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Hypertrophic cardiomyopathy (HCM) has been recently recognized as the most
common inherited cardiovascular disorder, affecting 1 in 500 adults worldwide. HCM
is characterized by myocyte hypertrophy resulting in thickening of the ventricular wall,
myocyte disarray, interstitial and/or replacement fibrosis, decreased ventricular cavity
volume and diastolic dysfunction. HCM is also the most common cause of sudden death
in the young. A large proportion of patients diagnosed with HCM have mutations in
sarcomeric proteins. However, it is unclear how these mutations lead to the cardiac
phenotype, which is variable even in patients carrying the same causal mutation.
Abnormalities in calcium cycling, oxidative stress, mitochondrial dysfunction and energetic
deficiency have been described constituting the basis of therapies in experimental models
of HCM and HCM patients. This review focuses on evidence supporting the role of cellular
metabolism and mitochondria in HCM.
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CLINICAL FEATURES OF HYPERTROPHIC CARDIOMYOPATHY
Hypertrophic cardiomyopathy (HCM) was first recognized as a
clinical entity, approximately 55 years ago (Brock, 1957; Teare,
1958; Cohen et al., 1964; Ross et al., 1966). It is the most com-
mon inherited cardiac disease with an estimated prevalence of 1:
500 in young individuals (Maron, 2002). Inheritance is autoso-
mal dominant, with variable penetrance in 50–60% of patients;
causal mutations have not been identified in 40–50% of HCM
patients (Jarcho et al., 1989; Solomon et al., 1990; Marian and
Roberts, 2001; Marian, 2002). Nine different chromosomal loci
have been linked to HCM with the majority of genes encod-
ing cardiac sarcomeric proteins (Jarcho et al., 1989; Geisterfer-
Lowrance et al., 1990; Watkins et al., 1993; Thierfelder et al.,
1994). The most common mutations occur in genes encoding for
β-myosin heavy chain (35%), myosin binding protein C (20%),
troponin T (5%) and α-tropomyosin (<3%), which have roles
in cardiac excitation-contraction coupling (Maron and Maron,
2013).

Asymmetric ventricular hypertrophy and left ventricular out-
flow tract obstruction with normal or hyperdynamic systolic
function are common morphologic manifestations of HCM
(Maron et al., 2003). However, clinical phenotype is variable
even among individuals carrying the same causal mutation
due to effects of modifier genes, which are largely unknown
(Seidman and Seidman, 2001). As a result degree and location
(mid-ventricular, septal, apical and concentric) of hypertrophy
and obstruction are variable in patients with HCM (Figure 1).
Clinical presentation is also heterogeneous, spanning the spec-
trum from individuals who are largely asymptomatic, to patients
with moderate to severe symptoms, ranging from angina, exer-
cise intolerance to heart failure (requiring heart transplantation),
atrial fibrillation and sudden cardiac death (Maron, 2002; Maron

et al., 2002; Gersh et al., 2011). Irrespective of the causal mutation,
pathologically, HCM is characterized by myocyte hypertrophy,
myocyte disarray and fibrosis (Ho et al., 2010).

Pioneering work by several groups has revealed the molecular
genetics and biophysical mechanisms underlying HCM. A vari-
ety of functional defects, including altered Ca2+ sensitivity and/or
affinity, myofibrillar ATPase activity, Ca2+ handling, cross-bridge
dynamics, impaired energetics, oxidative stress and electrophysi-
ologic abnormalities have been identified in experimental models
(Straceski et al., 1994; Spindler et al., 1998; Blanchard et al., 1999;
Gao et al., 1999; Georgakopoulos et al., 1999; Tardiff et al., 1999;
Solaro et al., 2002; Javadpour et al., 2003; Adhikari et al., 2004;
Szczesna-Cordary et al., 2004; Ertz-Berger et al., 2005; Hernandez
et al., 2005; Robinson et al., 2007; Greenberg et al., 2009, 2010;
Guinto et al., 2009; Mettikolla et al., 2011; Puglisi et al., 2014)
and patients (Haq et al., 2001; Crilley et al., 2003; Nakamura
et al., 2005; Dimitrow et al., 2009; Unno et al., 2009; Ho et al.,
2010; Bravo et al., 2012; Coppini et al., 2013; Lin et al., 2013;
Gruner et al., 2014). Since HCM-causing mutations increase the
energetic cost of tension development, it has been hypothesized
that excessive sarcomeric energy use leads to the HCM phenotype
(Blair et al., 2001; Crilley et al., 2003; Abozguia et al., 2010). We
(Abraham et al., 2013) and others (Jung et al., 1998, 2000; Crilley
et al., 2003; Timmer et al., 2011) have shown reduced PCr/ATP
ratios in HCM patients with both established left ventricular
hypertrophy and in the pre-hypertrophic stage, which suggests
that bioenergetic deficits may be a primary cause of myocardial
remodeling.

