which increases

the amount of boundary measurements, has also proven effective,

and several studies have focused on investigating the optimal

source–detector configurations for different kinds of FMT imaging

systems [18], [19]. Although these advances have been critical to

moving FMT from the laboratory to commercial applications,

great challenges remain in order to obtain 3D fluorescence

distributions stably and accurately.

In many specific applications, the distribution of fluorescent

targets can be well described as the sum of a small number of

subdomains (shapes) with constant piecewise intensities. This
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approximation is very suitable for tumor applications, where the

fluorescence agent binds specifically to tumor tissue. With shape

parameterization, the number of unknowns is greatly reduced,

which in turn decreases the ill-posedness of the reconstruction.

Shape parameterization has been applied to diffuse optical

tomography [20], [21], bioluminescence tomography [22], and

electrical impedance tomography [23]. For FMT reconstruction,

several studies have used a piecewise constant assumption. Álvarez

et al. [24] applied a level set to time-resolved FMT to implicitly

impose shape constraints, where the distributions are recovered

with the piecewise constant assumption and the lifetime is

estimated using a gradient method. They performed a series of

numerical simulations to verify its effectiveness. Despite the

reduced ill-posedness, shape-based reconstruction is still a nonlin-

ear and ill-posed problem, and the initial conditions critically affect

its solution. To overcome this limitation, Laurain et al. [25]

extended topological sensitivity analysis to generate good initial

estimates for shape-based FMT and evaluated the effectiveness

through numerical simulations. In our previous work, we

performed shape based reconstruction by assuming the fluorescent

targets to be regular ellipsoids [26]. A two-step solver was

developed to enhance the robustness against the initial values and

noise, and graphics processing unit (GPU) acceleration was

adopted to accelerate the computation of the Jacobian matrix

and gradient.

In this work, we developed a novel shape-based reconstruction

method by introducing spherical harmonics [27] for shape

modeling. Compared to our previous ellipsoid approximation,

spherical harmonics can better model irregular targets [20], [23],

[28], which leads to more accurate recovered images. In the

proposed method, the inverse problem is parameterized with

respect to the spherical harmonics coefficients of the shape

boundaries. To stabilize the solution, the two-step strategy is

expanded, and a modified block coordinate descent approach is

introduced to recover shape parameters. Since the computation of

the Jacobian matrix and gradient with respect to the spherical

harmonics coefficients is rather complex and time-consuming, we

accelerate their calculations by using GPU based on our previous

work [26] on ellipsoid shape parameters. We evaluated the

proposed method using numerical simulation, a physical phantom,

and in vivo data, and it demonstrated much better performance

than conventional voxel-based reconstruction.

Methods

Forward problem
In turbid tissue media, the light propagation for source–detector

separations of more than several millimeters can be modeled by a

partial differential equation called the diffusion equation. By

setting the spatially localized impulse function d(~rr{~rrs) as the

source term, the Green’s function G(~rrs,~rr) can then be solved via

numerical techniques such as the finite element method (FEM)

[29], [30]. By considering that light travels from ~rrs to position ~rr
and from~rr to detector~rrd and integrating over the whole imaged

domain V, the forward mapping from the fluorescence distribu-

tion f (~rr) to the received fluorescence signal Wem(~rrs,~rrd ) for the

source–detector pair (~rrs,~rrd ) can be expressed as

Wem(~rrs,~rrd )~Hem

ð
V

Wex(~rrs,~rr)Gem(~rr,~rrd )f (~rr) ð1Þ

where H represents the total system amplification factor from the

quantum efficiency, detection efficiency, etc. The subscripts ex
and em indicate the excitation light and emitted fluorescence

wavelengths, respectively. In FMT reconstruction, using the

normalized Born ratio Wborn~Wem=Wex of the corresponding

measurements at the emission and excitation wavelengths has been

proven to provide much more robust performance with respect to

the uneven system amplification factor H and unknown hetero-

geneity of the imaged medium compared to using the fluorescence

signals alone [31]. Given Green’s functions, the normalized Born

ratio can be written as follows:

Wborn(~rrs,~rrd )~Hem=Hex

ð
V

Gex(~rrs,~rr)Gem(~rr,~rrd )=Gex(~rrs,~rrd )f (~rr) ð2Þ

For numerical computation, the above integral equation is

generally discretized using the piecewise constant voxel basis as

follows:

Wborn(~rrs,~rrd )~
XnV

i~1

G(~rrs,~rri)G(~rri,~rrd )=G(~rrs,~rrd )DVf (~rri) ð3Þ

where the imaged domain is divided into nv uniform voxels with

volume DV . For data from all M source–detector pairs, a matrix-

vector product form can be generated from Eq. (3):

Wborn~W

f (~rr1)

..

