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Abstract: A new expression for the dielectrophoresis (DEP) force is derived from the electrical work
in a charge-cycle model that allows the field-free transition of a single object between the centers of
two adjacent cubic volumes in an inhomogeneous field. The charging work for the capacities of the
volumes is calculated in the absence and in the presence of the object using the external permittivity
and Maxwell-Wagner’s mixing equation, respectively. The model provides additional terms for
the Clausius-Mossotti factor, which vanish for the mathematical boundary transition toward zero
volume fraction, but which can be interesting for narrow microfluidic systems. The comparison
with the classical solution provides a new perspective on the notorious problem of electrostatic
modeling of AC electrokinetic effects in lossy media and gives insight into the relationships between
active, reactive, and apparent power in DEP force generation. DEP moves more highly polarizable
media to locations with a higher field, making a DEP-related increase in the overall polarizability of
suspensions intuitive. Calculations of the passage of single objects through a chain of cubic volumes
show increased overall effective polarizability in the system for both positive and negative DEP.
Therefore, it is proposed that DEP be considered a conditioned polarization mechanism, even if it is
slow with respect to the field oscillation. The DEP-induced changes in permittivity and conductivity
describe the increase in the overall energy dissipation in the DEP systems consistent with the law
of maximum entropy production. Thermodynamics can help explain DEP accumulation of small
objects below the limits of Brownian motion.

Keywords: DEP force in narrow volumes; capacitor charge cycle; micro-fluidic volumes; DEP
trajectories; 2D and 3D modelling; DEP-induced polarizability increase; conditioned polarization;
lossy dispersive materials; thermodynamics; Rayleigh’s dissipation function; law of maximum
entropy production (LMEP)

1. Introduction

Up to the high radio frequency range, polarization processes in complex media,
such as particle suspensions, are classified either by their electric mechanisms such as
polarizations of electric double layers, of structural interfaces (Maxwell-Wagner) and of
molecular dipoles through orientation (Debye) or by the frequency range in which they
disperse (alpha, beta, and gamma dispersions) [1–3]. At any given frequency, the sum-effect
of all polarization processes that can follow the field alternations weakens the field in each
half-cycle. With increasing frequency, slower processes disperse and their contributions
to medium polarization fade, which is reflected in a frequency-dependent permittivity
decrease and the corresponding increase of the complex (specific) conductivity σ in S/m by
up to several orders of magnitude over several frequency decades (complex parameters are
underscored). This behavior is described mathematically by the dispersion relation, which
considers the field-induced motion of bound charges, which at high frequencies cannot
be distinguished from the motion of charges, such as ions, which can already move freely
under DC.
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In AC fields above approx. 1000 V/m, different AC-electrokinetic movement of
freely suspended microscopic objects, such as colloidal particles or biological cells, can
be observed when the objects are exposed to homogeneous, inhomogeneous, or rotating
fields. While neighboring objects of even polarizability are attracted toward one another,
they are attracted or repelled toward electrode surfaces depending on the electrode and
object shapes and the object’s polarizability relative to that of the suspension medium.
The field-induced forces and torques lead to the translation (dielectrophoresis; DEP) and
rotation (electrorotation; ROT) of individual objects or their aggregation in “pearl chains”,
which map the electric field, similar to how iron filings map the magnetic field lines.

Since the slow electrokinetic AC effects, which incidentally also occur in the DC field,
are uncoupled from the frequency of the inducing field, they are not usually considered
polarization mechanisms. However, in DEP or in electro-thermal pumping it is generally
accepted that the lower polarizable medium, which may, depending on the frequency of the
external field, be either the suspension medium or the object itself, is displaced by higher
polarizable medium at sites of higher field strength. It is intuitive that this process increases
the overall polarizability of the suspension. The increase in polarizability by field-induced
orientation has previously been shown for suspensions of ellipsoidal objects [4].

The description of the AC electrokinetic behavior of objects in the radio-frequency
range is usually based on dipole calculations [3,5,6]. In the classical DEP approach, the
object is assumed to be small compared to the characteristic distance of the field inhomo-
geneity. This allows the DEP force calculation to be based on the assumption of induced
dipole moments, i.e., the (weakly) inhomogeneous field induces a symmetric polarization.
The interaction of the dipole moment with the inhomogeneous field generates unbalanced
forces with the two poles of the dipole, leading to DEP (comparable to the dipolophoresis of
a dipole in the field of an ion). However, when objects approach other objects or electrodes,
a correct description of, for example deformation, orientation, and DEP forces must include
induced multipoles. In addition, multi-body problems such as aggregation and pattern
formation play a role [7].

Here, the DEP force is derived from the work difference performed when charging two
cubes of equal volume containing either a single suspended object or the pure suspension
medium. The work difference resulting from exchanging the positions of the two cubes
in an inhomogeneous field provides the DEP force. It is shown that DEP increases the
overall polarizability and conductivity in a suspension system. Under the condition of
constant voltage, which is generally applied to DEP chambers, the increased conductivity
is directly related to the increased dissipation of electrical energy, according to the Rayleigh
dissipation function. Two homogeneous spheres with complementary properties are used
in model calculations, reflecting the two main structural dispersions observed in biological
cells. Comparison with the classical electro-quasistatic dipole approximation, which serves
as a reference, suggests that the new approach has a slightly higher accuracy for higher
volume fractions, which may be important in narrow microchambers [8–12].