EVIDENCE OF HCM AS A METABOLIC DISEASE
31P NMR spectroscopy studies have demonstrated a reduction
in ATP reserve in HCM mouse models following inotropic
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FIGURE 1 | Imaging features of hypertrophic cardiomyopathy using

multi-modality cardiac imaging in patients. (A) Basal hypertrophy of the
inter-ventricular septum (arrow) using echocardiography (parasternal long
axis view of the heart). (B) Mid-septal hypertrophy (arrow) using magnetic
resonance imaging (4-chamber view of the heart). (C) Apical hypertrophy
(arrow) using Computed tomography (4-chamber view of the heart). LA, left
atrium; IVS, inter-ventricular septum; LV, left ventricle; RV, right ventricle.

stimulation (Spindler et al., 1998; Javadpour et al., 2003).
Evidence for energy deficit in HCM has also been obtained from
patient studies revealing increased glucose uptake (Tadamura
et al., 1996), reduction of PCr/ATP ratios in pre-hypertrophic
patients (Crilley et al., 2003) and reduced coronary sinus
pH despite non-limiting capillary oxygen pressures (possibly
indicating up-regulation of glycolysis with lactate generation)
(Tadamura et al., 1996; Jung et al., 1998; Ashrafian et al., 2003;
Keren et al., 2008). However, it is not known whether the energy
deficit paradigm can be generalized to all HCM patients, at all
stages of the disease. Furthermore, the molecular basis of the ener-
getic deficits in HCM and their attendant consequences has been
understudied.

In the heart, ATP supply is tightly regulated to meet energetic
demands of the myofilaments. The mechanisms by which car-
diac energetics is finely tuned are still a matter of considerable
debate, but there is emerging consensus on the importance of
two regulators, Ca2+ and ADP (Cortassa et al., 2006; Saks et al.,
2006; Balaban, 2009). During contraction, Ca2+-induced Ca2+
release from the sarcoplasmic reticulum floods the cytoplasm
where it binds the thin filament regulatory protein Troponin C,
thereby initiating contraction (Bers, 2002). Coordinate activation
of ATP production arises because mitochondria, positioned close
to the SR, take up Ca2+ via the mitochondrial calcium uniporter
(MCU) (Maack and O’Rourke, 2007). Mitochondrial matrix cal-
cium regulates 3 key enzymes in the tricarboxylic acid (TCA)
cycle that harnesses the decarboxylation of acetyl-CoA to yield
reduced nicotinamide adenine dinucleotide (NADH) which fuels
the respiratory electron transport chain (ETC) and is converted to

NADPH which plays a critical role in maintaining mitochondrial
anti-oxidant capacity (McCormack and Denton, 1990; Hansford
and Zorov, 1998; Liu et al., 2014); Mitochondrial Ca2+ can
also directly stimulate respiratory complex activity, including the
mitochondrial ATP synthase (F1F0 ATPase) (Territo et al., 2000).
Thus, Ca2+ coordinately regulates ATP-consuming myofilaments
and ATP-generating oxidative phosphorylation (Figure 2).

