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We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular
properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit
Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev
construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we
obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale
polynomially in the problem size. Hence our mapping is efficient. The required set of controllable
interactions includes only two types of interaction beyond the Ising interactions required to apply the
quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest
to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical
interactions.

T
he ability to make exact quantum chemical calculations on nontrivial systems would revolutionize chem-
istry. While seemingly intractable for classical algorithms, quantum computers can efficiently perform such
computations. There has been substantial interest in quantum algorithms for quantum chemistry involving

a combination of Trotterization and phase estimation1–6. However, we are still technologically far from when such
gate-model approaches are experimentally feasible for practical chemistry problems. Here, we propose a radically
different approach based on the quantum adiabatic algorithm. In this rapidly advancing paradigm of quantum
computation, there is no need for Trotterization, phase estimation or logic gates. More generally, we show the first
scalable quantum simulation scheme for fermionic systems using adiabatic quantum computing.

Adiabatic quantum computing works by changing the Hamiltonian of a controllable quantum system from an
initial Hamiltonian whose ground state is easy to prepare into a Hamiltonian whose ground state encodes the
solution of a computationally interesting problem7,8. The speed of this algorithm is determined by the adiabatic
theorem of quantum mechanics which states that an eigenstate remains at the same position in the eigenspectrum
if a perturbation acts on the system sufficiently slowly7,9,10. Simply embedding a computational problem in a
Hamiltonian suitable for AQC does not ensure an efficient solution. The required runtime for the adiabatic
evolution depends on the energy gap between the ground state and first excited state at the smallest avoided
crossing7.

AQC has been applied to classical optimization problems that lie in the complexity class NP. For example,
studies have been performed on satisfiability11–13, Exact Cover7,8, 3-regular 3-XORSAT and 3-regular Max-Cut14,
random instances of classical Ising spin glasses15, protein folding16,17 and machine learning18,19. AQC has also been
applied to structured and unstructured search20,21, search engine ranking22 and artificial intelligence problems
arising in space exploration23. Many of these applications follow naturally from the NP-Completeness of deter-
mining the ground state energy of classical Ising spin glasses24. This creates an equivalence between a large set of
computational problems (the class NP) and a set of models in classical physics (classical Ising models with
random coupling strengths). The advent of AQC provides a powerful motivation to study the detailed implica-
tions of this mapping. In general, we do not expect that quantum computing, including AQC, can provide
efficient solutions to NP-Complete problems in the worst case25. However, there may exist sets of instances of
some NP-Complete problems for which AQC can find the ground state efficiently, but which defy efficient
classical solution by any means. If this is the case then AQC is certainly of considerable scientific interest, and
likely of great industrial importance.

The potential value of a positive answer to this conjecture has motivated a commercial effort to construct an
adiabatic quantum computer26–31. Currently, these experimental implementations of AQC are not strictly con-
fined to the ground state at zero temperature but have considerable thermal mixing of higher lying states. Such
intermediate implementations are referred to as quantum annealing devices. Quantum annealing machines with
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up to 509 qubits have been commercially manufactured by D-Wave
Systems32–34. They are currently the subject of serious scientific
investigation to determine whether their operation depends signifi-
cantly on their quantum properties, and if so, whether it provides a
speedup for any class of instances15,33,35–38.

Quantum computers have been rigorously proved to provide an
algorithmic advantage over the best known classical approaches for a
small set of problems39–41. Adiabatic quantum computation applied
to classical Ising Hamiltonians (equivalently, all problems in NP)
also gives an approach to a very large class of problems where the
advantage (if any) is currently unknown. The construction of med-
ium scale (500 qubit) quantum annealing machines provides a hard-
ware platform where the properties of AQC can be investigated
experimentally. Such investigations have already been performed
for many problems. At present, optimized codes on classical hard-
ware can find the ground state of many instances in comparable time
to the D-Wave device15. However, even if no interesting set of
instances is found on which quantum annealing on the classical
Ising model outperforms classical approaches, the hardware con-
structed to date represents an important step towards the construc-
tion of large scale quantum information technology. If quantum
annealing of the classical Ising model is the first step, what is the
natural next step?

Quantum simulation has provided a rich set of questions and
methods in quantum computation since Feynman’s suggestion that
quantum devices would be best suited to computation of quantum
properties42. This observation has been fleshed out through early
work on specific systems43–48 and through quantum algorithms for
computation of eigenvalues, dynamics and other properties49–55.
Recently, there have been many proposals for the simulation of
quantum lattice models using trapped ions, trapped atoms and
photonic systems56–60. There has been rapid experimental progress
in the quantum simulation of a number of systems61–66. A natural
target for these simulations is the phase diagram of the Fermi-
Hubbard model - believed to inform our understanding of high-Tc

superconductivity. For this reason many of these approaches are
aimed at simulating systems of interacting fermions.

Lattice systems are a natural target for trapped ion and atom
quantum simulators, with the trapping mechanism taking the place
of the crystal lattice and interactions restricted to neighbors on the
lattice. However, quantum chemistry applied to molecular systems is
perhaps the broadest class of problems on which quantum simu-
lation of interacting fermions could have an impact. Finding the
energy of electrons interacting in the Coulomb potential of a set of
fixed nuclei of an atom or molecule defines the electronic structure
problem. This problem appears to be hard for classical computers
because the cost of directly solving for the eigenvalues of the exact
electronic Hamiltonian grows exponentially with the problem size.
In spite of much progress over the last 60 years developing approx-
imate classical algorithms for this problem, exact calculations remain
out of reach for many systems of interest. Figure 1 shows several of
the proposals for the efficient quantum simulation of chemical
Hamiltonians.