2. Theory
2.1. General Remarks

The overall permittivity or (specific) conductivity of suspensions or emulsions is
increased or decreased by introducing objects with higher or lower polarizabilities than the
carrier medium. In DEP, media or objects with lower polarizability are replaced by entities
with higher polarizability at locations with a high field. The differently polarizable entities
can be the suspension media and suspended rigid or emulsified viscous objects in liquid
media of different chemical natures or different temperatures (cf. electro-thermal pumps).

The DEP force for an ellipsoidal object is usually derived from the interaction of its
induced dipole moment with the inducing field, where the dipole moment is obtained
by solving the Laplace equation for electro-quasistatic conditions. Here, the classical
DEP force is used as the reference for a different approach, in which the force is derived
from the overall electrical work conducted in a charging cycle that permits the field-free
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transition of the object between two neighboring cuboid boxes in a weakly inhomogeneous
field (Figure 1). Without an object, the dielectric properties in the box are given by the
external medium. The presence of the object changes the dielectric properties to those of a
suspension, which can be calculated by the Maxwell-Wagner mixing equation.
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Figure 1. Diagram illustrating the consecutive positions of a spherical object during DEP movement
in the inhomogeneous field of a 2D or 3D radial setup. The squares i and i + 1 represent cuboid boxes
with x by x geometry (y = x) in the sheet plane. The field gradient points in the radial direction.
Without any limitation in generality for 3D models of microscopic systems, perpendicular to the
sheet plane, a depth of z = x or of z = 1 m can be assumed, as is common in 2D models. The distance
of travel between the box centers is ∆x = x.

The idea is based on the cycle proposed by Max Born. To circumvent the complicated
description of the electrical effects in the transition of charged ions through lipid mem-
branes, Born proposed separating the process into discharging, interface transition, and
recharging of the ion.

Version 12 of the Maple software supplication (Maplesoft, Waterloo, ON, Canada)
was used to solve and simplify the equations (The main part of the program code is given
in the Supplementary Material The data for the figures was exported to Sigma Plot 11.0
(Systat Software, Inc., San Jose, CA, USA).

2.2. Approximation of the Field Gradient

Long, coaxial cylindrical electrodes are a simple means of generating a well-defined
inhomogeneous field of radial symmetry. For the symmetry axis in the z-direction, the
field component in z-direction is zero. For a more general description, cuboid medium and
suspension boxes are initially assumed. This shape allows an easier transition to future
numerical, two-dimensional (2D) models. In 2D models, a length of 1 m is usually assumed
for the z-dimension to match the physical units. In the subsequent model calculations,
cubic boxes are used without restriction of generality for the cuboid shape.

Along the field gradient, the field strength E = Ei is increased to Ei+1:

Ei+1 = (1 + γ∆x)E, (1)

when moving ∆x = xi+1 − xi in radial direction, from the center of box i to the center of
box i + 1. For simplicity, vectorial parameters are not marked by arrows. With the inverse
length parameter γ > 0 m−1 describing the field inhomogeneity in the x-y field plane, the
field gradient in radial (x-) direction is:

∆E
∆x

=
(1 + γ∆x)E− E

∆x
= γE. (2)

Note that the effects of lateral field components on the induced DEP force are neglected
in the dipole approximation by assuming objects that are small in comparison to the
characteristic distance of the field inhomogeneity, i.e., for objects with typical semiaxis
lengths < 1/γ. For reasons of symmetry, the induction of a torque by small lateral field
components may be excluded at this stage. For γ = 0, the external field is homogeneous,
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the DEP force disappears for symmetry reasons, and compression or elongation forces
remain.

2.3. DEP Force in the Classical Dipole Approximation

In almost all cases, the electrodes of DEP devices are operated with constant AC
voltages that generate the linear field:

E = E0ejωt, (3)

where j =
√
−1, time t and ω being the circular frequency. E0 depends on the location in

the inhomogeneous field. In x− (radial) direction, the field induces the complex dipole
moment:

m = ε0εeV0 f
CM

E = ε0εeV0

(
f<CM + j f=CM

)
E, (4)

where ε0 and εe are the permittivity of vacuum and the real part of the relative permittivity
of the external medium, which is frequency-independent for aqueous suspension media in
the frequency range considered. V0 is the volume of the ellipsoidal object with principal
semiaxes a, b, and c:

V0 =
4π

3
abc. (5)

The complex Clausius-Mossotti factor ( fCM) has both real
(

f<CM
)

and imaginary(
f=CM

)
parts. For homogeneous objects of the general ellipsoidal shape in the direction of

the (oriented) semiaxis a, it is:

f a
CM

= f a<
CM + j f a=

CM =
εi − εe

εe + na(εi − εe)
, (6)

where na is the depolarizing coefficient along semiaxis a [6,13]. For spherical objects with
na = nb = nc = 1/3, Equation (6) reads:

f
CM

= f<CM + j f=CM = 3
εi − εe

εi + 2εe
. (7)