Ca2+ uptake by mitochondria is dependent on cytosolic Na+
levels, which has been demonstrated to be elevated in experi-
mental models of heart failure (Liu and O’Rourke, 2008) and
failing human hearts (Pieske and Houser, 2003). The O’Rourke
group has demonstrated that elevated cytosolic Na+ increases the
rate of the mitochondrial Na+−Ca2+ exchanger (mNCE), which
promotes mitochondrial Ca2+ efflux and decreases the mito-
chondria’s ability to accumulate Ca2+ during conditions of high
demand (Maack et al., 2006; Liu and O’Rourke, 2013). Without
Ca2+-induced Kreb’s cycle stimulation, NADH and NADPH
become more oxidized and are unable to recharge antioxidant sys-
tems, leading to ROS accumulation in the mitochondrial matrix
and release into the cytosol (Kohlhaas et al., 2010; Gauthier et al.,
2013; Liu and O’Rourke, 2013). Partial inhibition of mNCE by
CGP-37157 attenuated adverse ventricular remodeling and was
anti-arrhythmic in a guinea pig model of pressure overload (Liu
et al., 2014). A recent study of Ranolazine, an inhibitor of late
Na+ current, that is known to contribute to cytosolic Na+ over-
load revealed salutary effects on action potential duration and
arrhythmias in cardiac myocytes of HCM patients who under-
went myectomy (Coppini et al., 2013). Investigation of cytosolic
Na+ levels (Gao et al., 2013) and mitochondrial Ca2+ handling
is needed in order to assess whether altered mitochondrial Ca2+
dynamics contribute to energetic deficits and oxidative stress in
HCM (Nakamura et al., 2005; Senthil et al., 2005; Marian et al.,
2006; Dimitrow et al., 2009).

Conditions such as exercise that quickly elevate heart rate
impose energetic demands that can quickly exceed Ca2+-
regulated supply. In these cases, the by-product of myofilament
ATPase activity, ADP, provides vital feedback stimulation of
energy in two ways. Firstly the original work by Britton Chance
and colleagues showed that the rate of ATP formation by Complex
V is driven by the concentration of ADP. Myofilaments also
possess a local ATP-buffering capacity maintained by cytosolic
creatine kinase (CK). In high work conditions, ADP accumula-
tion is sensed by CK, which catalyzes phosphoryl group trans-
fer from phosphocreatine to regenerate ATP (Saks et al., 2006;
Balaban, 2009) (Figure 2). Our studies in patients from a fam-
ily carrying the R403Q mutation in myosin heavy chain (MHC)
revealed a 43% reduction in forward CK flux at rest, indicat-
ing reduced metabolic reserve (Abraham et al., 2013). A recent
study by Critoph et al. revealed reduced cardiac reserve sec-
ondary to blunted increase in cardiac output, in HCM patients
undergoing exercise stress testing (Critoph et al., 2014). NMR
studies in mice with R403Q-MHC (Spindler et al., 1998) and
R92-TNT (Javadpour et al., 2003; He et al., 2007) mutations veri-
fied impaired myocardial energetics during inotropic stimulation.
The decreased [PCr], increased [Pi], [ADP] and unchanged or
decreased [ATP] can result in reduction in the calculated free
energy release from ATP hydrolysis (l�Gl) (Spindler et al., 1998)
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FIGURE 2 | Role of Mitochondria in pathogenesis of cardiac phenotype

in HCM. Left panel: electron microscopy image of mouse heart. Right panel:
schematic illustrating mitochondrial physiology. The Krebs cycle generates
reducing equivalents (NADH, FADH2) that drive proton pumping, establish
the proton-motive force across the mitochondrial inner membrane and
contribute to ROS scavenging. Mitochondrial ATP synthase (complex V)
couples proton influx to ATP generation. Matrix concentrations of Ca2+ and
Na+ play an important role in control of oxidative phosphorylation.

