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Abstract: A simple wide-bandgap conjugated polymer based on indoloquinoxaline unit (PIQ) has
been newly designed and synthesized via cheap and commercially available starting materials. The
basic physicochemical properties of the PIQ have been investigated. PIQ possesses a broad and
strong absorption band in the wavelength range of 400~660 nm with a bandgap of 1.80 eV and
lower-lying highest occupied molecular orbital energy level of −5.58 eV. Polymer solar cells based on
PIQ and popular acceptor Y6 blend display a preliminarily optimized power conversion efficiency of
6.4%. The results demonstrate indoloquinoxaline is a promising building unit for designing polymer
donor materials for polymer solar cells.

Keywords: indoloquinoxaline; low-cost polymer donor; wide-bandgap polymer; polymer solar cells

1. Introduction

Polymer solar cells (PSCs) are attractive as a promising new energy device for solar-
to-electric conversion [1]. In a typical device, the active-layer blending film consists of a
donor material and an acceptor material [2,3]. One of the most successful blends in recent
years contains a p-type polymer as the donor and an n-type non-fullerene molecule as the
acceptor [4]. Thanks to rational molecular design and device optimization [5], the power
conversion efficiencies (PCEs) of PSCs have consistently improved [6]. However, one issue
that must be critically considered is the cost of the active-layer materials [7,8]. Because of
the complicated molecular structures, tedious multi-step organic synthesis, and laborious
purifications, the costs of the efficient active-layer materials reported so far were too high
to meet commercial application of PSCs [9]. Therefore, developing low-cost and efficient
active-layer materials is one of the key challenges for the application of PSCs [10,11].

Recently, a low-cost and high-performance polymer donor, PTQ10 [12], has been demon-
strated as a promising polymer donor for commercial application of PSCs. Compared to the
classical benzo [1,2-b:4,5-b′] dithiophene (BDT)-based polymers [13–15] (see Figure 1a) synthe-
sized via multi-step synthesis, PTQ10 has a very simple molecular structure (see Figure 1b),
and it can be synthesized via simple two-step reactions with cheap raw materials. Low-
cost and efficient polymer donors have gained relative less attention in recent years,
and only a few polymers with these features have been developed until now [9]. We
had reviewed and summarized the representative low-cost and efficient polymer donors
(see Table S1 and Figure S7). It was shown that these types of polymers are promising
donor materials for high-performance PSCs [16–22]. Therefore, we expected to develop
new low-cost and efficient polymer donors.
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Figure 1. (a) BDT-based and (b) thiophene-based polymer donors; (c) molecular design strategy of 
the indoloquinoxaline-based polymer. 

Indolo[2,3-b] quinoxaline (IQ) is a unique planar built-in donor–acceptor heterocyclic 
unit that can be considered as the fusion of electron-deficient quinoxaline and electron-
rich indole. Some IQ small molecular derivatives have been applied as promising multi-
functional anti-Alzheimer agents [23], photosensitizers [24–26], hole injection-layer mate-
rials [27] and non-fullerene acceptors [28]. In this work, we designed an IQ-based poly-
meric p-type semiconductor material (PIQ) for polymer solar cells. The molecular design 
strategy is shown in Figure. 1c. This polymer contains simple thiophene and difluorine-
substituted IQ units with two-dimensional (2D) conjugated backbone. The 2D conjugated 
structure is favorable for intermolecular carrier transporting [29–31]. The fluorination of 
the IQ unit is to improve molecular planarity via S···F non-covalent interactions and fur-
ther enhance carrier transporting [32–35]. The alkyl side chain on the IQ unit is to ensure 
good solubility. 