Note that the factors “3” in Equations (5) and (7) are not cancelled out below to avoid
confusion for non-spherical objects. The complex relative permittivities of the internal
(index i) and external (index e) media are:

εi = εi − j
σi

ωε0
εe = εe − j

σe

ωε0
, (8)

where σi and σe are the DC conductivities. Note that according to Maxwell’s equivalent
body notion, Equations (6) or (7) can also describe the Clausius-Mossotti factors of confocal
shell models for given field frequency and model parameters [3,6,14–16]. Solutions for
shelled spherical, cylindrical (the 2D representation of a sphere) and ellipsoidal objects are
readily available [17–22].

Within the dipole approximation, the time-averaged DEP force Fx on an ellipsoidal
object is expressed by the real part of the scalar product of the induced dipole moment
with the gradient of the complex conjugate field E∗ = E0e−jωt. Using Equation (2), we get:

Fx =
1
2
<
(

m
dE∗

dx

)
≈ 1

2
<
(

m
∆E∗

∆x

)
=

γ

2
<(mE∗) . (9)

Moments induced by the weak inhomogeneity of the field are dominated by the dipole
moment and neglected. Accordingly, the DEP force is generated by the interaction of the
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real part of the object’s dipole moment with the inhomogeneous external field. Introducing
Equation (4) into Equation (9) leads to the following well-known result:

Fx = ε0εeV0<
(

f<CM + j f=CM

)
E

γ

2
E∗ = ε0εeV0 f<CM

γ

2
E2

0. (10)

2.4. Charging Work for External and Suspension Media Boxes

It is assumed that cuboidal boxes of quadratic cross-section x2 in the sheet plane and
depths z perpendicular to the sheet plane are bounded by equipotential planes (“virtual
electrodes”) of area xz (Figure 1). The boxes of volume:

Vbox = x2z, (11)

are flooded with a homogeneous field. They can contain either suspension medium or a
suspension with a single spherical or ellipsoidal object located in the center of the box. In
the absence of the object (marked by ‘e’), box i has the capacitance:

Ce
i = ε0εe

xz
x

= ε0εez, (12)

where x in the denominator stands for the box width, i.e., the distance between the virtual
electrodes. In the presence of the object the capacitance is:

CS
i = ε0εSz. (13)

The dielectric is a suspension (marked by capital ‘S’) with relative permittivity εS. In
the calculation of the electric work, effective (RMS) AC voltages or fields are usually em-
ployed to eliminate time averaging. For direct comparison with the dipole approximation,
the effective values were substituted by field strength peak values:

E0 =
√

EE∗ =
√

2Ee f f . (14)

The electrical work to charge the box with the external medium is:

We =
x2E2

e f f

2
ε0<(εe) =

x2E2
0

4
ε0εe =

VboxE2
0

4z
ε0εe, (15)

and for the box with the suspension:

WS =
VboxE2

0
4z

ε0<(εS) =
VboxE2

0
4z

ε0ε<S , (16)

where εS is obtained from Maxwell-Wagner’s mixing equation for homogeneous ellip-
soids [16,23]:

3(εS − εe)

εS + 2εe
=

p
3 ∑

k=a,b,c
f k

CM
. (17)

To reduce indexing, homogeneous spherical objects are considered with principal
semi-axes of a = b = c. With Equations (7) and (8), we obtain:

εS =
3 + 2p f

CM
3− p f

CM

εe =
3 + 2p f

CM
3− p f

CM

εe −
3 + 2p f

CM
3− p f

CM

(
j

σe

ωε0

)
. (18)

Using Equation (18) for p = 0, Equation (16) is transformed into Equation (15). Note
that the solution of Equation (17) is straightforward for ellipsoidal objects (Equation (6)).
Moreover, such objects are always oriented with their longest axis in the field direction
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if their polarizability is different from that of the suspension medium [4]. The volume
fraction of the single object (Figure 1) is:

p =
V0

Vbox
. (19)

Note that Equation (18) considers the volume fraction but not the number of sus-
pended objects.

2.5. DEP Force Approximation by a Capacitor-Charging Cycle

Consider the work performed to charge the two boxes i and i + 1 (Figure 1). Despite
the inhomogeneous field, it is assumed that the two boxes i and i + 1 are flooded by the
homogeneous fields Ei = E and Ei+1, respectively (Equation (1)). The fields are effective
in the centers of the boxes at the considered locations of the object. In the first step of the
DEP cycle, both boxes are discharged, box i in the presence of the object and box i + 1 in its
absence. The conducted work is (Equations (1), (15) and (16)):

Wdis = −
VboxE2

0
4z

(
<
(

CS
i

)
+ (1 + γ∆x)2<

(
C0

i+1

))
= −

ε0VboxE2
0

4

(
ε<S + (1 + γ∆x)2εe

)
. (20)

In the second step, the object is transferred from box i to box i + 1, without conducting
electrical work, before both boxes are recharged in the third step:

Wchrg =
ε0VboxE2

0
4

(
εe + (1 + γ∆x)2ε<S

)
. (21)

The overall work in the cycle is:

∆W = Wchrg + Wdis = ε0Vbox

(
ε<S − εe

) γ∆x(2 + γ∆x)
4

E2
0. (22)

The summand γ∆x in the second parenthesis is neglected, because it is significantly
smaller than two for weakly inhomogeneous fields. With Equation (19) we get:

∆W = ε0
V0

p

(
ε<S − εe

) γ∆x
2

E2
0. (23)

In positive DEP (positive force), an object that is higher polarizable than the suspension
medium travels the distance ∆x = x between the two box centers in the direction of the
field gradient, from the low to the high field. In this case, the sign of the difference in the
parenthesis is positive. It is also positive if a low polarizable object starts in the high-field
box and travels against the direction of the field gradient in negative DEP. Both positive
and negative DEP increase the overall capacitance of the two-box system, which requires
increased charging work (∆W > 0). The DEP-force is:

Fx =
∆W
∆x

= ε0
V0

p

(
ε<S − εe

) γ

2
E2

0. (24)

Note that the object travels in a ‘box-hopping mode’. A more gradual advance
could be obtained by assuming a suspension box that is gradually shifted through a
long cuboid volume of external medium. This would allow the mathematical transition
from the difference quotient to a directional derivative, but would not change the DEP
force expression obtained here. After introduction of parameter properties, Equations (23)
and (24) can be used to calculate work and force without further simplifications.

However, the relation of Equation (24) to the classical force equation (Equation (10))
is not immediately clear. From considerations of the characteristic properties of suspen-
sions with the mixing equation it is known that the mathematical boundary transition for
infinitely small volume fractions (p→ 0) leads to the solutions for single objects [2,24]. For
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simplicity, the volume fraction p is eliminated in two steps. In the first step, the summands
stemming from εe in Equation (18) are considered:

ε<S = <
(

3 + 2p f
CM

3− p f
CM

εe

)
= <

(
3 + 2p f

CM
3− p f

CM

εe

)
−<

(
3 + 2p f

CM
3− p f

CM

(
j

σe

ωε0

))
. (25)

For p→ 0 , the parenthesis term of the second, external-conductivity summand be-
comes purely imaginary and provides only a reactive, but no active contribution, i.e., no
effective DEP force (see below). Neglecting the second summand, we get:

ε<S = <
(

3 + 2p f
CM

3− p f
CM

)
εe. (26)

And after introduction into Equation (24):

Fx = ε0εe
V0

p
<
(

3 + 2p f
CM

3− p f
CM

− 1

)
γ

2
E2

0. (27)

By expanding f
CM

with Equations (7) and (8), p is eliminated by the boundary transi-
tion p→ 0 :

Fx = 3ε0εeV0
σ2

i + σeσi − 2σ2
e + ω2ε2

0
(
ε2

i + εeεi − 2ε2
e
)

σ2
i + 4σeσi + 4σ2

e + ω2ε2
0
(
ε2

i + 4εeεi + 4ε2
e
) γ

2
E2

0 = ε0εeV0 f<CM
γ

2
E2

0. (28)

Equation (28) is identical to Equation (10), i.e., the real part of the Clausius-Mossotti
factor for spherical homogeneous objects is:

f<CM = 3
σ2

i + σeσi − 2σ2
e + ω2ε2

0
(
ε2

i + εeεi − 2ε2
e
)

σ2
i + 4σeσi + 4σ2

e + ω2ε2
0
(
ε2

i + 4εeεi + 4ε2
e
) . (29)

The limiting frequency cases of Equation (29) are known as DEP plateaus (Figure 2):

f<CM
ω→0

= 3
σi − σe

σi + 2σe
and f<CM

ω→∝
= 3

εi − εe

εi + 2εe
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Equations (7) or (29). Dashed lines: σi = 0.01 S/m, σi = 800; Full lines: σi = 1 S/m, εi = 8). The low and high frequency
plateaus (Equations (30)) are clearly visible.
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2.6. Electrorotation (ROT) Torque

In DEP and ROT, the induced dipole moment (Equation (4)) interacts with a linear
inhomogeneous field and with a rotating (circularly polarized) field, respectively [6]. As the
frequency-dependent part of the dipole moment, the Clausius-Mossotti factor (Equations
(6) and (7)) reflects the DEP force and the ROT torque, which are proportional to the real
and imaginary parts of the Clausius-Mossotti factor, respectively.

Even though the ROT torque can also be derived by an appropriate capacitor-charging
approach, this is beyond the scope of the present manuscript. Instead, the known rela-
tions of the ROT torque to the imaginary part of the Clausius-Mossotti factor are used
directly [3,5,6]. In analogy to Equation (10), the ROT torque reads:

Nz = ε0εeV0 f=CME2
0k. (31)

Torque is induced around axis z, which is oriented in the direction of unit vector
k, perpendicular to the plane of rotation of a circular polarized field. Equation (27) is
transformed to

Nz = ε0εe
V0

p
=
(

3 + 2p f
CM

3− p f
CM

)
E2

0k. (32)

Note that the field gradient γ
2 (unit: m−1) has been dropped from Equations (31)

and (32), so that the units of force in Equations (10) and (27) are changing to units of torque.