Mitochondria are the main source of ATP generation and important source of
ROS (from complexes I and III) in cardiac myocytes. Abnormalities in
mitochondrial function, reduced CK flux, oxidative stress and impaired Ca2+
handling have been implicated in generation of the cardiac phenotype in
HCM. Cr, creatine; PCr, creatine-phosphate, Mt-CK, mitochondrial creatine
kinase; ANT, Adenine nucleotide translocator; ETC, electron transport chain;
IMS, inter-membrane space; MCU, mitochondrial calcium uniporter; NCE,
mitochondrial Na+−Ca2+ exchanger.

which in turn can impair the function of cellular ATPases (e.g.,
myosin ATPase, Na+−K+-ATPase) and Ca2+ pumps like SERCA,
leading to systolic and/or diastolic dysfunction, reduction or
blunted increase in stroke volume, increased levels of cytosolic
Na+, Ca2+ and arrhythmias under conditions of high work load,
such as intense exercise (Unno et al., 2009; Ashrafian et al., 2011;
Watkins et al., 2011).

THE ROLE OF MITOCHONDRIA IN HCM: WHAT WE KNOW
The vital role of mitochondria as providers of energy for the high
demands of cardiac contractility is well recognized, as is their
contribution to necrotic and apoptotic cell death (Seddon et al.,
2007). More, recently, the novel role of mitochondria as signaling
organelles has emerged, primarily through their ability to pro-
duce reactive oxygen species (ROS) -including superoxide (O−

2 ),
hydrogen peroxide (H2O2) and hydroxyl radicals (.OH)- and
reactive nitrogen species, including nitric oxide (NO) and per-
oxynitrite (ONOO−) (Balaban et al., 2005; Figueira et al., 2013).
ROS are best known for the damage they cause by directly oxidiz-
ing proteins, lipids, and DNA, but recent evidence suggests that
the controlled and carefully modulated release of ROS from the
mitochondrial network can activate specific signaling pathways or
mediate reversible post-translational modifications of target pro-
teins with pronounced effects on function (Terentyev et al., 2008;

Bayeva and Ardehali, 2010). Additionally, because mitochondria
are major determinants of the redox potential of both the pyrim-
idine nucleotide (NADH, NADPH) and thiol (GSH, thioredoxin)
pools, they are important regulators of myocyte function (Stanley
et al., 2011; Kembro et al., 2013; Liu and O’Rourke, 2013; Liu
et al., 2014). However, very little is known about myocyte and
mitochondrial redox potential in HCM (Figure 2).

Impairment of mitochondrial function and morphological
disorganization has been reported in mouse models (Tardiff et al.,
1999; Lucas et al., 2003) and in HCM patients (Unno et al., 2009).
However, a systematic study of mitochondrial function is lacking.
It is also unclear whether mitochondrial abnormalities are a pri-
mary event or secondary event in HCM. Of note, patients with
mutations in mitochondrial DNA (Obayashi et al., 1992; Rotig
et al., 1997; Okajima et al., 1998; Elliott and McKenna, 2004) can
have a similar cardiac phenotype as HCM patients with sarcom-
eric protein mutations, suggesting that energetic deficits can lead
to the cardiac phenotype of HCM.

The normal heart relies primarily on fatty acid oxidation for
ATP generation (Abozguia et al., 2006; Ingwall, 2009). Pathologic
hypertrophy is known to be associated with a reduction in fatty
acid oxidation and increased reliance on glucose for ATP gen-
eration (Abozguia et al., 2006; Coppini et al., 2013). Positron
emission tomography (PET) using 11C-acetate and 18FDG have
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been employed to study glucose and fatty acid oxidation in
HCM patients (Grover-McKay et al., 1989; Nienaber et al., 1993;
Perrone-Filardi et al., 1993; Tadamura et al., 1996; Tuunanen
et al., 2007): some studies have found decrease/no change or
increase in glucose uptake and the same is true for fatty acid
oxidation, in hypertrophied and non-hypertrophied walls, when
compared to controls. This may be attributable to differences in
clinical characteristics (stage of disease, degree of hypertrophy,
presence of microvascular dysfunction) and mutation status of
the small number of patients who were studied. Since enzymes
for fatty acid oxidation are located in mitochondria, it is unclear
whether abnormalities in fatty acid oxidation are secondary to
mitochondrial dysfunction. Metabolomic studies (Mayr, 2008)
are needed in mouse models and HCM patients to obtain insights
into metabolic remodeling and its role in generation of the cardiac
phenotype in HCM.