One may divide quantum simulation algorithms into two classes:
those that address statics and compute ground state properties, and
those that address dynamics, and simulate time evolution of the
wavefunction. It is clear that the simulation of time evolution is
exponentially more efficient on quantum computers, with significant
implications for the simulation of chemically reactive scattering, in
particular67. The computation of ground state properties naturally
requires preparation of the ground state. This can be done adiabat-
ically1,88, or by preparation of an ansatz for the ground state71.
Adiabatic preparation of the ground state within a gate model simu-
lation requires time evolution of the wavefunction, which is efficient.
However, the length of time for which one must evolve is determined,
as for all adiabatic algorithms, by the minimum energy gap between

ground and first excited states along the adiabatic path. This is
unknown in general. Similarly, a successful ansatz state must have
significant overlap with the true ground state, and guarantees of this
are unavailable in general.

The worst case complexity of generic model chemistries (e.g. local
fermionic problems studied with density functional theory) has been
shown to be in the quantum mechanical equivalent of NP-Complete,
QMA-Complete89,90. However, the subset of these generic models
which correspond to stable molecules, or to unstable configurations
of chemical interest such as transition states, is small and structured.
Just as with adiabatic optimization, it does not matter if molecular
electronic structure is QMA-Complete so long as the average
instance can be solved (or even approximated) efficiently. In this
case we also have considerable heuristic evidence that molecules
are able to find their ground state configurations rapidly: these are
the configurations in which they naturally occur. Similarly, unstable
transition states of interest occur in natural processes. Given that
simulation of time evolution on a quantum computer is efficient,
we conjecture that simulation of the natural processes that give rise
to these states will also be practical.

The proofs that Local Hamiltonian (a decision problem capturing
the complexity of finding the ground state energy) is QMA-
Complete relies on the construction of various specific
Hamiltonians that can represent any possible instance of any prob-
lem in QMA. In general, these Hamiltonians possess couplings
between more than two qubits. Hamiltonians which contain
many-body interactions of order k and lower are referred to as k-
local Hamiltonians; experimentally programmable couplings are 2-
local. The original formulation by Kitaev was (log n)-local, he then
reduced this to 5-local and that result was subsequently reduced to 3-
local. To reduce 3-local Hamiltonians to 2-local Hamiltonians ‘‘per-

Figure 1 | A diagram relating several different approaches to the
quantum simulation of quantum chemistry with the procedures and
approximations implicit in each approach. Some of these approaches have

been demonstrated experimentally using quantum information

processors. References 68–70, 72 and 81–87 are cited in the figure above.
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turbative gadgets’’ were introduced by Kempe et al.77, which can
embed a k-local Hamiltonian in a subspace of a 2-local
Hamiltonian using ancilla qubits. In the past decade, a growing body
of work has pushed the development of different gadgets which
embed various target Hamiltonians with various tradeoffs in the
resources required78–80,91–94.

Embedding problems in realizable Hamiltonians requires careful
consideration of the availability of experimental resources. One con-
sideration is that many-body qubit interactions cannot be directly
realized experimentally. Another factor is the ‘‘control precision’’ of
the Hamiltonian which is the dynamic range of field values which a
device must be able to resolve in order to embed the intended eigen-
spectrum to a desired accuracy. This resource is especially important
for molecular electronic structure Hamiltonians as chemists are typ-
ically interested in acquiring chemical accuracy (0.04 eV). Control
precision is often the limiting factor when a Hamiltonian contains
terms with coefficients which vary by several orders of magnitude.
Other considerations include the number of qubits available as well
as the connectivity and type of qubit couplings.

In this paper, we describe a scalable method which allows for the
application of the quantum adiabatic algorithm to a programmable
physical system encoding the molecular electronic Hamiltonian. Our
method begins with the second quantized representation of molecu-
lar electronic structure in which the Hamiltonian is represented with
fermionic creation and annihilation operators. The first step in our
protocol is to convert the fermionic Hamiltonian to a qubit
Hamiltonian using the Bravyi-Kitaev transformation73,74. We show
that using the Bravyi-Kitaev transformation instead of the Jordan-
Wigner transformation is necessary for avoiding exponential control
precision requirements in an experimental setting. Next, we show a
new formulation of perturbative gadgets motivated by77,80 that allows
us to remove all terms involving YY couplings in a single gadget
application (note that throughout this paper we use X, Y and Z to
denote the Pauli matrices and these operators are defined to act as
identity on unlabeled registers so that the dot product YiYj is under-
stood to represent the tensor product Yi fl Yj). Finally, we apply the
gadgets described in78 to produce a 2-local Hamiltonian with only
ZZ, XX and ZX couplings.

The paper is organized as follows. In the first section we review the
second quantized formulation of the electronic structure problem.
Next we give the mapping of this problem to qubits. In the third
section we introduce the gadgets that we will use for locality reduc-
tion. Finally, we apply our procedure to a simple example: molecular
hydrogen in a minimal basis. We close the paper with some discus-
sion and directions for future work.