3. Modelling Results and Discussion
3.1. Model Parameters

Spherical objects with a radius of a = b = c = 10 µm (Equation (5)) suspended in
cubic boxes (side lengths x = 40 µm) were used for the 3D calculations (Figure 1). These
dimensions correspond to a volume fraction of p = 0.0654 (Equation (19)), safely below the
0.1-limit required by Maxwell-Wagner’s mixing equation [15]. Here, the lower value can
compensate for the different shapes of boxes and objects. Aqueous electrolyte properties
with conductivity and relative permittivity of σe = 0.1 S/m and εe = 80, respectively, were
assumed for the external medium. Two complementary parameter settings were chosen
for the properties of the homogeneous objects, combining high dielectric contrast at low
and high frequencies with strong dispersion:

I σi = 0.01 S/m, with εi = 800, and
II σi = 1 S/m with εi = 8.

These parameters were chosen to reflect two strong dispersions that qualitatively
correspond to the membrane polarization dispersion (i) and bulk conductance dispersion
(ii) of biological cells [3,24] or are found in homogeneous objects [9,10]. Accordingly,
each of the two objects sweeps two of the four quadrants of the complex plane swept by
biological cells [1,5]. If not stated otherwise, work, forces and dissipation were calculated
for normalized field strengths of E0 = 1 V/m and E1/E0 = 1 (Equation (3)). Note that
10%-field increase per box width corresponds to a field inhomogeneity of γ = 0.1/∆x =
0.1/40 µm = 2500 m−1 (Equation (2)). For 10 consecutive boxes, the model field strength
increases from 1 V/m in box 1 to 2.3579 V/m in box 10. Table 1 lists the values for 10 box
centers and 9 box interfaces.
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Table 1. Field values used in the calculations.

Box i
Normalized

Field
Ei/E0

Normalized
Field Squared

E2
i /E2

0

Transition from
Box

i→ i + 1

Squared Normalized
Mean Field at Box

Interfaces (
Ei+1+Ei

2E0
)
2

1 1 1

2 1.1 1.21 1→ 2 1.1025

3 1.21 1.4641 2→ 3 1.3340

4 1.331 1.7716 3→ 4 1.6142

5 1.4641 2.1436 4→ 5 1.9531

6 1.6105 2.5937 5→ 6 2.3633

7 1.7716 3.1384 6→ 7 2.8596

8 1.9487 3.7975 7→ 8 3.4601

9 2.1436 4.5950 8→ 9 4.1867

10 2.3579 5.5599 9→ 10 5.0660

3.2. Clausius-Mossotti Factor

The real and imaginary parts of the Clausius-Mossotti factor represent the normalized
DEP force and ROT torque, which are usually plotted over frequency (Figure 2A) or in the
complex plain (Figure 2B).

The spectra calculated from Equations (27) and (32) before the boundary transition
p→ 0 deviate slightly from the classical model. Presumably, they are more precise in
a certain volume fraction range, but this needs to be investigated in more detail. For
higher volume fractions, the accuracy is limited by the upper limit of p < 0.1 of the
mixing equation. For lower volume fractions, it increasingly corresponds to the classical
model. Figure 3 shows the relationships for DEP force and ROT torque spectra. Reference
spectra were calculated from the spectra of Figure 2 with appropriate prefactors. The
visible differences from the reference spectra largely disappear for a box size of x = 80 µm,
corresponding to p = 0.0082.
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Figure 3. Frequency (A) and complex plots (B) of DEP-force and ROT-torque spectra of the two spheres of Figure 2 according
to Equations (27) and (32) compared with the classical model (dotted lines; Equations (4), (7), (28) and (31)). All spectra
were calculated for field strengths of 1 V/m. To obtain corresponding numerical values of forces and moments, the DEP
forces were calculated for γ = 1 m−1.
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3.3. Conductivity and Dissipation

The volume-specific field absorption or Rayleigh’s dissipation in each box is described
by ohmic heating in the absence:

PV = <(σe)E2
e f f = σe

E2
0

2
, (33)

or presence of the object:

PV = <(σS)
E2

0
2

= σ<S
E2

0
2

. (34)

The expression for the complex conductivity of a suspension of spherical objects was
first derived by Wagner [16]:

σS =
3 + 2p f

CM
3− p f

CM

σe =
3 + 2p f

CM
3− p f

CM

σe +
3 + 2p f

CM
3− p f

CM

jωε0εe. (35)

This is the conductivity version of Equation (18). Applying the same arguments as to
Equation (25), we obtain:

σ<S = <
(

3 + 2p f
CM

3− p f
CM

)
σe. (36)

The DC case (and low frequency limit) of this equation was originally given by
Maxwell [15] in his treatise, chapter 9, “Conduction through heterogeneous media”:

σS
ω→0

= σ<S
ω→0

= σS =
σi + 2σe + 2p(σi − σe)

σi + 2σe − p(σi − σe)
σe. (37)

Here, it is obtained for (ω → 0) or after introducing the DC limit of the Clausius-
Mossotti factor (Equation (30)) into Equation (35).

