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Abstract: Liver fibrosis, which means a sort of the excessive accumulation of extracellular matrices
(ECMs) components through the liver tissue, is considered as tissue repair or wound-healing status.
This pathological stage potentially leads to cirrhosis, if not controlled, it progressively results in
hepatocellular carcinoma. Herein, we investigated the pharmacological properties and underlying
mechanisms of Gardeniae Fructus (GF) against thioacetamide (TAA)-induced liver fibrosis of mice
model. GF not only attenuated hepatic tissue oxidation but also improved hepatic inflammation.
We further confirmed that GF led to ameliorating liver fibrosis by ECMs degradations. Regarding
the possible underlying mechanism of GF, we observed GF regulated epigenetic regulator, Sirtuin 1
(SIRT1), in TAA-injected liver tissue. These alterations were well supported by SIRT1 related signaling
pathways through regulations of its downstream proteins including, AMP-activated protein kinase
(AMPK), p47phox, NADPH oxidase 2, nuclear factor erythroid 2–related factor 2 (Nrf2), and heme
oxygenase-1, respectively. To validate the possible mechanism of GF, we used HepG2 cells with
hydrogen peroxide treated oxidative stress and chronic exposure conditions via deteriorations of
cellular SIRT1. Moreover, GF remarkably attenuated ECMs accumulations in transforming growth
factor–β1-induced LX-2 cells relying on the SIRT1 existence. Taken together, GF attenuated liver
fibrosis through AMPK/SIRT1 pathway as well as Nrf2 signaling cascades. Therefore, GF could be a
clinical remedy for liver fibrosis patients in the future.

Keywords: liver fibrosis; Gardeniae Fructus; thioacetamide; AMPK/SIRT1 pathway; Nrf2 signaling

1. Introduction

Liver fibrosis is provoked by chronic hepatic diseases and results from a disordered
wound healing response [1]. The pathophysiological feature of liver fibrosis has mainly
been characterized by the deposition of excessive extracellular matrix (ECM) molecules,
particularly various collagen types. In addition, advanced liver fibrosis could lead to portal
hypertension, hepatic dysfunction, liver cirrhosis, liver failure, and sometimes require liver
transplantation [2]. For that reason, understanding the underlying mechanism, accurate
diagnosis, and systematic approach in the early stages will accelerate its treatment and
lessen the prevalence of cirrhosis. Hepatic stellate cells (HSCs) were reported as the
fundamental collagen-producing cell in the liver since the 1980s [3]. Key signaling that
regulates HSCs’ fibrogenic actions was precisely described. Experimental animal models
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for studying liver fibrogenesis were developed and led to the identification of key fibrogenic
mediators [4]. To induce liver fibrosis, many chemical inducers such as thioacetamide,
chloroform, iodoform, and carbon tetrachloride have been widely used. Chronic and
persistent treatment using TAA induces liver injury, fibrosis, and finally cirrhosis derived
from activation of HSCs [5,6]. Activated HSCs are alpha-smooth muscle actin (α-SMA)-
positive cells that produce ECMs protein, including Collagen I [7]. Therefore, various
studies to investigate target factors of activated HSCs were considered as crucial progress
in a reversal of liver fibrosis [8].

Gardeniae Fructus (GF, the dried ripe fruits of Gardenia jasminoides Ellis) not only has
been popularly applied to traditional medicine to treat hepatic disorders or to decrease
various inflammation but also epidemically used as an excellent natural colorant. A total of
162 components have been separated and identified from GF [9]. Among the various com-
pounds from GF, geniposide is one of the most important iridoid compounds and it was
validated the pharmacological properties including anti-oxidative, anti-inflammatory, hep-
atoprotective, anti-depressive, anxiolytic activities, and beneficial effects on cardiovascular
and digestive systems either in vitro or in vivo [10,11].