2. Materials and Methods 
2.1. Materials 

9-(Iodomethyl)nonadecane (97%, Lyntech), 3,6-Dibromo-4,5-difluorobenzene-1,2- 
diamine (98%, Zhengzhou Ruke Biological), indoline-2,3-dione (97%, Rhawn), and 2,5-
bis(trimethylstannyl)thiophene (99%, bidepharm), potassium carbonate (K2CO3, 98%, 
Aladdin), N,N-Dimethylformamide (DMF, AR, 99.5%, Aladdin), toluene (99.5%, Alad-
din), acetic acid (CH3COOH, 99.7%, Aladdin), Tris(dibenzylideneacetone)dipalladium(0) 
(Pd2(dba)3, 97%, Aladdin), Tri(o-tolyl)phosphine (P(o-tolyl)3, 97%, Aladdin), calcium hy-
dride (95%, Aladdin), molecular sieves (3Å, Aladdin), 2,2′-((2Z,2′Z)-((12,13-bis(2-
ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo-[3,4-
e]thieno[2”,3′’:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2-g]thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-
diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-inde (Y6, 98%, Zheng-
zhou Alfachem Co., Ltd., Zhengzhou, Henan province.) were used as received. Toluene 
was distilled over calcium hydride under an argon atmosphere and was then dried with 
3Å molecular sieves. The detailed synthesis routes are shown in Scheme 1. 

Figure 1. (a) BDT-based and (b) thiophene-based polymer donors; (c) molecular design strategy of
the indoloquinoxaline-based polymer.

Indolo[2,3-b] quinoxaline (IQ) is a unique planar built-in donor–acceptor hetero-
cyclic unit that can be considered as the fusion of electron-deficient quinoxaline and
electron-rich indole. Some IQ small molecular derivatives have been applied as promising
multifunctional anti-Alzheimer agents [23], photosensitizers [24–26], hole injection-layer
materials [27] and non-fullerene acceptors [28]. In this work, we designed an IQ-based poly-
meric p-type semiconductor material (PIQ) for polymer solar cells. The molecular design
strategy is shown in Figure 1c. This polymer contains simple thiophene and difluorine-
substituted IQ units with two-dimensional (2D) conjugated backbone. The 2D conjugated
structure is favorable for intermolecular carrier transporting [29–31]. The fluorination
of the IQ unit is to improve molecular planarity via S···F non-covalent interactions and
further enhance carrier transporting [32–35]. The alkyl side chain on the IQ unit is to ensure
good solubility.

2. Materials and Methods
2.1. Materials

9-(Iodomethyl)nonadecane (97%, Lyntech), 3,6-Dibromo-4,5-difluorobenzene-1,2-
diamine (98%, Zhengzhou Ruke Biological, Zhengzhou, China), indoline-2,3-dione (97%,
Rhawn), and 2,5-bis(trimethylstannyl)thiophene (99%, bidepharm), potassium carbonate
(K2CO3, 98%, Aladdin), N,N-Dimethylformamide (DMF, AR, 99.5%, Aladdin), toluene
(99.5%, Aladdin), acetic acid (CH3COOH, 99.7%, Aladdin), Tris(dibenzylideneacetone)dip-
alladium(0) (Pd2(dba)3, 97%, Aladdin), Tri(o-tolyl)phosphine (P(o-tolyl)3, 97%, Aladdin),
calcium hydride (95%, Aladdin), molecular sieves (3Å, Aladdin), 2,2′-((2Z,2′Z)-((12,13-
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bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo-[3,4-e]thieno[2”,3′’:4′,5′]-
thieno[2′,3′:4,5]pyrrolo[3,2-g]thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylyli-
dene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-inde (Y6, 98%, Zhengzhou Alfachem Co.,
Ltd., Zhengzhou, China) were used as received. Toluene was distilled over calcium hy-
dride under an argon atmosphere and was then dried with 3Å molecular sieves. The
detailed synthesis routes are shown in Scheme 1.

Polymers 2022, 14, x FOR PEER REVIEW 3 of 10 
 

 

H
N

O

O

I
C10H21

C8H17

K2CO3, DMF, 70oC
97.4%

Br Br

F F

NH2H2N

CH3COOH, 120oC
77.4%

N

O

O

C10H21

C8H171

NN

HN

Br

F F

Br

2

I
C10H21

C8H17

K2CO3, DMF, 70oC
59.7%

Br Br

F F

NH2H2N

CH3COOH, 120oC
28.9%

NN

N

Br

F F

Br

C8H17
C10H21

3

SSn Sn

Pd2(dba)3, P(o-Tolyl)3
Toluene, 110oC

80.3%

NN

N

F F

C8H17
C10H21

S n

PIQ

Route1

Route2  
Scheme 1. Synthetic routes of the PIQ. 