Second Quantization
We begin by writing down the full configuration interaction (FCI)
Hamiltonian in the occupation number basis. We define spin orbitals
as the product of a spin function (representing either spin up or spin
down) and a single-electron spatial function (usually molecular orbi-
tals produced from a Hartree-Fock calculation). For example, in the
case of molecular hydrogen there are two electrons and thus, two
single-electron molecular orbitals, jy1æ and jy2æ. Electrons have two
possible spin states, jaæ (spin up) and jbæ (spin down). The four spin
orbitals for molecular hydrogen are therefore, jx0æ 5 jy1æjaæ, jx1æ 5

jy1æjbæ, jx2æ 5 jy2æjaæ, and jx3æ 5 jy2æjbæ.
The occupation number basis is formed from all possible config-

urations of n spin orbitals which are each either empty or occupied.
We represent these vectors as a tensor product of individual spin
orbitals written as jfn21…f0æ where fj [ B indicates the occupation of
spin orbital jxjæ. Any interaction between electrons can be repre-
sented as some combination of creation and annihilation operators
a{j and aj for j [ Z 0ƒjvnjf g. Because fermionic wavefunctions
must be antisymmetric with respect to particle label exchange, these
operators must obey the fermionic anti-commutation relations,

aj,ak
� �

z
~ a{j ,a{k

h i
z

~0, aj,a
{
k

h i
z

~djk1: ð1Þ

With these definitions we write the second-quantized molecular
electronic Hamiltonian,

H~
X

i,j

hija
{
i ajz

1
2

X
i,j,k,l

hijkla
{
i a{j akal: ð2Þ

The coefficients hij and hijkl are single and double electron overlap
integrals which are precomputed classically. The number of distinct
integrals scale as O (n4) in the number of molecular orbitals n.

Qubit Representation
The next step in our reduction will be to represent our fermionic
wavefunction in terms of qubits. We use the direct mapping intro-
duced in1 that maps an occupancy state to a qubit basis state. Using
Pauli operators we can represent qubit raising and lowering opera-
tors as,

Qz
j ~ 1j i 0h j~ 1

2
Xj{iYj
� �

,

Q{
j ~ 0j i 1h j~ 1

2
XjziYj
� �

:

ð3Þ

However, these operators do not obey the fermionic commutation
relations given in Eq. 1. To write qubit operators that obey the com-
mutation relations in Eq. 1, we could use the Jordan-Wigner
transformation1,75,76.

Unfortunately, the Jordan-Wigner transformation is not a scalable
way to reduce electronic structure to an experimentally realizable
Hamiltonian for AQC. This is because the Jordan-Wigner trans-
formation introduces k-local interaction terms into the
Hamiltonian and k grows linearly in the system size. Prima facie,
this is not a major problem because there exist theoretical tools
known as perturbative gadgets which allow for reductions in inter-
action order. However, in all known formulations of perturbative
gadgets, control precision increases exponentially in k. Thus, the
linear locality overhead introduced by the Jordan-Wigner trans-
formation translates into an exponential control precision require-
ment in the reduction.

An alternative mapping between the occupation number basis and
qubit representation, known as the Bravyi-Kitaev transformation,
introduces logarithmic locality overhead73,74. Two pieces of informa-
tion are required in order to correctly construct creation and anni-
hilation operators that act on qubits and obey the fermionic
commutation relations. First, the occupancy of each orbital must
be stored. Second, parity information must be stored so that for a
pair of orbitals, it is possible to determine the parity of the occupancy
of the orbitals that lie between them. This parity determines the
phase which results from exchanging the occupancy of the two
orbitals.

The occupation number basis stores the occupation directly in the
qubit state (hence the name). This implies that occupancy is a fully
local variable in this basis; one may determine the occupancy of an
orbital by measuring a single qubit. However, this also implies that
the parity information is completely non-local. It is this fact that
determines the structure of the qubit creation and annihilation
operators in the Jordan-Wigner transformation. Each such operator
changes the state of a single qubit j (updating the occupancy informa-
tion) but also acts on all qubits with indices less than j to determine
the parity of their occupancy. This results in qubit operators,
expressed as tensor products of Pauli matrices, that contain strings
of Z operators whose length grows with the number of qubits. One
could consider storing the parity information locally, so that the
qubit basis states store sums of orbital occupancies. Then determina-
tion of parity requires a single qubit operation. However, updating

www.nature.com/scientificreports
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occupancy information requires updating the state of a number of
qubits that again grows with the number of qubits. Hence this ‘‘parity
basis’’ construction offers no advantage over the Jordan Wigner
transformation74.

The Bravyi-Kitaev transformation offers a middle ground in
which both parity and occupancy information are stored non-locally,
so neither can be determined by measurement of a single qubit73,74.
Both parity and occupancy information can be accessed by acting on
a number of qubits that scales as the logarithm of the number of
qubits. This logarithmic scaling makes the proposed mapping of
electronic structure to a 2-local qubit Hamiltonian efficient.

The consequences of this mapping, originally defined in74, were
computed for electronic structure in73. That work defines several
subsets of qubits in which the parity and occupancy information is
stored. The occupancy information is stored in the update set,
whereas the parity information is stored in the parity set. These sets
are distinct and their size is strictly bounded above by the logarithm
base two of the number of qubits. The total number of qubits on
which a qubit creation and annihilation operator may act can be a
multiple of the logarithm base two of the number of qubits. However,
this multiple is irrelevant from the point of view of the scalability of
the construction. Using the Bravyi-Kitaev transformation, the spin
Hamiltonian for molecular hydrogen in the minimal (STO-3G)
basis, as reported in73, is given by

HH2~f01zf1Z0zf2Z1zf3Z2zf1Z0Z1

zf4Z0Z2zf5Z1Z3zf6X0Z1X2zf6Y0Z1Y2

zf7Z0Z1Z2zf4Z0Z2Z3zf3Z1Z2Z3

zf6X0Z1X2Z3zf6Y0Z1Y2Z3zf7Z0Z1Z2Z3

ð4Þ

where the integral values (in Hartree) are,

f0~{0:81261, f1~0:17120,

f2~0:16862, f3~{0:22278, f4~0:12055,

f5~0:17435, f6~0:04532, f7~0:16587:

ð5Þ

In general, the Bravyi-Kitaev transformation applied to electronic
structure produces an n-qubit Hamiltonian which is (log n)-local,
and has n4 real terms. This implies that each term has an even num-
ber of Y terms, or none.