On the other hand, Silymarin, which is used as a positive control in this experiment,
is distributed in the fruit and seeds of milk thistle. Silymarin exerts the hepatoprotective
effects from inflammation, oxidative stress, and consequent cytotoxicity in patients with
fibrosis or cirrhosis without serious adverse events [12].

In the current study, as purposed to investigate the pharmacological properties of
GF against TAA (i.p.) to induce liver fibrosis of mice model, and our data elucidated
new knowledge about anti-hepatofibrotic effects of GF. Additionally, we also provide the
possible mechanisms GF which could mainly affect AMPK/SIRT1 pathway and/or Nrf2
signaling cascades on the liver fibrosis as well as chronic TAA exposure hepatic oxidative
stress conditions.

2. Materials and Methods
2.1. Materials

Sodium carbonate (Cat No. 222321), quercetin (Cat No. Q4950), dimethyl sulfoxide
(DMSO, D2650), silymarin (Cat No, S0292), and thioacetamide (Cat No. 163678) were
provided by Sigma Aldrich Co. (St Louis, MO, USA). L-ascorbic acid was provided by Alfa
Aesar (Cat No. A15613, Lancashire, UK).

2.2. Preparation of the Plant Material and Finger Printing Analysis of GF

The GF used in this experiment was a medicinal herb produced in Goheung, Jellannam-
do in 2019, and was supplied from Bonchowon (Yeongcheon, Gyeongsanbuk-do). Dried
GF (100 g) boiled with water (1 L) at 25 ◦C for 2 h. The powder of GF was a yield of
24.6% by weight and kept at −80 ◦C before use. GF power (1 mg) was dissolved in
2 mL of 100% methanol. The solution was centrifuged at 13,500 rpm for 3 min and the
supernatant was collected for component analysis. We injected 3 µL of the sample into
a Waters Acquity UPLC system (Waters®, Milford, MA, USA) using a reversed-phase
C18 column (Phenomenex HPLC part: Luna 3µ C18(2) 100 Å, 150 mm × 4.6, Torrance,
CA, USA). The mobile phase composition was as follows: solvent A (5% acetonitrile in
deionized water with 0.05% formic acid), solvent B (100% acetonitrile with 0.05% formic
acid). The gradient conditions; A:B = 90:10 (0 min)→ 90:10 (2 min)→ 80:20 (3 min)→ 80:20
(6 min)→ 0:100 (8 min)→ 0:100 (10 min)→ 90:10 (11 min)→ 90:10 (14 min). The flow
rate was 0.7 mL/min with UV absorption monitoring at 254 nm. The peak of geniposide
was assigned by comparison of retention time and UV spectrum of authentic standard.
Geniposide was detected as a major compound from the chromatogram of the extract.
Representative UPLC chromatogram was illustrated in Supplementary Figure S1A–D.
Quantification of geniposide in the extract was performed by peak area measurement. The
calibration curve of geniposide was made at the concentration of 6.25, 12.5, 25, 50, 100,
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200, and 400 µg/mL with an injection volume of 3 µL each and the replication of five. The
regression coefficient (R2) was calculated as 0.9994 (standard curve; y = 4.3285x − 8.4191).

2.3. Mice Treatment

The animal protocol was approved by the Ethics Committee of the Daegu Haany
University and performed according to ‘the Guidelines for Animal Experiment’. C57BL/6
mice (male, 20–25 g) were purchased from DBL (Eumseong, Korea). The mice were
maintained at 22± 2 ◦C and controlled with a 12 h light/dark cycle and humidity (50 ± 5%).
After 1 week of adaptation, a total of thirty-six mice were divided into 4 groups (n = 9 for
each group): Normal, Control (TAA only), GF (200 mg/kg), and Silymarin (50 mg/kg),
respectively. Mice in the normal group were intraperitoneally injected 0.9% normal saline
orally administrated with distilled water (DW); the control group received TAA (i.p.) and
DW (peroral, p.o.); the Silymarin group received TAA (i.p.) and Silymarin at 50 mg/kg/day
(p.o.); the GF group received TAA (i.p.) and GF at 200 mg/kg/day (p.o.) for 8 weeks of
experimental periods (Supplementary Figure S2).