.

f (~rrnV
)

2
664

3
775 ð4Þ

where W is the weight matrix with size M|nV . The above linear

system is highly ill posed, which makes direct inversion impossible.

A priori information is typically required for stabilization, such as

smooth constraints imposed via Tikhonov regularization.

We assumed that the fluorescent targets have sharp interfaces

and are distributed as piecewise constants. That is, the imaged

domain V can be split into n disjointed subdomains Vi,i~1, � � � ,n
and the remaining background V0~V\|i~1nVi with constant

concentrations rizr0 and r0, respectively. Then, the fluorescence

distribution is expressed as follows:

f ( r!)~f (x,y,z)~r0z
Xn

i~1

riU( r![Vi) ð5Þ

where U is the unit step function. In our previous work [23], we

used ellipsoids to approximate the subdomains for simplicity;

however, this approach is limited with regard to modeling

irregular geometries. Spherical harmonics can represent fairly

intricate 3D polar shapes well (a polar shape can be described as a

single-value function in spherical coordinates with respect to a

center position). Since more accurate shape modeling yields better

shape reconstruction performance, we adopted real-value spher-

ical harmonics to parameterize the arbitrary 3D subdomain

boundaries LVi, as introduced in [28]. Then, the surface locations

r!jLVi of boundary LVi are represented in spherical coordinates

with respect to a given center (xc,i,yc,i,zc,i):

r!jLVi~
XN

l~0

Xl

m~{l

Cm
l

~YY m
l (q,Q) ð6Þ

where fCm
l g are the expansion coefficients and N is the maximum

degree of spherical harmonics used. The real value basis function
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~YY m
l (q,Q) is defined as follows:

~YY m
l (q,Q) : ~

Re½Y m
l �(q,Q),mƒ0

Im½Y m
l �(q,Q),mw0

�
ð7Þ

where Y m
l are the spherical harmonics functions of complex values

[24]. Then, a single fluorescence inclusion can be parameterized

using (Nz1)2 expansion coefficients for up to N-order spherical

harmonics, the center position, and the fluorescence concentra-

tion. In addition to the background concentration r0, a total of

n((Nz1)2z4)z1 shape parameters model the piecewise constant

fluorescence distribution with n disjointed subdomains, which can

be depicted by the new notation f. In this study, we used second-

order spherical harmonic coefficients.

Inverse problem
To recover the shape parameters f, a least-squares minimization

function is established to minimize the difference between

theoretical predictions and practical measurements:

arg min
f

Y(f)~
1

2
Wborn{F (f)k k2

2

~
1

2
Wborn{Wffk k2

2

s:t:1)ri,r0§0,i~1, � � � ,n

2)xmin
c ƒxcƒxmax

c ,ymin
c ƒycƒymax

c ,zmin
c ƒzcƒzmax

c

3)rmin
ƒriƒrmax,ri[LVi,i~1, � � � ,n

4)ri§ min (ri)§1=c max (ri),riƒ max (ri)ƒc min (ri),c§1,

ri[LVi,i~1, � � � ,n

5)Vi\Vj~1,Vi,j,i=j

ð8Þ

Herein, given a previously defined uniform voxel discretization

with sufficient small size such as 0:7|0:7|0:7mm3, the

theoretical predictions F (f) are computed via a matrix-vector

product based on Eq. (4). The fluorescence distribution vector fj is

generated by transforming the shape parameters to the voxel grids

through Eqs. (5)–(7). For stable reconstruction, reasonable

constraints are imposed to the shape parameters. The first

constraint is the nonnegativity of the fluorescence intensity. The

second is to restrict the shape centers inside box bound of the

image object. The following two constraints prevent the radius

from being too small or large and geometric shapes from being too

narrow. The final constraint (non-overlap) guarantees the

disjointedness of the subdomains.

Although the unknowns are greatly reduced because of the

spherical harmonics, Eq. (8) is still a complex nonlinear problem.

An appropriate iterative solver is needed for its numerical solution,

which relies on the shape gradient and Hessian matrix. However,

gradient-based solvers are extremely sensitive to the initial

conditions, and getting a good initial estimate inside the imaged

object is generally a difficult and challenging task. In our previous

work [26], since different types of shape parameters contribute

differently to the measurement data, we handled the ellipsoid

shape parameters using a two-step strategy and proved its

capability of improving the robustness against initial conditions.