Hamiltonian Gadgets
In order to embed electronic structure in an experimentally realizable
Hamiltonian, we define a scalable methodology for transforming our
(log n)-local qubit Hamiltonian into a 2-local Hamiltonian with only
ZZ, XX and XZ interaction terms. In this section we will describe
tools known as ‘‘gadgets’’ which allow us to simulate the target
Hamiltonian with these interactions.

Hamiltonian gadgets provide a method for embedding the eigen-
spectra (and sometimes eigenvectors) of an n-qubit ‘‘target’’
Hamiltonian, denoted by Htarget, in a restricted (typically low-
energy) subspace of a more constrained (N . n)-qubit ‘‘gadget’’
Hamiltonian, denoted by ~H. To illustrate the general idea of gadgets,
we describe how a 2-local Hamiltonian can embed a k-local
Hamiltonian. Suppose that we have a gadget Hamiltonian, ~H, which
contains only 2-local terms which act on N 5 n 1 a qubits. Then,

~H~
X
i~1

fiOi, ~Hj~yii~~lij~yii, ð6Þ

where {fi} are scalar coefficients, ~lj and j~yii are the eigenvectors and

eigenvalues of ~H, and {Oi} are the 2-local interaction terms of the
physical Hamiltonian. We choose our interaction terms to be
Hilbert-Schmidt orthogonal so that Tr [OiOj] 5 2ndi,j. We now

define an effective Hamiltonian which has support on the lowest 2n

states of the gadget,

Hef f ~
X2n{1

i~0

~lij~yiih~yij~X
i~1

fiOi6P: ð7Þ

Here P is a projector onto a particular state (usually the lowest
energy state) of the a ancilla qubits and the {Oi} are a Hilbert-
Schmidt orthogonal operator basis for operators on the space of
the n logical qubits. In other words, the most general representation
of Heff is an expansion of all possible tensor products acting on the
logical qubits. In general, there is no reason why fi 5 0 on all non-2-
local terms. Therefore a 2-local gadget on N 5 n 1 a qubits can
embed a (k . 2)-local, n-qubit Hamiltonian using a ancilla bits.

The use of perturbation theory to derive Hamiltonian gadgets was
introduced by Kempe et al. in their canonical proof showing that 2-
Local Hamiltonian is QMA-Complete77. Their construction, which
we refer to as the ‘‘bit-flip construction’’ for reasons that will become
obvious later on, was analyzed by Jordan and Farhi using a formula-
tion of perturbation theory due to Bloch78. Other perturbative gadget
constructions were introduced by Oliveira and Terhal to prove the
QMA-Completeness of Hamiltonian on a square lattice79. Following
this work, Biamonte and Love used gadgets to show that XX and ZZ,
or XZ couplings alone, suffice for the QMA-Completeness of 2-local
Hamiltonian92. Several other papers improve these gadgets from an
experimental perspective and introduce novel constructions which
are compatible with the protocol developed here80,91,93,94. We note
that different types of gadgets may have specific advantages when
designing Hamiltonians for specific hardware. Results from80 suggest
that there is a rough tradeoff between the number of ancillae required
and the amount of control precision required. For instance, Figure 2
indicates that bit-flip gadgets require less control precision than
other gadget constructions (but generally more ancillae). In this
paper we focus on the bit-flip family of gadgets.

Although we employ the perturbation theory approach here, it
does require a high degree of control precision and should be avoided
when possible. We point out that when the Hamiltonian is entirely
diagonal there are exact gadgets94 which can embed the ground state
with far less control precision and often far fewer ancillae but in a way
that does not necessarily conserve the gap scaling. Moreover, ‘‘frus-
tration-free’’ gadgets have been used extensively in proofs of the
QMA-Completeness of various forms of quantum satisfiability,
and in restricting the necessary Hamiltonian terms for universal
adiabatic quantum computing95–98.

While several types of perturbation theory have been used to
derive these gadgets, we closely follow the approach and notation
of Kempe et al.77. We wish to analyze the spectrum of the gadget
Hamiltonian, ~H~HzV for the case that the norm of the perturba-
tion Hamiltonian, V, is small compared to the spectral gap between
the ground state and first excited state of the unperturbed
Hamiltonian, H. To accomplish this we use the Green’s function of
~H,

~G zð Þ: z1{~H
� �{1

~
X

j

~yj

��� E
~yj

D ���
z{~lj

: ð8Þ

We also define G(z) using the same expression except with H instead
of ~H. Further, letH~Lz+L{ be the Hilbert space of ~H where Lz

is the ‘‘high-energy’’ subspace spanned by eigenvectors of ~H with
eigenvalues ~l§l� and L{ is the complementary ‘‘low-energy’’ sub-
space, spanned by eigenvectors of ~H corresponding to eigenvalues of
~lvl�. Let P6 correspond to projectors onto the support ofLz. In a
representation ofH~Lz+L{, all the aforementioned operators V,
H, ~H, G(z), ~G zð Þ are block-diagonal so we employ the notation that
A66 5 P6A P6 and,
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A~
Az Az{

A{z A{

� �
: ð9Þ

Finally, we define the operator function known as the self-energy,

S{ zð Þ:z1{{~G{1
{ zð Þ: ð10Þ

We use this notation to restate the ‘‘gadget theorem’’.
Theorem 1 Theorem 6.2 in77. Assume that H has a spectral gap D

around the cutoff l*; i.e. all of its eigenvalues are in (2‘, l2] < [l1,
1‘) where l1 5 l* 1 D/2 and l2 5 l* 2 D/2. Assume that jjVjj#
D/2. Let w0 be arbitrary. Assume there exists an operator Heff such
that l (Heff) , [c, d] for some c *v dvl�{ and, moreover, the
inequality S{ zð Þ{Heff