2.2. Synthesis of 1,4-Dibromo-2,3-difluoro-6-(2-octyldodecyl)-6H-indolo[2,3-b]quinoxaline 
[Route 1] 1-(2-octyldodecyl) indoline-2,3-dione (1)[35] was synthesized according to 

literature procedures. Quantities of 3,6-dibromo-4,5-difluorobenzene-1,2-diamine (0.66 
mmol, 0.2033 g) and 1-(2-octyldodecyl)indoline-2,3-dione (0.54 mmol, 0.2309 g) were 
added to a Schlenk reaction flask (38 mL) under an argon atmosphere, followed by the 
addition of deoxygenated acetic acid (3.5 mL), and the reaction was carried out at 120 °C 
for 16 h. After the reaction was cooled to room temperature, the mixture was poured into 
cold water (100 mL). It was then extracted with dichloromethane (50 mL × 3). The com-
bined organic layers were washed with water and brine then dried over anhydrous mag-
nesium sulfate. After removing the solvent, the crude product was purified by flash col-
umn chromatography (silica gel, dichloromethane: petroleum ether = 1:2, v/v) to afford 
the titled compound (0.1083 g, 28.9%) as a yellow solid. 

[Route 2] Indoline-2,3-dione (0.66 mmol, 0.0991 g) and 3,6-dibromo-4,5-difluoroben-
zene-1,2-diamine (0.55 mmol, 0.1694 g) were added to a Schlenk reaction flask (38 mL) 
under argon atmosphere, followed by the addition of deoxygenated acetic acid (1.8 mL), 
and the reaction was carried out at 120 °C for 16 h. After the reaction was cooled to room 
temperature, the mixture was poured into water (100 mL). The precipitate was filtered 
and then washed with methanol (5 mL × 4) and dried under vacuum to obtain the 1,4-
dibromo-2,3-difluoro-6H-indolo[2,3-b]quinoxaline (0.1759 g, 77.4%) as a yellow solid. 
Next, 1,4-dibromo-2,3-difluoro-6H-indolo[2,3-b]- quinoxaline was transferred to a double-
necked flask (250 mL) under argon atmosphere. K2CO3 (0.86 mmol, 0.1189 g), and deoxy-
genated DMF (2 mL) were added. Subsequently, 9-(iodomethyl)nonadecane (0.65 mmol, 
0.2709 g) was added slowly dropwise. The reaction was carried out at 70 °C for 21 h. After 
the reaction was cooled to room temperature, the product was poured into water (100 
mL). It was then extracted with dichloromethane (50 mL × 3). The combined organic layers 
were washed with water and brine and dried over anhydrous magnesium sulfate. After 
removing the solvent, the crude product was purified by flash column chromatography 
(silica gel, dichloromethane: petroleum ether = 1:4, v/v) to afford the titled compound 
(0.1779 g, 59.7%) as a yellow solid. 

1H NMR (400 MHz, CDCl3, ppm): δ 8.55 (d, J = 7.7 Hz, 1H), 7.75 (t, J = 7.7 Hz, 1H), 
7.50 (d, J = 8.2 Hz, 1H), 7.43 (t, J = 7.6 Hz, 1H), 4.41 (d, J = 7.4 Hz, 2H), 2.31–2.22 (m, 1H), 
1.51–1.47 (m, 2H), 1.28–1.18 (m, 30H), 0.86 (q, J = 7.1 Hz, 6H). 

13C NMR (125 MHz, CDCl3, ppm): δ 150.60, 148.80, 147.12, 146.09, 145.22, 140.65, 
135.75, 133.58, 132.02, 123.74, 121.56, 118.81, 110.24, 108.14, 46.30, 37.26, 32.05, 31.76, 30.08, 
29.85, 29.75, 29.68, 29.63, 29.46, 26.36, 22.83, 14.27. 

Scheme 1. Synthetic routes of the PIQ.