Liver fibrosis was induced by TAA three times injection per week for 8 weeks accord-
ing to an escalating treatment dose protocol (100 mg/kg for 1st week; 200 mg/kg for from
2nd to 3rd week, and 400 mg/kg for 4th to 8th week, respectively). The treatment drugs for
liver fibrosis both GF (200 mg/kg/day) and Silymarin (50 mg/kg/day) were continuously
administrated for 8 weeks 90 min prior to TAA injection. On the final day of the experiment,
whole blood samples were collected from the abdominal vein and centrifuged at 4000 rpm
for 10 min (at 4 ◦C), then stored in −80 ◦C freezer for further analyses. Liver tissues were
removed immediately transferred 10% neutral formalin for the purpose of histological
analysis and liquid nitrogen gas then stored at −80 ◦C for further biochemistry analysis,
respectively.

2.4. Histological Examination

Liver tissue samples were fixed in 10% formalin then processed for embedding and
sectioning at the Kyeongbook National University Hospital BMRI (Daegu, Korea). Liver
sections (3 µm thickness) were stained using hematoxylin and eosin (H&E), Masson’s
trichrome (MT), and Sirius Red staining which were followed by the standard protocol.
The images were captured using Olympus BX51 Microscope (Olympus Co., Ltd., Tokyo,
Japan, 40-, 100-, and 200-× magnifications) and then analyzed using the I-Solution Lite
software program (IMTechnology, Vancouver, BC, Canada).

2.5. Analysis of Serum Biochemistry

Liver enzymes such as aspartate aminotransferase (AST) and alanine aminotransferase
(ALT) were measured by serum levels using a Transaminase CII-Test (Wako Pure Chemical
Industries Ltd., Osaka, Japan). Serum ammonia was measured by ELISA kit (Abcam,
Cambridge, UK) according to the manufacturer’s instructions.

2.6. Analysis of Immunohistochemistry (IHC) and Immunofluorescence (IF)

IHC analysis was performed for detecting Kupffer cells (F4/80), bile duct cells (CK-19),
and Collagen type 3. We further completed IF analyses for observing 4-HNE, desmin, α-
smooth muscle actin (α-SMA), and Collagen type 1, respectively (Supplementary Figure S7).
Briefly, paraffin embedding liver tissue sections were deparaffinized and rehydrated with
various gradations of ethanol. After washing with liver sections with tap water, they were
progressed to peroxidase removal with 5% hydrogen peroxide in absolute methanol for
5 min. Tissues were incubated in 2.5% normal horse serum (NHS) then applied primary an-
tibodies for overnight at 4 ◦C. Tissue sections were washed applied horseradish peroxidase
(HRP)-conjugated secondary antibodies, then applied the signals using 3-Amino-9-ethyl
carbazol (AEC) and mounted with mounting buffer. The images of IHC analysis were
captured using light microscopy conditions (Olympus BX51, Tokyo, Japan, 100- and 400-×)
and IF images were observed by fluorescent filters equipped microscope (Carl Zeiss, Ger-
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many, 100- and 200-×). The quantification analysis of each positive signal for IHC or IF
image was obtained from the randomly selected sections of at least four fields of each
sample using Image J 1.52 software (NIH, Bethesda, MD, USA).

2.7. Measurement of Myeloperoxidase (MPO) and TBA-Reactive Substance (TBARS) Levels

MPO in serum was determined via a colorimetric kit of BioVision, Inc. (Milpitas, CA, USA).
TBARS assay to evaluate malondialdehyde (MDA) was estimated according to the method
of Mihara and Uchiyama [13].