		 		ƒ holds for all z [ c{ ,dz½ �. Then each

eigenvalue ~lj of ~H{ is -close to the jth eigenvalue of Heff.
Theorem 1 assures us that the eigenspectrum of the self-energy

provides an arbitrarily good approximation to the eigenspectrum of
the low-energy subspace of the gadget Hamiltonian. This is useful
because the self-energy admits a series expansion,

S{ zð Þ~H{zV{z
X?
k~2

V{zGz VzGzð Þk{2Vz{: ð11Þ

Using G1 5 (z 2 D)21 11 and H2 5 0, we focus on the range
z~O 1ð Þ=D and find that,

Hef f <V{z
1
D

X?
k~2

V{z

Vz

D

� �k{2

Vz{: ð12Þ

We use this effective Hamiltonian to approximate our k-local target
Hamiltonian, which we now specify. The terms in our target
Hamiltonian will have a locality that scales logarithmically with the
number of orbitals. We may write such a term:

T~ 6
k{1

i~0
Oi : Oi [ Xi,Yi,Zif g V i: ð13Þ

One can always apply gadgets term by term to reduce locality; how-
ever, this may not be the optimal procedure. In addition, we are
interested in replacing even tensor powers of the Y operator. For
both these reasons we consider a slightly more general form of term
as a target for gadgetization. We use the fact that it is only the
commuting nature of the {Oi} that is important for the gadget to
function. We therefore write our target term as a product of k com-
muting operators, which includes the special case in which it is a
product of k operators acting on distinct tensor factors,

T ’~P
k{1

i~0
Oi : Oi,Oj

� �
~0 V i,jf g ð14Þ

Hence, we can represent the target Hamiltonian as a sum of r terms
which are the product of k commuting operators,

Htarget~Helsez
Xr

s~1

P
k{1

i~0
Os,i ð15Þ

where all {Os,i} commute for a given s and Helse can be realized
directly by the physical Hamiltonian. While previous formulations
of bit-flip gadgets77,78,80 have gadgetized operators acting on distinct
tensor factors, it is only necessary that the operators commute. Their
action on distinct tensor factors is sufficient but not necessary for the
gadget construction. We take advantage of this property in order to
realize YY terms without access to such couplings by making the
substitution, YiYj R 2XiXjZiZj. Since XiXj commutes with ZiZj, we
can create this effective interaction with a bit-flip gadget. For
instance, suppose we have the term, Z0Y1Y2. We gadgetize the term
A ? B ? C where A 5 Z0, B 5 2X1X2, and C 5 Z1Z2 and all operators
A, B, C commute. We note that another approach to removing YY
terms is explained in80.

We now introduce the form of the penalty Hamiltonian that acts
only on the ancilla qubits. Bit-flip gadgets introduce an ancilla system
which has two degenerate ground-states, usually taken to be j111…æu

and j000…æu where u indicates that these kets refer to an ancilla
space. For each of the r terms we use a separate ancilla system of
the form,

Hs~
D

2 k{1ð Þ
X

0ƒivjƒk{1

1{Zus,i Zus,j

� �
: ð16Þ

Again, we use u to indicate that operators act on an ancilla; e.g. the
label u3,2 indicates the ancilla corresponding to O3,2 (the second
operator in the third term). For each term we follow Farhi and
Jordan in introducing an ancilla system connected by a complete
graph with equal and negative edge weights. Thus, the ground state
of the ancilla system is spanned by j111…æu and j000…æu.

Next, we introduce the perturbation Hamiltonian,

V~HelsezLzm
Xr

s~1

Xk{1

i~0

Os,iXus,i , ð17Þ

where m~

ffiffiffiffiffiffiffiffiffiffiffi
Dk{1

k!

k

s
and L is a 2-local operator on logical bits which

Figure 2 | Numerics comparing the minimum spectral gaps required to reduce the term aX1Y2Z3 to 2-local with an error in the eigenspectrum of at
most . On the left, is fixed at 0.001 and gaps are plotted as a function of a. On the right, a is fixed at 0.1 and gaps are plotted as a function of . Here we

compare the bit-flip construction77,78, the Oliveira and Terhal construction79 and an improved variant on Oliveira and Terhal by Cao et al.80.
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will be discussed later. The effect of this Hamiltonian on the low
energy subspace is to introduce virtual excitations into the high
energy space that modify the low energy effective Hamiltonian.
Only terms which start and end in the ground state contribute to
the perturbation series for the self-energy (see, for example, Figure 3).
Thus, the gadget will produce the target term at order k in which a
transition between the two degenerate ground states of the ancillae
requires that each of the Xu terms in the perturbation act exactly once
to flip all r ? k bits from one ground state to the other. Crucially, the
order in which the ancillae are flipped does not matter since the
operators Os,i commute for a given s. The complete gadget is

~H~LzHelsez
Xr

s~1

m
Xk{1

i~0

Os,iXus,i

"

z
D

2 k{1ð Þ
X

0ƒivjƒk{1

1{Zus,i Zus,j

� �35:
ð18Þ

and is related to the target Hamiltonian and effective Hamiltonian
by,

~H{~Htarget6P{~Hef f ð19Þ

for the appropriate choice of L and D? Vk kwhere P2 projects onto
the ancillae ground space,

P{~ 000j i 000h juz 111j i 111h ju: ð20Þ

To illustrate the application of such a gadget and demonstrate how L
is chosen, we scalably reduce the locality of molecular hydrogen and
remove all Y terms in the next section.