2.2. Synthesis of 1,4-Dibromo-2,3-difluoro-6-(2-octyldodecyl)-6H-indolo[2,3-b]quinoxaline

[Route 1] 1-(2-octyldodecyl) indoline-2,3-dione (1) [35] was synthesized accord-
ing to literature procedures. Quantities of 3,6-dibromo-4,5-difluorobenzene-1,2-diamine
(0.66 mmol, 0.2033 g) and 1-(2-octyldodecyl)indoline-2,3-dione (0.54 mmol, 0.2309 g) were
added to a Schlenk reaction flask (38 mL) under an argon atmosphere, followed by the
addition of deoxygenated acetic acid (3.5 mL), and the reaction was carried out at 120 ◦C
for 16 h. After the reaction was cooled to room temperature, the mixture was poured
into cold water (100 mL). It was then extracted with dichloromethane (50 mL × 3). The
combined organic layers were washed with water and brine then dried over anhydrous
magnesium sulfate. After removing the solvent, the crude product was purified by flash
column chromatography (silica gel, dichloromethane: petroleum ether = 1:2, v/v) to afford
the titled compound (0.1083 g, 28.9%) as a yellow solid.

[Route 2] Indoline-2,3-dione (0.66 mmol, 0.0991 g) and 3,6-dibromo-4,5-difluorobenzene-
1,2-diamine (0.55 mmol, 0.1694 g) were added to a Schlenk reaction flask (38 mL) un-
der argon atmosphere, followed by the addition of deoxygenated acetic acid (1.8 mL),
and the reaction was carried out at 120 ◦C for 16 h. After the reaction was cooled to
room temperature, the mixture was poured into water (100 mL). The precipitate was fil-
tered and then washed with methanol (5 mL × 4) and dried under vacuum to obtain the
1,4-dibromo-2,3-difluoro-6H-indolo[2,3-b]quinoxaline (0.1759 g, 77.4%) as a yellow solid.
Next, 1,4-dibromo-2,3-difluoro-6H-indolo[2,3-b]- quinoxaline was transferred to a double-
necked flask (250 mL) under argon atmosphere. K2CO3 (0.86 mmol, 0.1189 g), and deoxy-
genated DMF (2 mL) were added. Subsequently, 9-(iodomethyl)nonadecane (0.65 mmol,
0.2709 g) was added slowly dropwise. The reaction was carried out at 70 ◦C for 21 h. After
the reaction was cooled to room temperature, the product was poured into water (100 mL).
It was then extracted with dichloromethane (50 mL × 3). The combined organic layers
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were washed with water and brine and dried over anhydrous magnesium sulfate. After
removing the solvent, the crude product was purified by flash column chromatography
(silica gel, dichloromethane: petroleum ether = 1:4, v/v) to afford the titled compound
(0.1779 g, 59.7%) as a yellow solid.

1H NMR (400 MHz, CDCl3, ppm): δ 8.55 (d, J = 7.7 Hz, 1H), 7.75 (t, J = 7.7 Hz, 1H),
7.50 (d, J = 8.2 Hz, 1H), 7.43 (t, J = 7.6 Hz, 1H), 4.41 (d, J = 7.4 Hz, 2H), 2.31–2.22 (m, 1H),
1.51–1.47 (m, 2H), 1.28–1.18 (m, 30H), 0.86 (q, J = 7.1 Hz, 6H).

13C NMR (125 MHz, CDCl3, ppm): δ 150.60, 148.80, 147.12, 146.09, 145.22, 140.65,
135.75, 133.58, 132.02, 123.74, 121.56, 118.81, 110.24, 108.14, 46.30, 37.26, 32.05, 31.76, 30.08,
29.85, 29.75, 29.68, 29.63, 29.46, 26.36, 22.83, 14.27.

2.3. Synthesis of the Polymer PIQ

Quantities of 1,4-dibromo-2,3-difluoro-6-(2-octyldodecyl)-6H-indolo[2,3-b]quinoxaline
(0.2 mmol, 0.1387 g), 2,5-bis(trimethylstannyl)thiophene (0.2 mmol, 0.0828 g), and toluene
(6 mL) were added to a oven-dried Schlenk tube (100 mL) under argon atmosphere. The
mixture was degassed with argon for 30 min. Next, Pd2(dba)3 (0.004 mmol, 0.0037 g) and
P(o-tolyl)3 (0.016 mmol, 0.009 g) were added. After being degassed with argon for another
10 min, the tube was sealed. The tube was placed in a 110 ◦C oil bath. After 48 h, it was
cooled down to room temperature. The reaction mixture was poured into stirring methanol
to precipitate the crude product. The precipitate was collected by filtration and was further
purified by sequential Soxhlet extractions with methanol and petroleum ether. The residue
after Soxhlet extractions was then extracted with chloroform. The chloroform solution was
re-precipitated with methanol. The resulting solid was collected and then dried to obtain
the title polymer (0.0989 g, 80.3%) as a purple-black solid.