Based on the previous work, we introduced a two-step and

modified block coordinate descent strategy for spherical harmon-

ics–based shape reconstruction, as shown in Fig. 1. In the first step,

by setting the initial shapes as spheres, Eq. (8) is solved with the

spherical harmonics expansion coefficients as invariants; this yields

relatively good initial conditions for the next step, especially for the

center positions. A modified block coordinate descent strategy is

then employed in the second step. That is, the parameters of

blocks 1 (center positions and intensities) and 2 (spherical

harmonics expansion coefficients and intensities) are separately

estimated at even and odd iterations. Herein, the center positions

and spherical harmonics expansion coefficients are placed into

different blocks, as they have weak logical connections and can be

separated. However, the fluorescence intensities are put into both

blocks since they have strong logical connections with the other

shape parameters. This is different from the standard block

coordinate descent method, where each variable appears in only

one block. As shown in Fig. 1, the maximum iteration number of

each step (N_first and N_max minus N_first) obviously influences the

final reconstruction result. Empirically, N_first was set to 20. This

number is sufficient to get a good estimation of the center

positions; a larger value does not produce an obvious improve-

ment but requires more computation time. For the second step,

more iterations generally yield a better shape but may produce

over-optimization. This is because of the high ill-posedness of the

recovered block 2; details are discussed later in the discussions and

conclusion section. In our experience, N_max can be set to a

relatively low value such as 40 in the presence of a high level of

noise and model error. N_max can be set to a relatively large value

such as 80 in the presence of a moderate level of noise and model

error.

In each step, a Newton-type method is used as an iterative

solver for the nonlinear minimization problem, where the update

fkz1 for f is given by

fkz1~

fkz arg min
df

1

2
Jdf{(Wborn{F (fk))
�� ��2

2
zC(fkzdf)

ð9Þ

Herein, J : ~LF=Lf is the Jacobian matrix. C(f) is the penalty

term because of the shape constraints c(f)ƒ0 and is imposed

through the popular exterior penalty function method. Then, a

minimization program with an increasing sequence of penalty

parameters t as t?? is generated:

z�~ arg min
z

L(z,t)~

1

2
Jz{(Wmeas

born {F (fk))
�� ��2

2
zt
X

j

fmin½0,cj(f
kzz)�g2

ð10Þ

where z is a new notation to denote df. In each t-sub problem, z is

updated via Newton’s method, and t is doubled:

(z)nz1~

(z)nz(+2
zLzlI){1f{JT ½Jz{(Wborn{F (fk))�{+zCg

tnz1~2tn

ð11Þ

where the Hessian matrix +2
zL is JT Jz+2

zC. Since +2
zL is poorly

conditioned, regularization is added with parameter l for stable

inversion, and an iterative solver is used with the symmetric LQ

method (MATLAB function symmlq). The parameter l was
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empirically selected to be 10{3 and worked well in the simulation

and physical experiments.

Generally, the background volume is much larger than the

targets. To improve the conditioning of the inverse problem, the

background fluorescence intensity is scaled during reconstruction:

r
0
0~r

0
=scal ð12Þ

In this study, the scale factor scal was set to 100.

Computation of objective function value, gradient, and
Jacobian matrix

For Eq. (8), the Jacobian matrix computation can be expressed

as

J~LF(f)=Lf~WLff=Lf ð13Þ

Since ff is a nonlinear function of f, the perturbation method is

used to compute Lf (~rri)=Lfj using a sufficient small perturbation

Dfj :

Lf (~rri)=Lfj&
Df (~rri)

Dfj

~
Df (~rri)(fzDfj){Df (~rri)(f)

Dfj

ð14Þ

Eqs. (8), (13), and (14) show that the shape-voxel mapping f (~rri) is

the basic component for evaluating J and F (f) and that it is

critical to evaluating the non-overlap constraint. As no analytical

expression is available for this nonlinear mapping, we can directly

calculate f (~rri) by uniformly dividing the corresponding voxel into

16|16|16 fine sub-voxels with centers~rri,j:

f (~rri)~
X4095

j~0

r‘U(~rri,jEV‘)=4096 ð15Þ

Herein, the point-in-shape test ~rri,jEV‘ is performed according to

Eqs. (6) and (7).

Similar to our previous work [26], the frequently performed

basic operations (i.e., weight matrix multiplication and shape-voxel

mapping) take more than 90% of the computation time. Hence,

we accelerated them using the advanced CUDA GPU platform

[32], [33], where the former is performed using the standard

CUDA CUBLAS library and the latter is performed as shown in

Fig. 2(a). Generally, a shape target is small compared to the whole

imaging domain, and processing the many non-overlapped voxel-

shape pairs using GPU is inefficient [32], [33]. Hence, a voxel-

shape paring procedure is first performed with CPU by judging

the overlap between a voxel and the bounding box of a shape.