For the example Htarget 5 A ? B ? C 1 Helse, the perturbation is

V~mAXazmBXbzmCXczHelsezL: ð21Þ

Its components in the low energy subspace, as in the block diagonal
representation of Eq. 9 is:

V{~ HelsezLð Þ6 000j i 000h juz 111j i 111h ju
� �

: ð22Þ

The projection into the high energy subspace is:

Vz~ HelsezLð Þ6
X

a,b,cf g [ B3

a,b,cj i a,b,ch ju

0
@

1
A{V{

zmA6 0,1,0j i 1,1,0h juz 1,1,0j i 0,1,0h ju
�

z 0,0,1j i 1,0,1h juz 1,0,1j i 0,0,1h ju
�

zmB6 1,0,0j i 1,1,0h ju
�

z 1,1,0j i 1,0,0h ju
z 0,0,1j i 0,1,1h juz 0,1,1j i 0,0,1h ju

�
zmC6 1,0,0j i 1,0,1h juz 1,0,1j i 1,0,0h ju

�
0,1,0j i 0,1,1h juz 0,1,1j i 0,1,0h ju

�
:

ð23Þ

The projections coupling the low and high energy subspaces are:

Vz{~mA6 1,0,0j i 0,0,0h juz 0,1,1j i 1,1,1h ju
� �

zmB6 0,1,0j i 0,0,0h juz 1,0,1j i 1,1,1h ju
� �

zmC6 0,0,1j i 0,0,0h juz 1,1,0j i 1,1,1h ju
� � ð24Þ

and V21 5 (V12){. Substituting these values into Eq. 12 we see that
at order k 5 3 a term appears with the following form,

1

D2 V{zVzVz{~
m3

D2 ABCð zACB

zBCAzCABzBACzCBAÞ?ABC:

ð25Þ

These terms arise because all ancilla qubits must be flipped and there
are six ways of doing so, representing 3! (in general this will be k! for a
gadget with k ancillae) combinations of the operators. These six
terms are represented diagrammatically in Figure 3. Note that it is
the occurrence of all orderings of the operators A, B and C that
imposes the requirement that these operators commute. Hence, in

order to realize our desired term we see that m~

ffiffiffiffiffiffiffiffiffiffiffi
Dk{1

k!

k

s
. A few

competing processes occur which contribute unwanted terms but
these terms either vanish with increasing spectral gap D, or they
can be removed exactly by introducing terms into the compensation
term L. A simple way to compute L is to evaluate the perturbation
series to order k and choose L so that problematic terms disappear.

At higher orders we encounter ‘‘cross-gadget contamination’’
which means that processes occur involving multiple ancilla systems,
causing operators from different terms to interact. For a 3-operator
gadget, such terms will always only contribute at order O (D23). In
reductions which require going to higher orders, these terms do not
necessarily depend on D, and so may introduce unwanted terms into
the effective Hamiltonian. For instance, Figure 4 shows an example
of the four processes which occur at fourth order for a multiple term,
4-operator reduction. The diagrams involving multiple ancilla reg-
isters are examples of cross-gadget contamination.

However, if terms are factored into tensor products of operators
that square to the identity (as is the case for products of Pauli opera-
tors, which is always possible), cross-gadget contamination can only
contribute a constant shift to the energy which can be compensated
for in L. This is because any process contributing to the perturbation
series which does not transition between the two different ground
states must contain an even multiple of each operator and if we
choose to act on the non-ancilla qubits with operators that square
to identity we obtain only a constant shift. Consider the two cross-
gadget terms represented in these diagrams: A1C2

2A1~A11A1~1
and D2B1D2B1 5 (D2B1)2 5 1. At even higher orders, individual
cross-gadget terms might not equal a constant shift (i.e. the sixth
order term A1A2A3A2A1A3) but the occurrence of all combinations of
operators and the fact that all Pauli terms either commute or anti-
commute will guarantee that such terms disappear. In the sixth order
example, if [A1, A2] 5 0 then A1A2A3A2A1A3 5 A1A2A3A1 A2A3 5
(A1A2A3)2 5 1, otherwise [A1, A2]1 5 0 which implies that
A1A2A3A2A1A3 1 A1A2A3A1A2A3 5 0.

Example Problem: Molecular Hydrogen
We begin by factoring and rewriting the k-local molecular hydrogen
Hamiltonian from Eq. 4 into a 4-local part and a 2-local part so that
HH2~H4LzH2L where,

H4L~ f4Z0zf3Z1ð ÞZ2Z3

z Z1zZ1Z3ð Þ f6X0X2zf6Y0Y2zf7Z0Z0ð Þ
ð26Þ

H2L~f01zf2Z1zf3Z2zf4Z0Z2zf5Z1Z3zf1Z0 1zZ1ð Þ: ð27Þ

In order to reduce HH2 to a 2-local ZZ/XX/XZ-Hamiltonian we
further factor H4L to remove YY terms,

H4L~ f4Z0zf3Z1ð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
A1

Z2|{z}
B1

Z3|{z}
C1

z f7Z0|{z}
A2

Z2|{z}
B2

Z1zZ1Z3ð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
C2

z f6X0X2|fflfflffl{zfflfflffl}
A3

1{Z0Z2ð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
B3

Z1zZ1Z3ð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
C3

~A1B1C1zA2B2C2zA3B3C3:

ð28Þ

Within each term, the operators all commute so that [Ai, Bi] 5 [Ai,
Ci] 5 [Bi, Ci] 5 0. We emphasize that factoring terms into commut-
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ing operators is always possible and necessary in order for bit-flip
gadgets to work correctly.