ARRHYTHMIAS IN HCM—DO MITOCHONDRIA PLAY A
ROLE?
Sudden cardiac death is the most dreaded and tragic phenotype,
as it is often the first manifestation of the disease and occurs in
asymptomatic and apparently healthy young individuals (Maron
and Maron, 2013). The enhanced ventricular arrhythmogenic-
ity has been attributed to abnormal cardiomyocyte orientation
and alignment (disarray), microvascular ischemia, and fibrosis
(Coppini et al., 2013).

Sarcomeres are known to sequester Ca2+ (bound: free ratio
is 100:1). It has been hypothesized that HCM mutations may
increase “Ca2+ trapping,” and through altered on–off kinet-
ics may lead to altered Ca2+ signaling and arrhythmogenesis
(Semsarian et al., 2002; Ashrafian et al., 2011).

Another possibility that has not been explored is energetic
deficits, because energy compromise would be most marked when
the heart is subject to increased work load, as is the case during
high intensity exercise. In fact, exercise-induced arrhythmias are
common causes of sudden death and defibrillator discharges in
HCM patients (Ommen and Gersh, 2009; Spirito et al., 2014).
Since HCM is associated with high sarcomeric ATP consump-
tion at rest, the ability of the heart to provide sufficient ATP for
myosin ATPase, SERCA and membrane ATPases could be com-
promised during exercise, leading to cytosolic Na+ and Ca2+
overload and triggered activity leading to clinical arrhythmias
(Watkins et al., 2011). Another possibility is the “metabolic sink
hypothesis,” proposed by the O’Rourke group (Akar et al., 2005),
wherein regional oxidative stress (ROS-induced ROS release) in
mitochondria results in mitochondrial membrane depolariza-
tion, KATP−channel opening and reentrant arrhythmias (Zorov
et al., 2000, 2006; Aon et al., 2003, 2006; O’Rourke et al., 2005;
Zhou et al., 2009; Cortassa et al., 2014).

THERAPIES IN HCM—ALL LEFT VENTRICULAR
HYPERTROPHY IS NOT CREATED EQUAL
There is a need for therapies that prevent/reverse the cardiac
phenotype in HCM (Force et al., 2010). Drugs such as beta-
adrenergic antagonists (e.g., Metoprolol), L-type Ca2+ chan-
nel blockers (e.g., Diltiazem, Verapamil) (Semsarian et al.,
2002; Elliott and McKenna, 2004; Spirito and Autore, 2006),

angiotensin II receptor antagonists (e.g., Losartan), (Lim et al.,
2001; Lombardi et al., 2009; Shimada et al., 2013) carnitine
palmitoyltransferase-1/2 inhibitor (Perhexiline) (Abozguia et al.,
2010), antiarrhythmics (e.g., Disopyramide, Amiodarone), sur-
gical myectomy and alcohol septal ablation (Sorajja et al., 2012)
have been used to treat symptomatic HCM (Gersh et al., 2011).
Antioxidant therapy with L-NAC was shown to prevent hypertro-
phy and fibrosis in experimental models of HCM (Marian et al.,
2006) and is now in clinical trials (HALT-HCM study). Recently,
there has been interest in the use of Ranolazine, based on ben-
eficial effects on action potential duration and arrhythmias, in
cardiac myocytes derived from HCM patients undergoing myec-
tomy that exhibited evidence of electrophysiologic remodeling
(increased late Na+ and Ca2+ currents, reduced repolarizing K+
currents) (Coppini et al., 2013). Two studies are currently under
way to test the efficacy of ranolazine on exercise tolerance and
diastolic function in symptomatic HCM patients (RESTYLE-
HCM, Germany, Menarini) and to treat chest pain or dyspnea
in patients with HCM (RHYME, USA) (Spoladore et al., 2012).
However, it is not known whether cytosolic Na+ is increased early
in the course of the disease (pre-hypertrophic stage) and whether
it leads to mitochondrial dysfunction in any/all HCM mutations,
or whether high levels of cytosolic Na+ occur after the onset of
myocyte hypertrophy and/or symptoms. Most importantly, none
of the agents tested clinically have been demonstrated to change dis-
ease course in symptomatic patients (Nagueh et al., 2010). Possible
reasons may be that the pathophysiology of myocyte hypertrophy
is mutation-specific and the extent of hypertrophy (a common
clinical endpoint) is only one determinant of prognosis. Another
possibility is that all HCM is not created equal and consequently,
individualized, mutation-specific therapies need to be developed.