GPU is then used to determine the concrete overlapped volume

for each voxel–shape pair through concurrently executed threads.

As shown in Fig. 2(a), the point in shape test U(~rri,jEV‘) is the

most important component of the shape-voxel mapping. For the

polar shape, this test is performed by comparing the radius ~rri,j
from the shape center to the point and the radius rs of the

corresponding shape surface point, as illustrated in Fig. 2(b).

Theoretically, rs can be directly calculated using Eq. (6); however,

this is time-consuming. For faster computation, we adopted an

interpolation technique. A triangular-mesh unit sphere surface is

introduced where each mesh node has a pair of spherical

coordinates (q,Q), as shown in Fig. 2(c). These mesh nodes can

then determine the parametric surface by finding their new

distances from the center through Eq. (6). The unit sphere

transformation is inspired by [28], where the mapped mesh was

mainly used for boundary element method discretization and

solution. The (q,Q) space is then uniformly refined to 100|100
grids, and the corresponding radii are calculated by interpolation

from those mesh nodes. Then, given a point ~rri,j with spherical

coordinates (qi,j,Qi,j), the radius of the corresponding surface

point ~rrs(qi,j,Qi,j) can be easily determined through two-dimen-

sional interpolation among the four neighbor points in the

100|100 regular grids. As this lookup table operation is rather

simple, it can be easily implemented through GPU.

Voxel-based reconstruction
In the experiments, the proposed method was compared with

traditional voxel-based reconstruction. In general, voxel-based

reconstruction is formulated as a linear system:

Wborn~Wp ð16Þ

where p is the fluorescence distribution in 3D voxels and W is the

weight matrix as described in Eq. (4). The linear system is ill posed,

which means that direct inversion is impossible. In this study, two

techniques were used for its solution: the random access algebraic

reconstruction technique (R-ART) with nonnegative constraints,

which has been widely applied for FMT [34,35]; and Tikhonov

regularization, where Eq. (16) is transformed into an L2

regularized solution:

arg min
p§0

y(p)~
1

2
( Wborn{Wpk k2

2zc pk k2
2) ð17Þ

where c is the regularization parameter. The regularized least-

squares problem is solved by using the conjugation gradient

Figure 1. Optimization of spherical harmonics shape parame-
ters. In the first step (the initial N_first iteration), the unknown targets
are assumed to be spheres. In the second step (the following iterations
until the maximum iteration number N_max), a modified block
coordinate descent strategy is adopted to alternately recover the
grouped shape parameters.
doi:10.1371/journal.pone.0094317.g001
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method, and the nonnegative constraints are imposed through the

exterior penalty function method.

Experiments and Results

The performance and effectiveness of the proposed method was

evaluated through numerical simulations and experiments with a

physical phantom and a mouse in vivo. All reconstructions were

performed on our desktop computer, which has an Intel 2.8-GHz

quad-core CPU, 16 GB RAM, and an NVIDA GTX 480

graphics card.

Numerical simulations
A series of simulations was performed to compare the proposed

method with the traditional voxel-based method and evaluate its

performance in the presence of noise and background contrasts.

To mimic the heterogeneous optical properties of a real mouse,

a cylinder model (6.0 cm height and 2.0 cm diameter) with two

cylindrical heterogeneities (6.0 cm height and 0.35 cm diameter)

was used, as shown in Fig. 3. Reasonable optical properties were

chosen with a background of ma~0:3cm�1,m
0

s~10:0cm�1 and

heterogeneity of ma~0:5cm�1,m
0

s~10:0cm�1. Full angle data-

acquisition was adopted [34], where data were simulated for 24

evenly distributed projection angles around the model. For each

projection angle, the light source was sequentially scanned over

five positions in steps of 0.3 cm to generate five projections. For

each projection, the detector sampling on the charge coupled

device (CCD) detection field of view was over a 1.8 cm62.2 cm

region with 0.2 cm spacing. The data simulations were performed

using FEM.

In the reconstructions, we simply assumed the imaged object to be

homogenous with optical properties of ma~0:3cm�1,m
0

s~10:0cm�1

to mimic the unknown heterogeneity in practical cases. During all of

the numerical experiments, the same geometry constraints were

applied with 0:04cmƒrƒ0:5cm, c~10, {1:0cmƒx,yƒ1:0cm,

and 2:0cmƒzƒ4:0cm. Eighty iterations (one update in Eq. 9

corresponds to one iteration) were performed in the shape-based

reconstructions, where the first step took 20 iterations. The 3D voxels

for the Jacobian matrix calculation were inside the cylinder model and

over ({1:0~11:0)cm|({1:0~11:0)cm|(2:0~44:0)cm with a voxel size of

0:07cm|0:07cm|0:07cm. In the comparison experiments, 3D

voxels were also used in voxel-based reconstruction. In the voxel-based

reconstruction, both R-ART and Tikhonov regularization were

adopted. R-ART was iterated 200 times with a relaxation parameter

of 0.1. The Tikhonov regularization parameter was empirically set to

1|10{3, which gave a good balance between stability and

smoothing. The conjugate gradient method was performed until the

relative difference between neighboring iterations was less than

1|10{6.