Figure 4 illustrates Equations (26) and (36), i.e., the real parts of the relative permittivity
and conductivity in the box with the suspended object. Comparison of the two equations
with Equation (27) shows different frequency-independent prefactors and an additional
offset. If this is considered, the right ordinate can be rescaled so that the DEP force
(Equation (27)) is represented by the same function plots.

Note that the plotted real part of the conductivity can be interpreted as field-normalized
volume-specific dissipation (Equation (34)). Obviously, the presence of the object changes
the conductivity of the box medium in such a way that the frequency-dependent absorbance
of a certain part of the field energy corresponds to the frequency-dependent work con-
ducted in DEP. The perfect correspondence of the curves indicates a physical background.

3.4. Dispersion Relation, Active, Reactive, and Apparent Power

A common representation in impedance research shows the steady decrease of the per-
mittivity of a suspension between frequency plateaus in the so-called dispersion frequency
ranges [2,22]. Each decrease in permittivity corresponds to a complementary increase
in conductivity. Here, these relationships are described by Equations (18) and (35). The
equations can transform into one another using:

σS = jωε0εS. (38)

Figure 5 illustrates the relationships of the components of the equations for the
permittivity and conductivity for suspension of the two model spheres. The apparent
permittivity (Equation (18)) and apparent conductivity (Equation (35)) are the sums of
their active and reactive components, which are the first and second summands of each
of the two equations.
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(26) and (36)) of the suspension containing two different homogeneous spheres (Dashed lines: σi
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DEP forces are identical to those in Figure 3 when using the relative permittivity and conductivity of
the suspension medium (80, 0.1 S/m) as a reference for zero DEP force. The dotted lines show the
classical DEP force (Equation (10)).
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The active components are proportional to the DEP force (Figure 4), suggesting
that the reactive component performs no DEP work, but is capacitively stored at the
interface of the object out-of-phase with the active component (cf. ROT) and dissipated
in the suspension medium, similarly to the reactive power in the peripheral wiring of
electrical machines.
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3.5. Dissipation and Charging Work in the Box Chain

Figure 6 shows the effect of DEP translations on the work of charging and energy
dissipation in a chain system of 10 cubic boxes subjected to a constant field gradient accord-
ing to Equation (1). The field-normalized dissipations in each box were calculated using
Equation (33) for the external medium conductivity of 0.1 S/m and the field- normalized
values squared of Table 1. Without the object, the dissipation in the first box is 0.1 W/m3,
which corresponds to the external conductivity of 0.1 S/m at a field strength of 1 V/m.
Without the object, the dissipation along the box chain increases with the square of the field
strength (Table 1; Figure 6A, left ordinate). The charge work shows the same field strength
dependence (Equations (15) and (16)). It is shown on the right ordinate as “apparent
relative permittivity”. This parameter assigns an apparent permittivity to each box, so that
charging each box with 1 V/m requires the same work as charging the box with the actual
field strength in the inhomogeneous field (Table 1). Accordingly, the “apparent relative
permittivity” in the first box is 80, the actual permittivity of the suspension medium (cf. left
ordinate in Figure 4). For each box, the dissipation and apparent permittivity are plotted for
three cases, in the absence and presence of the low (0.01 S/m) or high (1 S/m) conductive
sphere. In the calculations, the low frequency limit (Equation (30)) of Equation (36) was
used as an example. In the presence of the spheres, the dissipation decreases or increases as
indicated for box 6. In DEP, the spheres travel through the box chain against (negative DEP)
or in (positive DEP) the direction of the field gradient, depending on their conductivity, i.e.,
their polarizability relative to that of the suspension medium. The dissipation differences
induced by the presence of the spheres increase in the direction of the field gradient, result-
ing in decreasing and increasing force magnitudes along the DEP trajectories for negative
and positive DEP, respectively.

Figure 6B illustrates the DEP effects on the entire box chain considered as a DEP
system. Without the object, the field-normalized total dissipation in the chain corresponds
to the sum of the 10 boxes (full horizontal line). In the presence of the weakly or strongly
conducting sphere, one box contributes to the total dissipation according to Equation
(34). The mean chain dissipations (dashed horizontal lines) were calculated assuming a
probability 0.1 uniform distribution for the presence of the spheres in each of the boxes. The
curves show the dissipation for successive positions of the spheres during DEP translation.
In both cases, positive and negative DEP, the field-induced translation leads to an increase
in the total dissipation and effective relative polarizability of the DEP system. The latter was
calculated by normalizing the sum of the apparent relative permittivities for each sphere
position (Figure 6A) to the mean of all positions. The effective relative polarizabilities of
one (right ordinate) correspond to the mean dissipations in the entire chain for uniformly
distributed (starting) positions of the spheres (dashed horizontal lines). The effective
relative polarizabilities of the chain can be used to describe how DEP “conditions” the
overall polarizability of the chain system.