1H NMR (600 MHz, CDCl3, ppm): δ 8.43(br, 2H), 7.55–7.08(br, 4H), 4.27 (br, 2H),
2.02–0.88 (br, 38H).

GPC (THF): Mn = 7.1 kDa, Ð = 1.98.
Td (5% loss) = 464 ◦C.

2.4. Device Fabrication and Characterization

The OPV device structure was set to ITO/PEDOT:PSS/PIQ:Y6/PDINN/Ag. The ITO
glass substrates were ultrasonicated in deionized water with various reagents (acetone
and 1,2-propanol), and dried in ambient atmosphere for 15 h. The dried glass substrates
were treated with UV ozone for 20 min, and the PEDOT:PSS layers were spin-coated onto
substrates at 7000 rpm for 60 s. The PEDOT:PSS layers had a thickness of 30 nm. Next,
the film underwent an annealing process in the air at 150 ◦C for 15 min. The substrates
were transferred into an Ar-filled glove box to spin-coat the active layers. The active
layer materials PIQ and Y6 were dissolved in chloroform with a 1:1 weight ratio at a total
concentration of 16.8 mg/mL. The solution of the PIQ and Y6 was subsequently spin-coated
onto the hole transport layer (PEDOT: PSS), and the spin speed was 2000 rpm for 50s, to
form ca. 80 nm uniform active layers. After that, the active layer needed to anneal for
12 min at 100 ◦C in the vacuum glove box. Finally, a thin PDINN layer (ca. 1 nm) and
Ag (ca. 120 nm) were evaporated in a high vacuum chamber (ca. 4 × 10−6 torr). After
this step, the device can be used for corresponding characterizations. Under AM1.5 solar
illumination, J-V curves were measured by PV Test Solutions solar simulator. The external
quantum efficiency (EQE) of the solar cells was tested using Zolix SolarCellScan 100.

3. Results and Discussion

PIQ can be synthesized with low cost via a three-step reaction from cheap raw ma-
terials. Two synthetic routes were explored to obtain monomer 3 with indoline-2,3-dione
as the cheap raw material. N-alkylation reaction between 1-(2-octyldodecyl)indoline-
2,3-dione and 9-(iodomethyl)nonadecane was used to synthesize compound 1 in a high
yield of 97.4%. The acetic acid-catalyzed condensation reaction between compound 1 and
3,6-dibromo-4,5- difluorobenzene-1,2-diamine was conducted to synthesize monomer 3
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in a low yield of 28.9%. Thus, monomer 3 was obtained with a low overall yield of 28%
through this synthetic route. An improved route is to conduct the acetic acid-catalyzed
condensation reaction followed by the N-alkylation reaction, as monomer 3 could be ob-
tained with a reasonable overall yield of 46%. The Stille cross-coupling polycondensation
of 2,5-bis(trimethylstannyl) thiophene and monomer 3 was performed to gain the target
polymer PIQ as a purple-black solid (80.3% yield). The number average molecular weight
and polydispersity index for PIQ were 7.1 kDa and 1.98, respectively, and PIQ had good
solubility in common organic solvents. We performed synthesis cost calculations of the
polymer PIQ using the model developed by Li et al. [36], which can be used as a rough
indication of synthetic complexity. The results were displayed in Supporting Information
(see Table S2). The cost of PIQ synthesized via route 1 is approximately 414.3 ¥/g, whereas
the cost of PIQ synthesized via route 2 is approximately 241.1 ¥/g. The latter is signifi-
cantly lower than the former, indicating that route 2 is the preferable route. As shown in
Table S3, the synthesis cost of PIQ is compared to those of some famous polymer donors
(e.g., PTQ10, PBDB-T, and PM6) [37–39].