Reconstruction of dual inclusions of different

shapes. We evaluated the proposed method with closely placed

dual inclusions of various shapes; these included ellipsoids,

cuboids, and triangular prisms. The parameters are specified in

Table 1. There was no fluorescence in the background. Then, 5%

Gaussian noise was added to the synthetic measurements.

Figure 2. Shape-voxel mapping. (a) Flowchart of the GPU-accelerated computation of shape-voxel mapping. (b) Illustration of how to determine
whether a point is inside a polar shape. (c) Digitalization of spherical harmonics parameterized shape with triangular mesh surface. The
parameterized-shape surface mesh (middle) is generated by mapping a predefined triangular meshed unit sphere surface (left). For each mesh node
(e.g., blue circle), its new radius on the parameterized-shape surface is found by keeping its (qi ,Qi) unchanged. Further, a regular table is generated in
the spherical coordinates (q,Q) space from these mesh nodes for faster point-in-shape determination.
doi:10.1371/journal.pone.0094317.g002
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As shown in Fig. 4, neither R-ART nor Tikhonov regularization

could resolve the dual targets for all of the different shapes. In

contrast, because of the shape parameterization, the proposed

method demonstrated much better resolution capability. It clearly

separated the adjacent dual inclusions and matched intensities and

morphology well. The free background was also accurately

estimated. Of course, because of the high photon scattering in

tissues and the presence of noise and heterogeneity, fully accurate

recovery of the true shapes was still impossible. The better

resolution capability of the proposed method is because of the

successful utilization of shape priors, which greatly reduces the

space of possible solutions. In other words, the shape-based

method can find a better solution without getting stuck in the

many cut solution branches.

As a benefit of the parallel acceleration by GPU, the shape

reconstruction time was typically within several minutes. For

example, the shape optimization for the dual ellipsoids took about

159 s. Without GPU, the computation time was about 83 min,

which was 31 times longer.

To evaluate the performance with respect to different initial

values, we selected dual spheres with different center distances

away from the true inclusions, which represented initial shapes

with different extents of goodness. As shown in Fig. 5, the

proposed method worked well and demonstrated robust perfor-

mance since it considered and handled the difference among shape

parameters through the two-step and modified block coordinate

descent strategy. In contrast, although not shown here, the

straightforward method of simply recovering all parameters

simultaneously generally corrupted the reconstruction process.

The objective function value could not be decreased effectively,

and the true inclusions were not found.

In some cases, it may be impossible to reliably determine the

targets number a priori. By assuming more targets than actually

needed, the proposed method can handle this problem to some

extent. As demonstrated in Fig. 5, with three initial targets, the

proposed method still recovered the true targets well, whereas the

false target was reconstructed with ultra-low intensity.

Different noise level. To evaluate the sensitivity of the

proposed method to noise, different levels of Gaussian noise

(2.5%–40%) were added to the synthetic measurements. The dual

ellipsoids case was used as the configuration of the fluorescent

targets, and the background was fluorescence-free. As shown in

Fig. 6, neither voxel-based method could resolve the targets even

at the lowest noise level. In contrast, the proposed method clearly

separated and estimated the adjacent dual inclusions for various

noise levels up to 40%; thus, it showed strong robustness against

noise jamming.

Different background contrast level. Even state-of-the-art

fluorescent probes still find it difficult to completely bind to targets

without residuals in the background. Thus, we evaluated the

performance of the proposed method using different contrast levels

from 100:1 to 10:20. The dual ellipsoids case was used as the

configuration of the fluorescent targets. In addition, 1% Gaussian

noise was added to the synthetic measurements.

As shown in Fig. 7, the background fluorescence could not be

properly estimated by both voxel-based methods; both showed an

obvious nonuniform distribution in the background region. In

addition, the boundary artifacts gradually increased with the

background fluorescence. For Tikhonov regularization, its spread-

ing and smoothing effects became more evident in the presence of

background fluorescence, especially at a low contrast level. Similar

to the previous background-free case, the dual targets could not be

resolved. In contrast, the proposed method demonstrated much

better resolution capability and quantification. For all contrast

levels, the dual targets were clearly separated. The background

value was accurately reconstructed with a small absolute error that

was within 0.001. These results verified the effectiveness of the

proposed method under low fluorescence contrast conditions.