In an experimental situation, starting from the random distribution (one), it will
increase and rise to a maximum reached when the weakly or strongly conducting (polariz-
able) object reaches the available positions with the highest or lowest field, respectively.
Note that this explanation may be insufficient in real DEP systems, since the presence of the
object changes the field distribution, especially near the electrodes, for example by mirror
charges. It should also be noted that each field-induced step in or against the direction of
the field gradient is directly coupled to the proportional increase or decrease of the active,
reactive, and apparent (complex) components plotted in Figure 5.
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Figure 6. Illustration of DEP-induced changes in field-normalized dissipation in a box chain subjected
to an inhomogeneous low-frequency field according to the values of Table 1. (A): In the absence
of the object, the dissipation in the direction of the field gradient increases with the square of the
field strength (circles, gray columns). In the presence of a high (triangles, σi = 1 S/m) or low
polarizable sphere (squares, σi = 0.01 S/m), the active dissipation in the box is increased or decreased,
respectively. The work of charging has the same field strength dependence (Equations (15) and (16)).
It is plotted as “apparent relative permittivity” above the right ordinate (see text). (B): Dependence of
the sum of dissipation in the box chain system on the positions of the single objects. Arrows denote
DEP “trajectories”. The dissipations in the chain system (dashed horizontal lines) correspond to
effective relative polarizabilities (right ordinate), which are proportional to the charge work of the
whole chain system. Effective relative polarizabilities of one correspond to the average dissipation
throughout the chain, for an even distribution of the 10 starting positions for the model spheres
(dashed horizontal lines).

3.6. DEP Force in the Box Chain

The original intention of this manuscript was to derive the DEP force from an alter-
native approach. The new approach actually provided the classical DEP force expression
(Equation (28)) after applying the mathematical boundary transition p→ 0 to the new
force expression Equation (27), which still contains the volume fraction of the object under
consideration. Figure 7 compares the two equations. The DEP forces were calculated
for the two model spheres at the nine interfaces between the boxes using the DC limit
(Equation (30)) of Equation (27).
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Figure 7. Low frequency plateaus of the DEP forces calculated with Equation (30) for the model
spheres with σi = 0.01 S/m (squares) and σi = 1 S/m (triangles) compared with the classical model of
Equation (10) (dotted lines). A field inhomogeneity of γ = 2500 m−1 and normalized field strengths
at the box interfaces were assumed (Figure 1, Table 1).

4. General Discussion
4.1. Higher Precision for the DEP Force?

The derivation of Equation (28) and the exact agreement with Equation (10) shed new
light on the physical background of the required simplifications and the interrelationships
of suspension impedance and AC-electrokinetic effects. The new derivation connects the
DEP force and DEP translation directly to the changes in dielectric properties in the system.
The new DEP force expression (Equation (27)) is based on the frequency dependencies of
the active components of the real part of the permittivity (Equation (26)) or conductivity
(Equation (36)) of the suspension of a single object. After the p→ 0 boundary transition,
the three equations are identical to the classical DEP force (Equations (10) and (28)) when
the appropriate prefactors and offsets are considered. Figure 4 shows slight deviations
from the classical model due to additional terms, which are eliminated by the boundary
transition. This step cancels possible volume-related polarization properties and reduces
Equation (27) to the pure dipole effects. It may be worthwhile to consider the lost terms
for a more accurate description of the DEP force in narrow environments [9–12]. In the
classical electro-quasistatic derivation, it is assumed that the field gradient is undisturbed
by the presence of the small objects considered. However, for larger objects, i.e., higher
volume fractions, the field distributions with and without objects must diverge. This calls
for improvements to the model, also to describe the interaction between objects of similar
size [7] or of objects at electrode surfaces with mirror charges.

For testing purposes, it might be worthwhile to compare the new model with multipole
models [7]. In the future, it might also be interesting to describe the suspension properties
in the charge cycle with mixing equations specifically designed for higher volume fractions,
such as Hanai’s equation [25,26].

4.2. DEP as Conditioned Polarization Process

DEP dissipates field energy. Figure 6 shows how DEP increases the active power
dissipation and polarization in the system, regardless of whether the effective conductivity
or polarizability of the object is higher or lower than that of the suspension medium. A
similar increase has already been described for the electro-orientation of ellipsoidal objects
in homogeneous fields (cf. Appendix B in [4]). In electro-orientation, it is the field-induced
orientation of the longest axis of homogeneous objects that maximizes the power dissipation
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in the system, regardless of whether the objects or the medium are higher polarizable.
In DEP and electro-orientation, the higher polarizability of the suspension results from
field-induced rearrangements of the suspended objects. Relative to the oscillations of
the causative field, these processes can be extremely slow. DEP and electro-orientation
are not typical polarization processes where the polarization follows the oscillation of
the polarizing field. It is therefore proposed that the DEP and possibly AC electrokinetic
processes, such as electro-orientation, electro-deformation or field-induced aggregation as
“conditioned polarization processes” be considered.