3.1. Optical Properties

To study the optical properties of polymer PIQ, the UV-vis absorption spectra of
monomer 3 and PIQ were tested. The photograph and absorption spectra of monomer
3 and polymer PIQ in dilute chlorobenzene solutions are shown in Figure 2a. PIQ so-
lution exhibited absorption edge at 663 nm, which red-shifted over 188 nm relative to
the monomer 3 solution. Introduction of the electron-donating thiophene to conjugated
backbone can significantly enhance electronic delocalization along the chain axis via in-
tramolecular charge transfer [40–42]. The monomer 3 solution has a strong absorption at
400–470 nm with a maximum absorption coefficient (ε) of 1.25×105 M−1 cm−1, whereas
the polymer PIQ solution has a much larger range of absorption, showing strong absorp-
tion in the 400–660 nm range with a slightly higher maximum absorption coefficient of
1.37 × 105 M−1 cm−1 (Figure 2b). The absorption spectra of PIQ as a thin film is also dis-
played in Figure 2a. Compared to that of its solution, a distinct red shift by 22 nm was
observed due to stronger aggregation in a solid state. The bandgap of PIQ as a thin film
was estimated to be 1.80 eV, which could be comparable to that of PTQ10 and matched well
with the typical low-bandgap acceptor of Y6 (see Figure S9 for its molecular structure) to
show a complementary absorption [12,43]. The optical properties of PIQ are summarized
in Table 1.
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Table 1. The optical and electrochemical properties of PIQ.

Polymer λmax
sol

(nm)
λmax

film

(nm)
λonset

film

(nm)
Eg

opt 1

(eV)

Ered/ELUMO
2

(V/eV)

Eox/EHOMO
3

(V/eV)

PIQ 564 570 687 1.80 −1.20/−3.51 0.87/−5.58
1 Calculated by the equation: Eopt

g = 1240
λfilm

onset
eV; 2 ELUMO = −e(Ered + 4.71) eV; 3 EHOMO = −e(Eox + 4.71) eV.

3.2. Electrochemical Properties

The electronic energy levels of PIQ were measured by electrochemical cyclic voltam-
metry (Figure 3). The highest occupied molecular orbital (HOMO) and lowest unoccupied
molecular (LUMO) levels of PIQ were estimated to be −5.58/−3.51 eV from the first onset
oxidation and onset reduction potentials, respectively. The electrochemical properties of
PIQ are also summarized in Table 1. The value of the electrochemical band gap for PIQ
thin film was found to be 2.07 eV, which was larger than that of its optical band gap (1.8 eV).
This may be due to the exciton binding energy for conjugated polymers [44].

Polymers 2022, 14, x FOR PEER REVIEW 6 of 10 
 

 

thin film was found to be 2.07 eV, which was larger than that of its optical band gap (1.8 
eV). This may be due to the exciton binding energy for conjugated polymers [44]. 

 
Figure 3. (a) Cyclic voltammetry curve of the PIQ thin film; (b) energy level diagram of the PIQ 
donor and Y6 acceptor. 

3.3. Thermal Properties and X-ray Diffraction Characterization 
The thermal stability of the PIQ polymer was tested by thermogravimetric analysis 

by taking approximately 6 mg of sample and placing it in an alumina ceramic crucible 
under nitrogen protection at a temperature increase rate of 20 °C/min up to 600 °C. The 
mass change of the sample at different temperatures was observed by heating. Organic 
polymer semiconductor materials can be considered to have good thermal stability when 
the temperature of 5% thermal weight loss is above 300 °C, which fully meets the require-
ments of optoelectronic device construction and testing. The temperature of 5% thermal 
weight loss of PIQ was 464 °C (see Figure S6), indicating that PIQ has good thermal sta-
bility. 

To investigate the crystallinity of PIQ film, the X-ray diffraction (XRD) measurement 
was performed on a drop-cast film of PIQ (Figure S6). The sample showed distinct 100 
peak at 5.17°, corresponding to a lamellar distance of 17.08 Å. 

3.4. Photovoltaic Properties and Photoluminescence Characterization 
To study the photovoltaic properties of PIQ, we fabricated BHJ polymer solar cells 

with a device structure of ITO/PEDOT:PSS/PIQ:Y6/PDINN/Ag (Figure 4c). The corre-
sponding energy level diagram of the related materials is shown in Figure 4d. The poly-
mer PIQ and Y6 were dissolved in chloroform. Devices with a donor/acceptor (D/A) ratio 
of 1:1 were fabricated. As illustrated in Figure 4a, a power conversion efficiency (PCE) of 
6.41% was achieved with the fill factor (FF) of 46.6%, combined with the JSC of 18.65 
mA/cm2) and VOC of 0.737 V. The JSC value of polymer solar cells can be confirmed by the 
external quantum efficiency (EQE) measurement, and the result is shown in Figure 4b. 
Thin-film photoluminescence (PL) spectra of PIQ, PIQ:Y6 blend were measured (Figure 
5). Blending PIQ with Y6 results in strong fluorescence quenching, indicating efficient 
photo-induced charge transfer [2,45] between PIQ and Y6 in blend. 