Physical experiments
Physical phantom and in vivo experiments were performed to

evaluate the feasibility of the proposed method for practical

applications. Our fluorescence imaging system, which was

developed in-house, was used for data acquisition, as shown in

Fig. 8(a). The imaged object was placed on a rotational stage for

multiple angle image acquisition. The laser and detector were

placed on opposite sides of the stage. The semiconductor laser

(785 nm wavelength) output a small laser spot around 1 mm in

diameter with a power of 14 mW. The detector was a highly

sensitive sCMOS camera (Neo, Andor, Belfast, Northern Ireland,

U.K.) coupled with a Nikkor 60 mm f/2.8D lens (Nikon, Melville,

NY). The camera had a large chip area of 2560|2160 pixels with

a 16-bit dynamic range. During the data acquisition, the sCMOS

chip was cooled to {300C to reduce dark current noise. A neutral

density filter of 1% transmittance (Daheng, Beijing, China) and

840+18:5nmband-pass fluorescence filter (Semrock, Rochester,

NY) were used for excitation and fluorescence image collection,

respectively. In addition, 72 white light images were collected to

reconstruct the object’s 3D surface [36].

In the phantom experiment, a glass cylinder (inner diameter of

2.43 cm and outer diameter of 2.83 cm) was filled with intralipid

(1% concentration m
0

s~10cm�1,ma~0:02cm�1). Two fluores-

cence inclusions were embedded closely together with a 0.10 cm

edge-to-edge distance. Each inclusion was produced by pouring 40

mL of indocyanine green (concentration of 4 mmol=L) into a

transparent glass tube (0.3 cm inner diameter and 0.5 cm outer

diameter). Excitation and fluorescence data were collected at 36

projection angles evenly distributed over 360
0
. For each projection

angle, three excitation positions along the horizontal direction

were scanned sequentially at a distance of 0.3 cm. For voxel-based

reconstruction, 50 R-ART iterations were performed with a

relaxation parameter of 0.05. For shape-based reconstruction, 40

iterations were performed, and geometry constraints were applied

with 0:04cmƒrƒ0:5cm, c~3, and targets centers inside the

bounding box of the image object.

The fluorescence projection images in Fig. 8(b) show the high

level of light scattering in turbid media. With the voxel-based

Figure 3. Simulation experiment sketch. A full-angle CCD camera–
based imaging system configuration was used for the data simulation.
The imaged object was a cylinder phantom with two embedded
cylinder heterogeneities (different absorption coefficients). For each
projection, five different excitation sources were scanned (red dots),
and the detectors, which corresponded to selected detection points on
the image plane, were within 1.8 cm of the detector horizontal FOV
(HFOV) and 2.2 cm of the detector vertical FOV (VFOV) with a detector
spacing of 0.2 cm.
doi:10.1371/journal.pone.0094317.g003
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method (R-ART), the dual inclusions were merged, and artifacts

were present near the object boundary. In contrast, the two close

targets were clearly separated by the proposed method with

acceptable center deviations of 0.06 and 0.15 cm. The relative

difference between the accumulated fluorescence intensities of the

two targets was 8.4%, which may be partly caused by inevitable

model error and the cross-talk between the two close inclusions.

The actual free background was also accurately estimated.

Overall, the results demonstrated that the proposed method has

better resolution capability than traditional voxel-based recon-

struction for practical applications.

A small animal experiment was performed to verify the

feasibility of the proposed method for in vivo applications. This

experiment was approved by the Science and Ethics Committee of

the School of Biological Science and Medical Engineering in

Beihang University, China. One nude mouse (5 weeks, 21 g) was

anesthetized with pentobarbital and fixed on a glass plate holder,

as shown in Fig. 8(a). A small fluorescence glass tube (0.3 cm

diameter and 0.5 cm length, concentration of 4 mmol=L) was

embedded inside the nude mouse. The fluorescence and excitation

projections were collected at a single projection angle. As shown in

the first column of Fig. 8(c), the point light sources were scanned at

5|7 positions with steps of 0.3 cm. In the reconstruction, the

mouse optical properties were assumed to be homogeneous

(m
0
s~10cm�1,ma~0:3cm�1) for simplicity. For voxel-based recon-

struction, 30 R-ART iterations were performed with a relaxation

parameter of 0.01. For shape-based reconstruction, 40 iterations

were performed, and geometry constraints were applied with

0:04cmƒrƒ0:5cm, c~3, and target centers inside the bounding

box of the image object. As shown in Fig. 8(c), the reconstructed

fluorescence had a high value around the boundary and a

widespread distribution inside the object. Compared to the actual

single fluorescence inclusion, the reconstructed fluorescence was

not acceptable. This was partly because of the limited projection

angle, complex heterogeneous optical properties of the mouse, and

the presence of an auto-fluorescent background. The proposed

method, which benefited from the reduced number of unknowns,

gave a better result. It recovered a single fluorescence inclusion

and the background. This preliminary experiment demonstrated

the feasibility of the proposed method for in vivo applications.