2.8. Cell Cultures

For validating possible mechanisms of GF on hepatic oxidation and fibrosis we cul-
tured human blastoma cell line, HepG2, and hepatic stellate cells (HSCs) line, LX-2 cells,
respectively. HepG2 cells were cultured in 10% fetal bovine serum (FBS) containing DMEM,
and LX-2 cells were cultured 5% FBS contained DMEM under the condition of 5% CO2
supplementary with 37 ◦C incubators, respectively.

For hepatic oxidative stress condition, we treated 500 µM of hydrogen peroxide (H2O2)
during 6- and 24-h after pre-treatment with 50, 100, and 200 µg/mL of GF, then cells were
washed with 10 mM PBS (pH 7.3) twice and fixed in 4% paraformaldehyde (PFA) or cell
lysis buffers (for Western blot analysis) according to each specific experimental condition.

For liver fibrosis condition, we active LX-2 cells by transforming growth factor (TGF)–
β1 (10 ng/mL) for 18 h incubation after pre-treatment with GF (200 µg/mL) for 6 h and
followed to the washing and fixing for further analysis, respectively. IHC or IF analysis
using HepG2 cells or LX-2 cells, we used standard protocol. Briefly, the cells were washed
with PBS (10 mM, pH 7.3) twice and fixed in 4% paraformaldehyde for 1 h at RT. Cells
were washed with PBS twice and incubated with 0.3% Triton X-100 for 5 min at RT, then
underwent PBS washing twice. Cells were treated 2.5% NHS which is known as blocking
buffer for 1 h at RT and primary antibodies were treated then incubated at 4 ◦C overnight.
After washing with PBS three times (each time for 10 min) at RT, we treated fluorescent
conjugated secondary antibodies for IF analysis or HRP-conjugated secondary antibody
for IHC, respectively.

For IF analysis, we followed the further washing steps using twice PBS and one
0.05% PBST for 10 min, and IHC analysis we washed with PBS three times using PBS,
respectively. After washing secondary antibodies for each experiment, the positive signals
were detected by the development of AEC and performed counterstaining using hema-
toxylin. In the case of IF analysis, we completed the counterstaining by application of DAPI
solution to the cells.

Images were captured according to each experiment type as followed by the liver
tissue sections.

2.9. Western Blotting

To obtain cell samples, we used the lysis buffer was composed of various compounds
as follows; 50 mM Hepes, pH 7.5, 150 mM NaCl, 10% glycerol, 1% Triton X-100, 1.5 mM
MgCl2, 1 mM EGTA, 10 mM sodium pyrophosphate, 100 mM sodium fluoride, and freshly
added 100 µM sodium vanadate, 1 mm PMSF, 10 µg/mL aprotinin, and 10 µg/mL le-
upeptin, respectively or NP-40 lysis buffer (1% NP-40, 20 mM Tris, pH 7.4, 137 mM
NaCl, 2 mM EDTA, 10% glycerol, 1 mM PMSF, and 1× cOmplete™ protease inhibitor
cocktail). For cytochrome c, COX IV, and GAPDH in either cytosolic or mitochondrial
fraction, we obtained each fractionated sample using a commercially available kit (Mito-
chondria/Cytosol Fractionation Kit, BioVision, Catalog #K256-25, Milpitas, CA, USA).

To obtain cytosol samples of tissue, liver tissues were lysed with buffer consisting
of follows; 0.1 mM EDTA, 10 mM HEPES (pH 7.8), 0.1 mM PMSF, 10 mM KCl, 1 mM
DTT, 2 mM MgCl2, and 1250 µL protease inhibitor solution (Wako, Osaka, Japan). The
homogenates were incubated (4 ◦C for 20 min), and then 10% NP-40, respectively. After
centrifugation with the above lysis buffer (12,000 rpm at 4 ◦C for 2 min, Eppendorf 5415R,
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Hamburg, Germany). Then the supernatant was collected as a cytosol sample, and the
lysates were suspended with 20 mL ice-cold lysis buffer for intending to extract nucleus
(50 mM HEPES (pH 7.8), 50 mM KCl, 300 mM NaCl, 1 mM DTT, 0.1 mM EDTA, 1%
(v/v) glycerol, 0.1 mM PMSF, and 100 µL protease inhibitor solution, respectively) and
suspended and incubated (4 ◦C for 30 min), then performed centrifugation (12,000 rpm at
4 ◦C for 10 min). The supernatant was finally collected as a nuclear sample. Both cytosol
and nuclear samples were stored at −80 ◦C for further experiments.