Figure 3. (a) Cyclic voltammetry curve of the PIQ thin film; (b) energy level diagram of the PIQ
donor and Y6 acceptor.

3.3. Thermal Properties and X-ray Diffraction Characterization

The thermal stability of the PIQ polymer was tested by thermogravimetric analysis by
taking approximately 6 mg of sample and placing it in an alumina ceramic crucible under
nitrogen protection at a temperature increase rate of 20 ◦C/min up to 600 ◦C. The mass
change of the sample at different temperatures was observed by heating. Organic polymer
semiconductor materials can be considered to have good thermal stability when the tem-
perature of 5% thermal weight loss is above 300 ◦C, which fully meets the requirements of
optoelectronic device construction and testing. The temperature of 5% thermal weight loss
of PIQ was 464 ◦C (see Figure S6), indicating that PIQ has good thermal stability.

To investigate the crystallinity of PIQ film, the X-ray diffraction (XRD) measure-
ment was performed on a drop-cast film of PIQ (Figure S6). The sample showed distinct
100 peak at 5.17◦, corresponding to a lamellar distance of 17.08 Å.

3.4. Photovoltaic Properties and Photoluminescence Characterization

To study the photovoltaic properties of PIQ, we fabricated BHJ polymer solar cells with
a device structure of ITO/PEDOT:PSS/PIQ:Y6/PDINN/Ag (Figure 4c). The corresponding
energy level diagram of the related materials is shown in Figure 4d. The polymer PIQ
and Y6 were dissolved in chloroform. Devices with a donor/acceptor (D/A) ratio of 1:1
were fabricated. As illustrated in Figure 4a, a power conversion efficiency (PCE) of 6.41%
was achieved with the fill factor (FF) of 46.6%, combined with the JSC of 18.65 mA/cm2)
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and VOC of 0.737 V. The JSC value of polymer solar cells can be confirmed by the external
quantum efficiency (EQE) measurement, and the result is shown in Figure 4b. Thin-film
photoluminescence (PL) spectra of PIQ, PIQ:Y6 blend were measured (Figure 5). Blending
PIQ with Y6 results in strong fluorescence quenching, indicating efficient photo-induced
charge transfer [2,45] between PIQ and Y6 in blend.
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4. Conclusions

In summary, a new polymer donor, PIQ, has been developed. PIQ can be easily
gained via a simple three-step reaction from cheap raw materials with reasonable overall
yield. PIQ has a medium bandgap of 1.80 eV, a broad and strong absorption feature in
the wavelength range of 400~650 nm, and a low-lying HOMO energy level. The PSCs
based on binary blend with PIQ as donor and Y6 as acceptor displayed a reasonable
PCE of 6.41%. We believe that the tuning of physicochemical properties of the PIQ via
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optimization of conjugated backbones and side chains and its polymerization reaction may
bring about further improvement in photovoltaic performance. We have developed the
indoloquinoxaline-based polymer as the donor material for organic solar cells, and we also
believe that indoloquinoxaline-based polymers can be promising low-cost and efficient
polymer donor photovoltaic materials.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym14081554/s1, Figures S1–S3: NMR spectrum; Figure S4: GPC
test result of the polymer PIQ; Figure S5: TGA curve of the polymer PIQ; Figure S6: XRD pat-
tern of the polymer PIQ thin film; Figure S7: Chemical structures of polymer donors involved in
Table S1; Figure S8: Chemical structures of PBDB-T and PBDB-T-2F; Figure S9: Chemical struc-
tures of Y6; Table S1: Survey of polymer solar cells based on some representative low-cost and
efficient donor polymers materials; Table S2: Survey of calculated chemical synthesis costs for PIQ;
Table S3: Comparison of the synthetic steps and synthesis costs for polymer donor materials.
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