Discussions and Conclusion

We proposed a shape-based reconstruction method for fluores-

cence molecular tomography that uses spherical harmonics

parameterization. The inverse problem is formulated as a

constrained nonlinear least-squares problem. To guarantee

successful reconstruction and enhance robustness against initial

conditions and noise, a two-step and modified block coordinate

descent strategy was introduced to handle different shape

parameters. Reasonable geometrical constraints are also enforced

via the exterior penalty function method for further stability and

Table 1. Parameters for inclusions with various shapes.

ellipsoid (rx,ry,rz) (xc,yc,zc) r

target 1 (0.22 0.11 0.15) (0.00 0.25 3.00) 1.00

target 2 (0.22 0.11 0.15) (0.00–0.25 3.00) 1.00

cuboid (L,W,H) (xc,yc,zc) r

target 1 (0.40 0.20 0.20) (0.00 0.25 3.00) 1.00

target 2 (0.40 0.20 0.20) (0.00–0.25 3.00) 1.00

prism (E,H) (xc,yc,zc) r

target 1 (0.50 0.30) (0.00 0.30 3.00) 1.00

target 2 (0.50 0.30) (0.00–0.30 3.00) 1.00

The second column lists the geometric dimensions: radii for the ellipsoid, edge
length for the cuboid, and edge and height for the triangular prism.
doi:10.1371/journal.pone.0094317.t001

Figure 4. Comparison of the results from the proposed method and voxel-based reconstructions. In the slice images, the red circles
denote the outer boundary of the imaged object, and the white lines denote the boundaries of the real inclusions. The slice images are of 3.0 cm
height.
doi:10.1371/journal.pone.0094317.g004
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accuracy. During the optimization, the objective function value

and Jacobian matrix are calculated using the perturbation method,

which is also greatly accelerated using GPU. The results of the

numerical simulation and physical phantom and in vivo exper-

iments all demonstrated the effectiveness of the proposed method.

Because of the incorporated shape priors and the resulting

reduction in the dimensions of the inverse problem, the proposed

method demonstrated better resolution capability than the

conventional voxel-based method in the numerical and physical

experiments. However, compared to voxel-based methods, the

proposed method has the weakness of a relatively small application

range. In application scenarios, the fluorescence distribution

should be approximated as the sum of a small number of

subdomains with piecewise constant intensities.

Although the number of unknowns is greatly reduced, attention

should be paid to optimization techniques, as the shape-based

reconstruction is still nonlinear and ill posed. If the difference in

contributions to boundary measurements by the shape parameters

is not considered and these parameters are simply recovered

simultaneously, the reconstruction generally fails. In the proposed

method, a two-step and modified block coordinate descent strategy

is introduced. The optimization strategy stabilized the shape-based

reconstruction against up to a 40% noise level. It also ensured the

robustness of the proposed method against different initial values

for noise and heterogeneity, even when the target number is not

known a priori. In many cases, a fluorescent background is

inevitable. As demonstrated in the numerical simulations, the

proposed method worked well for low fluorescence contrasts down

to 100:20. This capacity was further verified in the in vivo

experiment.

An intuitive explanation for the proposed optimization strategy

is as follows. For a target, small deviations in its center position and

expansion coefficients vary the boundary measurements for

different methods. The center position deviation alters the distance

from the target to different boundary sides; thus, it mainly changes

the profiles of fluorescence projections. In contrast, the deviation

Figure 5. Reconstruction results with different initial estimates. In the slice images, the red circle denotes the boundary of the imaged
object, and the white lines denote the boundaries of the real inclusions. The slice images are of 3.0 cm height.
doi:10.1371/journal.pone.0094317.g005

Figure 6. Reconstruction results of different noise levels. The red circle denotes the boundary of the imaged object, and the white lines
denote the boundaries of the real inclusions. The slice images are of 3.0 cm height.
doi:10.1371/journal.pone.0094317.g006
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of each expansion coefficient changes the target geometry and

mainly changes the projection details. The difference in contribu-

tions requires the center position and expansion coefficients to be

handled differently. In particular, the center position needs to be

estimated first to approximate the coarse components of the

fluorescence projections.