For an explanation, the positive DEP branch of Figure 6B should be expanded in a
Gedankenexperiment. The behavior of the many objects in a real suspension system needs
to be reproduced by a large number of box chains in a gradient field at constant electrode
voltage. In the inhomogeneous field, all the chains should be aligned along DEP trajectories.
Before field-on, a single object in each chain is at a random location. After field-on, all the
objects move with an increasing velocity in the direction of the field gradient until each
object reaches its final position at locations with the highest field, for example, the electrode
surface. This state corresponds to the highest conditioned polarizability of the system. The
modeling of such processes is possible taking the Stokes friction into account, but they are
beyond the scope of this manuscript. Experimentally, the time course of the increase in
polarizability should be detectable in microfluidic systems [11].

4.3. Relations to the Law of Maximum Entropy Production (LMEP)

It has been shown how DEP synchronously increases the total polarizability and
dissipation in the suspension system. It is a physical principle in linear systems that forces
act along the (energy) field gradient. Despite the quadratic dependence of the DEP force on
the field, for the DEP as well, translation along the field gradient is assumed, which is the
fastest way to increase the total polarizability and dissipation in the system in agreement
with the LMEP. The LMEP states that a system will select the path or assemblage of paths
out of the available paths that minimize the potential or maximize the entropy at the fastest
rate [27]. In other words, LMEP demands the maximization of entropy production [28–30].

At constant temperature T, the entropy production dS/dt in a box is proportional to
dissipation [31] according to Equations (33) and (34) in the absence or presence of the object,
respectively. The equations are the electrical version of Rayleigh’s dissipation function:

Φ = PVVbox =
dS
dt

T, (39)

which can be expressed in general terms by products of fluxes and their inducing
forces [32,33].

In the experimental situation, a dynamic equilibrium with the thermal forces is es-
tablished after the DEP translation and rearrangement processes of the objects under the
influence of the field are completed. In this equilibrium, the electrical energy dissipation
should approach a maximum. It is very likely that the DEP systems allow the study of the
balance between the stability of the field-induced structures and the entropy production
necessary to keep the structures stable [29]. LMEP could provide a thermodynamic expla-
nation for DEP-induced accumulation of viruses [34] and proteins [35], overcoming the
dispersive forces associated with Brownian motion and osmotic segregation, which cannot
be explained by current DEP theory [36]. Interestingly, the new force expression shows
higher values for positive DEP than the classical dipole approach, a tendency that may be
enhanced when mixing equations for higher volume fractions are used [25,26].

However, in micro-chamber experiments with a negative DEP, we observed that the
expected DEP end positions were not reached because the DEP forces became too weak to
overcome sedimentation, surface friction, and subsequent adhesion for increasing distances
to the electrodes.
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5. Conclusions and Outlook

The DEP force was derived from the electrical charge work of a single-object suspen-
sion. Its permittivity has been described by the Maxwell-Wagner mixing equation, which
contains the volume fraction but not the number of objects that show the ponderomotive
character, i.e., the volume character of the DEP force. The derivation presented can be
easily extended to 2D systems and to multishell spheroidal, cylindrical, and ellipsoidal
objects with known expressions for their Clausius-Mossotti factors. Along the gradient of
an inhomogeneous field, the DEP force was calculated from the differences of the charge
work of the system for successive positions of the object. Interestingly, both the increase in
capacitive charge work and active energy dissipation provides the frequency dependence
of the DEP force when appropriate prefactors and offsets are used. The considerations
showed that DEP can be considered as a conditioned polarization process that increases
the polarizability, i.e., the total effective permittivity of the DEP system at an extremely
low frequency.

The higher polarizability is associated with higher currents, while higher energy
dissipation is in accordance with the LMEP. This suggests that DEP movement follows
trajectories that increase the polarizability and dissipation at the fastest rate. The application
of these principles can simplify the numerical prediction of field-induced forces and
object trajectories by simplifying the calculation of the position-dependence of the total
conductivity in DEP systems. Moreover, the approach is expected to work not only
for modeling DEP trajectories, but also for orientation and aggregation in multi-object
systems and for field-induced behavior of objects with irregular shape or internal structures.
However, AC electrokinetic forces are induced not only on the suspended objects but also
on the suspension media. The superposition of the induced fluid currents on the DEP
motion can complicate the prediction of object trajectories in real systems.

Finally, during the completion process of the submission, the author learned of the
work of Zheng and Palffy-Muhoray [37], who consider the physical concepts describing
electrical energy storage in dissipative materials based on atomic and molecular proper-
ties. These authors describe the contradictions between the macroscopic and microscopic
approaches and state that the difficulty lies in the partitioning of input power into two
distinct components—the dissipation rate and the rate of change of stored energy. The
author would like to point to the strong analogy of this description with the contribu-
tions of the apparent, active and reactive power components to the DEP presented in this
manuscript. Note that the reactive components contributing to the power dissipation can
be formally negative.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/mi12070738/s1, pdf-file: Derivations on active, reactive and apparent power in dielec-
trophoresis: Force corrections from the capacitive charging work on suspensions described by
Maxwell-Wagner’s mixing equation. The Maple code will be provided upon request.
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