Samples containing 10–12 µg of protein were electrophoresed through 8–15% SDS-
PAGE and transferred to a nitrocellulose membrane. Each membrane was blocked with
5% (w/v) skim milk solution for 1 h and visualized using ECL reagents of GE Healthcare
(Chicago, IL, USA). The bands were detected by Sensi-Q 2000 Chemidoc (Lugen Sci Co.,
Ltd., Gyeonggi-do, Bucheon-si, Korea). Antibodies used in western blotting are shown in
Supplementary Figure S8. We followed the methods of Mi-Rae Shin et al. [14].

The quantification analysis of each band was analyzed by application of Image J 1.52 soft-
ware (NIH, Bethesda, MD, USA).

2.10. Statistical Analysis

All statistical data were expressed as mean ± SEM through the present manuscript
by the performance of the Prism 9.2 software from GraphPad (La Jolla, CA, USA). Com-
parisons between two groups were performed using a two-tailed unpaired Student t-test.
Comparisons for more than two groups, we performed one-way or two-way ANOVA
followed by Tukey’s post-hoc tests.

3. Results
3.1. GF Attenuated TAA-Mediated Chronic Liver Injury

TAA injection considerably decreased BW as compared with the normal group, and
there were no significant differences among the control, GF 200, and Sily 50 groups during
experiment periods. (p < 0.001 for time-dependent manners of BW changes and among the
groups, Figure 1A). The final BW and liver WT were significantly reduced by TAA injection
in the control group as compared with the normal group (p < 0.001 or 0.05 in Figure 1B,C),
and both drug treatment groups didn’t show a significance as compared with the control
group (Figure 1B,C). Relative liver mass was significantly increased by TAA injection in the
control group as compared with the normal group (p < 0.001), whereas GF 200 significantly
decreased relative liver tissue mass as compared with the control group, but not Sily 50
(p < 0.05, Figure 1D). Eight weeks of TAA injection severely led to liver damage by evidence
of histopathological alterations based on the H&E staining. As compared to the normal
group, the control group showed infiltrations of inflamed cells and hepatocyte cell deaths
through the liver tissue (Figure 1E). Additionally, liver enzymes such as serum AST and
ALT levels in the control group were significantly increased as compared with the normal
group, respectively (Figure 1F,G). These liver injuries were well represented by abnormal
elevations of serum ammonia levels in the control group (Figure 1H). Administration with
GF during entire experimental periods expected not only attenuated liver inflamed cell
infiltrations with hepatocyte deaths by histological inspection, but also significantly exerted
to decrease serum AST, ALT, and ammonia levels, respectively (p < 0.01 for AST, p < 0.05 for
ALT, and p < 0.001 for ammonia, Figure 1F–H). TAA induced hepatic tissue injuries were
not only improved histopathological examinations in Sily 50 group (Figure 1E), but also
significantly attenuated by features of serum biochemistries and serum ammonia levels
(Figure 1F–H); however, silymarin 50 mg/kg treatment didn’t significantly alter general
outcomes in the present study.
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or Sily 50. H&E staining images were captured by light microscope condition (100- or 400-×magnifications).

Compared to the pharmacological properties between GF 200 and Sily 50, there was a
tendency that GF 200 seemed better in serum AST and ALT levels than Sily 50, but other
factors were shown similar effects.