The proposed optimization strategy also has a mathematical

explanation. For the Hessian matrixes of blocks 1 and 2 and all

Figure 7. Reconstruction results of different fluorescence contrasts. The red circle denotes the boundary of the imaged object, and the
white lines denote the boundaries of the real inclusions. The slice images are of 3.0 cm height.
doi:10.1371/journal.pone.0094317.g007

Figure 8. Physical experiments. (a) The full angle fluorescence molecular tomography system developed in-house. (b) Physical phantom
experiment. Two fluorescence inclusions were placed closely together inside a cylinder phantom with a 0.10 cm edge-to-edge distance. The white
circles denote the inner (solid line) and outer (dash line) boundaries of the real inclusions. (c) In vivo experiment. A fluorescence inclusion was
embedded inside a nude mouse. The grid of black dots overlaid on the mouse represents the excitation light sources. For the slice images in (b) and
(c), the red circle denotes the boundary of the imaged object, and every two slice images are at the same height, as depicted by the red circle in the
corresponding 3D image.
doi:10.1371/journal.pone.0094317.g008
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shape parameters, their condition numbers are different in orders

of magnitude. For example, in the initial dual spheres case (Init 1

in Fig. 5), the condition numbers of the corresponding regularized

Hessian matrixes (empirically selected regularization parameter of

1|10{3) were 1:1|103, 9:6|104, and 1:3|106, respectively.

The high Hessian matrix condition number of block 2 means that

the recovery of expansion coefficients is highly sensitive to noise

and model error. Compared to block 2, the Hessian matrix

condition number of block 1 was almost two orders of magnitude

smaller, which means that the estimation of its variable elements is

much less sensitive to error. This is why we use a two-step

reconstruction scheme since the first step has the inherent

advantage of much better stability. Compared to the two blocks,

the Hessian matrix condition number for all shape parameters

becomes even higher. Thus, when the shape parameters are

recovered simultaneously in the second step, the estimation of the

center positions is negatively affected by the expansion coefficients

and becomes much more ill posed. Hence, the modified block

coordinate descent strategy was adopted to alternately update

blocks 1 and 2, which makes the second step more stable.

The convergence of the modified block coordinate descent

optimization should be clarified since the standard coordinate

descent method generally finds a local minimum. Although it is

difficult to determine the convergence of the standard coordinate

descent method [37] when the variables cannot be separated,

modified block coordinate descent optimization can find a global

minimum or near-global minimum in the presence of noise. The

reasons are as follows. In the second step, the reconstruction has a

relatively good initial estimate provided by the first step, especially

for the center positions. Moreover, parameters with strong logical

connections are put into the same block. In other words, the two

blocks can be considered separable to some extent.

In the numerical simulation, the GPU accelerated the shape-

based reconstruction about 30 times faster. The increased

acceleration is important for the proposed method, as it guarantees

the shape reconstruction time is only several (typically less than 3)

minutes. By transforming the complex and frequently performed

point-in-shape operation to a lookup table procedure, the GPU

implementation becomes easier, and the computation speed

becomes faster.

Apart from shape-based methods, total variation (TV) has

attracted a great deal of attention in recent years since it can also

strengthen the boundary edges between targets and background.

Instead of directly incorporating shape priors, TV penalizes the

intensity gradient information as the regularized term. Hence, it

has the advantage of requiring fewer assumptions on the shape

geometry and the weakness of not reducing the unknown

dimensions. In recent years, TV has seen advances for FMT

and demonstrated its superiority over traditional L2 regularization

in background-free cases [10], [11], [12]; future progress may

demonstrate its effectiveness for low fluorescence contrast condi-

tions. Since TV problem is highly nonlinear, its performance

depends on the developed solution algorithm and selected

regularization parameters. Hence, focus is presently on finding

the optimal parameters or developing an automated parameter

selection method. In comparison, the proposed method does not

have the problem of determining regularization parameters, and

selecting the geometry constraints for application is intuitive and

simple. In general, the two techniques of shape-based reconstruc-

tion and TV are developing towards preserving the boundary

edges for piece-constant fluorescence distributions. Each has its

own strengths and weaknesses and thus needs further attention.

In this study, the normalized Born method [31] was used to

reduce the negative effects of unknown heterogeneous optical

properties. Shape parameterization can also be used to estimate

the optical properties of different inner organs and helps better

model the photon propagation inside small animals. Thus, the

shape-based reconstruction quality can be further improved. In

future work, we will focus on developing a full shape-based method

to recover optical properties and successfully guide fluorescence

distributions.
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