Each of the operators defined in Eq. 28 will have a corresponding
ancilla qubit labelled to indicate the operator with which it is assoc-
iated, e.g. the ancilla for operator B2 has label b2. Our unperturbed
Hamiltonian is a sum of fully connected ancilla systems in which
each ancilla system corresponds to a term,

H1~
9D1

4
1{

D1

4
Za1 Zb1zZa1 Zc1zZb1 Zc1ð

zZa2 Zb2zZa2 Zc2zZb2 Zc2zZa3 Zb3zZa3 Zc3zZb3 Zc3Þ:
ð29Þ

The spectral gap and Hamiltonian have the subscript ‘‘1’’ to associate
them with the first of two applications of perturbation theory. We
perturb the ancilla system with the Hamiltonian,

V1~m1 A1Xa1zB1Xb1zC1Xc1zA2Xa2zB2Xb2ð

zC2Xc2zA3Xa3zB3Xb3zC3Xc3ÞzH2LzL1

ð30Þ

where m1~

ffiffiffiffiffiffi
D2

1

6

s
and L 1 is a 2-local compensation Hamiltonian

acting on the logical qubits only. Later on, L 1 will be chosen to
cancel extraneous terms from the perturbative expansion. The inter-

action terms involving A, B, and C will arise at third order
(V21V1V12) from processes which involve a transition between
the two degenerate ground states of the ancilla systems. This occurs
at third order because to make the transition 000j i' 111j i, we must
flip all three ancilla bits in each term by applying the operators Xa, Xb,
and Xc. Since these operators are coupled to A, B, and C, sequential
action of bit flip operators yields our desired term. Because the
operators commute, the order of the bit flipping does not matter.
We now calculate the effective Hamiltonian using the perturbative
expansion of the self-energy from Eq. 12.

Second Order. The only processes which start in the ground state
and return to the ground state at second order are those which flip a
single bit and then flip the same bit back. Thus, effective interactions
are created between each operator and itself,

{
1
D1

V{zVz{~{
m2

1

D1
A2

1zB2
1zC2

1zA2
2zB2

2

�
zC2

2zA2
3zB2

3zC2
3

�
~{

ffiffiffiffiffiffi
D1

36
3

r
9zf 2

3 zf 2
4 zf 2

6 zf 2
7

� �
1

�
z2f3f4Z0Z1{2Z0Z2z4Z3�:

ð31Þ

These processes are shown in Figure 5.

Figure 3 | The six equivalent bit-flip processes at third order which produce the effective interaction A ? B ? C. Each of these diagrams also occurs

backwards on the part of the ground state in | 111æ.

Figure 4 | Diagrams showing an example of each of the four processes at fourth order. In the upper left is the process B1 (Helse 1 L)2 B1. In the upper

right is the process A1C2
2 A1. In the lower left is the process D2B1D2B1. In the lower right is the process A2B2C2D2.
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The second order effective Hamiltonian at large D1 is,

H 2ð Þ
ef f ~H2LzL1{

ffiffiffiffiffiffi
D1

36
3

r
9zf 2

3 zf 2
4 zf 2

6 zf 2
7

� �
1

�
z2f3f4Z0Z1{2Z0Z2z4Z3�zO D{2

1

� �
:

ð32Þ

Third Order. The target Hamiltonian terms appears at third order
from processes that transition between degenerate ground states.
However, there is also an additional, unwanted process which
occurs at this order. This competing process involves one
interaction with H2L and L1 in the high-energy subspace,

1

D2
1

V{zVzV 1ð Þ
z{~

m2
1

D2
1

A1 H2LzL1ð ÞA1½

zB1 H2LzL1ð ÞB1zC1 H2LzL1ð ÞC1zA2 H2LzL1ð ÞA2

B2 H2LzL1ð ÞB2zC2 H2LzL1ð ÞC2zA3 H2LzL1ð ÞA3

zB3 H2LzL1ð ÞB3zC3 H2LzL1ð ÞC3�:

ð33Þ

These processes are illustrated diagrammatically in Figure 6.
The process we want occurs with the ancilla transition

000j i' 111j iwhich flips all three bits (for each term separately since
they have different ancillae). There are 3! 5 6 possible ways to flip the
bits for each term, (these processes are illustrated in Figure 3),

1

D2
1

V{zVzV 2ð Þ
z{~6

m3
1

D2
1

A1B1C1zA2B2C2zA3B3C3ð Þ

~A1B1C1zA2B2C2zA3B3C3:

ð34Þ

Because H2L has no D1 dependence and m1 is order O D
2=3
1

� 
, terms

such as m2
1

�
D2

1

� �
A1H2LA1 will vanish in the limit of large D1; there-

fore, the third order effective Hamiltonian is,

H 3ð Þ
eff ~H2LzL1{~{

ffiffiffiffiffiffi
D1

36
3

r
9zf 2

3 zf 2
4 zf 2

6 zf 2
7

� �
1

�
z2f3f4Z0Z1{2Z0Z2z4Z3�z

m2
1

D2
1

A1L1A1zB1L1B1ð

zC1L1C1zA2L1A2zB2L1B2zC2L1C2zA3L1A3

zB3L1B3zC3L1C3ÞzA1B1C1zA2B2C2zA3B3C3

ð35Þ

with error O D{3
1

� �
. We see that if L1~

1
D1

V{zVz{ then the

unwanted contribution at third order will go to zero in the limit of

large D1 and the second order term will cancel exactly with L1.
Thus,

H 3ð Þ
ef f <H2LzA1B1C1zA2B2C2zA3B3C3 ð36Þ

HH2?H1zV1 ð37Þ

where ‘‘R’’ denotes an embedding. There are still 3-local terms
remaining in V1,

V1~m1 f4Z0zf3Z1ð ÞXa1zm1X2 Xb1zXb2ð Þ

zm1Z3Xc1zm1f7Z0Xa2zm1Z1 Zc2zXc3ð Þzm1Xb3

z m1Z1|ffl{zffl}
A4

Z3|{z}
B4

Xc2zXc3ð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
C4

z m1f6X0|fflfflffl{zfflfflffl}
A5

X2|{z}
B5

Xa3|{z}
C5

z {m1ð ÞZ0|fflfflfflfflffl{zfflfflfflfflffl}
A6

Z2|{z}
B6

Xb3|{z}
C6

zH2LzL1:

ð38Þ

With this notation we reorganize our Hamiltonian a final time, so
that HH2?H2L?H3L,

H3L~A4B4C4zA5B5C5zA6B6C6 ð39Þ

H2L~ f0z
9D1

4

� �
1zf2Z1zf3Z2zf4Z0Z2

zf5Z1Z3zf1Z0 1zZ1ð Þ{D1

4
Za1 Zb1zZa1 Zc1ð

zZb1 Zc1zZa2 Zb2zZa2 Zc2zZb2 Zc2zZa3 Zb3

zZa3 Zc3zZb3 Zc3Þz

ffiffiffiffiffiffi
D2

1

6

3

s
f4Z0zf3Z1ð ÞXa1½

zZ3Xc1zf7Z0Xa2zX2 Xb1zXb2ð ÞzXb3

zZ1 Xc2zXc3ð Þ�z{

ffiffiffiffiffiffi
D1

36
3

r
9zf 2

3 zf 2
4 zf 2

6 zf 2
7

� �
1

�
z2f3f4Z0Z1{2Z0Z2z4Z3�:

ð40Þ

The third order gadget we need to reduce H3L takes exactly the
same form as before except with the term labels 1, 2, 3 exchanged for
the term labels 4, 5, 6. The components of the final gadget are

H2~
9D2

4
1{

D2

4
Za4 Zb4ð zZa4 Zc4zZb4 Zc4

zZa5 Zb5zZa5 Zc5zZb5 Zc5zZa6 Zb6zZa6 Zc6zZb6 Zc6Þ
ð41Þ

and

V2~m2 A4Xa4zB4Xb4zC4Xc4zA5Xa5ð

zB5Xb5zC5Xc5zA6Xa6zB6Xb6zC6Xc6ÞzH2LzL2

ð42Þ

where m2~

ffiffiffiffiffiffi
D2

2

6

3

s
and

Figure 5 | The three bit-flip processes at second order. These occur for

each term. Note that each of these diagrams occurs in reverse for the part of

the ground state in | 111æ.

Figure 6 | Diagrams for the competing process encountered at third order. Note that each of these diagrams can also occur backwards if the system starts in | 111æ.
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L2~
m2

2

D2
A2

4zB2
4zC2

4zA2
5zB2

5zC2
5zA2

6zB2
6zC2

6

� �
~

ffiffiffiffiffiffi
D2

6
3

r
7ffiffiffi
63
p zD

4=3
1

1
3
z

f 2
6

6

� �� �
1z

ffiffiffiffiffiffiffiffi
2D2

9
3

r
Xc2 Xc3 :

ð43Þ

This time the spectral gap and Hamiltonian have the subscript ‘‘2’’ to
associate them with our second application of perturbation theory.
We have thus shown the embedding HH2?H2zV2. We present an
interaction graph for the embedded Hamiltonian in Figure 7.

Conclusion
We have presented a fully general method for mapping any molecu-
lar electronic structure instance to a 2-local Hamiltonian containing
only ZZ, XX and XZ terms. Our method is scalable in the sense that
all experimental resources (qubits, control precision, graph degree)
scale polynomially in the number of orbitals. We used perturbative
gadgets which embed the entire target Hamiltonian (as opposed to
just the ground state), thus guaranteeing that the eigenvalue gap is
conserved under our reduction. Furthermore, we showed that bit-flip
gadgets can be applied to remove experimentally challenging YY
terms. The resulting Hamiltonian is suitable for implementation in
superconducting systems, quantum dots and other systems of arti-
ficial spins with the correct engineered interactions.

Further reduction of the types of interactions present is possible, to
either ZZ and XX terms or ZZ and XZ terms, using the techniques
of92. This makes the required interactions for simulating electronic
structure Hamiltonians equivalent to the requirements of universal
adiabatic quantum computation92. However, repeated reduction of
the Hamiltonian results in more stringent precision requirements.
The chosen target set of interactions strikes a balance between con-
trol precision and a reasonable set of distinct types of controllable
interaction. The techniques developed here could also be applied to
interacting fermion problems on the lattice. However, in that case it
is possible to improve beyond the Bravyi-Kitaev mapping and exploit
the locality of the interactions to directly obtain Hamiltonians whose
locality is independent of the number of orbitals99.

We propose to read out energy eigenvalues using the tunneling
spectroscopy of a probe qubit. This technique has already been
demonstrated experimentally with rf SQUID flux qubits in32. In this
scheme, a probe qubit is coupled to a single qubit of the simulation.
Tunneling transitions allow the probe qubit to flip when the energy
bias of the probe is close to an eigenvalue of the original system.
Hence detection of these transitions reveals the eigenspectrum of
the original system. In this way, we would be able to directly measure
the eigenspectra of the molecular systems embedded into the spin
Hamiltonian using the techniques developed in the present paper.
Alternatively, one could evaluate the energy by determining the
expectation value of each term in the Hamiltonian via projective
measurements.

There has been rapid recent progress in new classical algorithms,
such as DMRG (density matrix renormalization group) and related
tensor network methods, and proving complexity and approximabil-
ity results pertaining to minimal resource model Hamiltonians. By
using and understanding the techniques we have introduced in this
paper, problems in chemistry can be reduced to such models and
these discoveries can be leveraged to make advances in electronic
structure theory. However, we note that the spin Hamiltonians that
result from the mapping developed here will be non-stoquastic, and
classical simulation techniques will therefore suffer from the ferm-
ionic sign problem100. This further motivates the construction of
quantum hardware to address the electronic structure problem by
quantum simulation of these spin Hamiltonians.
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