Hypertrophy is a compensatory response to myocardial injury.
While hypertension and HCM can both cause left ventricular
hypertrophy which may be indistinguishable by clinical imaging,
the molecular mechanisms underlying myocyte hypertrophy are
probably different based on an early study of cyclosporine, which
prevented left ventricular hypertrophy in the TAC (transverse aor-
tic constriction) model (that simulates increased afterload caused
by hypertension) (Sussman et al., 1998), but expedited hypertro-
phy in HCM mice with a mutation (R403Q) in the α-MHC gene
(Teekakirikul et al., 2010). Hence there is need for further investi-
gations to clarify the mechanisms underlying the cardiac phenotype
in HCM in order to spur development of new therapeutic strategies
and pre-clinical screening tests.

FUTURE DIRECTIONS
Identification of mutations has defined the genetic causes of
HCM in 50–60% of HCM patients, but the molecular mecha-
nisms underlying myocyte hypertrophy, fibrosis and ventricular
arrhythmias have not been completely elucidated (Force et al.,
2010). It is unclear to what extent genetic variants of HCM exhibit
a common mechanism of pathogenesis and to what extent they
differ. It is also unknown why certain sarcomeric mutations are
well tolerated while others are particularly pernicious in patients,
but not in animal models.

Based on positive results in animal models, clinical trials
have investigated Ca2+ channel blockers and inhibitors of the
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renin-angiotensin-aldosterone system in the HCM population,
with limited success -possible reasons include differences in dis-
ease pathophysiology between HCM-causing mutations and dif-
ferences in physiology between mouse and human myocytes.
Hence, studies in human myocytes are needed to confirm results
obtained in mouse models and develop therapies that mod-
ify the clinical course of disease. Since human heart tissue can
only be obtained by heart biopsy or during surgery, it has
been difficult to conduct human studies of disease pathophys-
iology in large numbers of HCM patients at various stages of
disease.

Advances in IPSC (induced pluripotent stem cell) technol-
ogy permit derivation of human cardiac myocytes obtained by
differentiation of human IPSCs derived from HCM patients
(Matsa et al., 2014). A recent study by the Wu group at Stanford
demonstrated that myocytes differentiated from IPSCs (IPSC-
CMs) recapitulate the HCM disease phenotype and can serve
as a platform to test therapies (Lan et al., 2013). Furthermore,
mitochondrial dysfunction resulting from low levels of Frataxin
was also reproduced in IPSC-CMs derived from patients with
Friedrich’s ataxia (Hick et al., 2013). Hence, IPSC-CMs derived
from HCM patients could serve as human model systems of HCM
to investigate mitochondrial function and molecular mechanisms
underlying cardiac phenotype, develop individualized screen-
ing tests and drug therapies in HCM patients with known and
unknown causal mutations.

CONCLUDING REMARKS
HCM is caused by mutations in sarcomeric proteins in 50–60% of
patients. These mutations have been shown to increase the ener-
getic cost of tension development. However, it is unclear whether
energetic deficits are involved in generation of the cardiac pheno-
type in all HCM patients and whether mitochondrial dysfunction
precedes development of energetic deficits. Further investigation
of mitochondrial function, metabolism and its relationship to
cardiac function and electrophysiology in animal models of HCM
and/or patient-derived myocytes is needed to clarify the molecu-
lar mechanisms underlying the cardiac phenotype in HCM and
to design therapies that prevent, arrest and reverse the disease
phenotype.
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