3.2. Effects of GF on TAA-Induced Hepatic Tissue Oxidation

Next, we addressed that the TAA-induced hepatic injury in the present study by
focusing on the oxidative stress and antioxidant components alterations. First, we measured
IF analysis against 4-HNE which is a correlation marker of final oxidative stress product
(p < 0.001). As expected, the control group significantly increased the positive signals of
4-HNE as compared with the normal group. Additionally, serum MPO activities in the
control group were significantly increased as compared with the normal group (p < 0.001).
This pathological alteration was well supported by abnormal oxidative stress status in both
serum and hepatic protein levels of MDA, which is a marker of lipid peroxidation (p < 0.01,
Figure 2D,E), whereas administration with GF 200 mg/kg significantly ameliorated the
above pathological statuses (p < 0.001 for 4-HNE IF analysis, p < 0.01 for MPO and hepatic
MDA, and p < 0.05 for serum MDA, Figure 2A–E). Western blot analysis well displayed that
the hepatic antioxidants such as GPx-1/2 and SOD were significantly deterred by 8 weeks
of TAA injection in the control group (p < 0.001 or 0.01), whereas GF 200 significantly
prevented from deterioration of two major antioxidant enzymes in the hepatic tissue
against TAA mediated-hepatic tissue oxidation (p < 0.05 or 0.01 in Figure 2F,G).
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* p < 0.05, ** p < 0.01, and *** p < 0.001 for Control vs. GF 200 or Sily 50. Images were captured by fluorescence filter equipped
with microscope condition (100- or 400-×magnifications).

Sily 50 group exhibited similar efficacies of GF 200 as compared with the control group
against hepatic oxidations (p < 0.05, 0.01, or 0.001, Figure 2A–G).

3.3. Effects of GF on Hepatic Inflammation

Hepatic inflammation is one of the representative pathological phenotypes of TAA-
induced hepatic injury. Thus, we examined the pharmacological properties of GF focusing
on the inflammatory reaction-related markers. We presented IHC against F4/80 which
is a marker of Kupffer cells in the liver tissue resided macrophage. As we expected, the
positive signals were remarkably enhanced in the control group as compared with the
normal group (p < 0.001), while GF 200 significantly attenuated these positive signals as
compared with the control group (p < 0.05 in Figure 3A,B). Pro-inflammatory cytokines
such as IL-1β and TNF-α in hepatic protein levels of the control groups were considerably
increased in the response to TAA-induced hepatic injury (p < 0.01); however, administration
with GF 200 mg/kg exerted to decrease these pro-inflammatory cytokines as compared
with the control group (p < 0.05 or 0.01 in Figure 3C,D). To elucidate the pharmacological
properties of GF 200 focusing on the possible molecular signaling pathways of hepatic
inflammation, we performed Western blot analysis against NF-κB, IκBα, iNOS, and p38
with their phosphorylated forms in hepatic protein levels, all targeted proteins in the
control group were drastically altered according to our expectation as compared to the
normal group (p < 0.001); however, we also observed that GF 200 mostly normalized the
above inflammatory target proteins’ abnormalities with statistical significance as compared
with the control group (p < 0.01, or 0.001 in Figure 3E,F).
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Figure 3. Effects of GF on TAA-injected hepatic inflammation. (A) IHC analysis against F4/80 and (B) quantification
analysis. (C) Hepatic protein levels of IL-1β and (D) TNF-α. (E) Western blot analysis of inflammatory related proteins
including p-NF-κB, NF-κB, p-IκBα, IκBα, iNOS, p-p38, and p38 and (F) protein intensity. Data were expressed mean ± SEM
(n = 4 for each group in IHC analysis; n = 9 for each group for IL-1β and TNF-α; n = 3 for each group in Western blot
analysis). N.S, not significant, ## p < 0.01 and ### p < 0.001 for Normal vs. Control; * p < 0.05, **p < 0.01, and *** p < 0.001 for
Control vs. GF 200 or Sily 50. H&E staining images were captured by light microscope condition (400-×magnifications).

Administration with Silymarin 50 mg/kg showed beneficial effects on F4/80 IHC
analysis (p < 0.01), hepatic protein levels of IL-1β (p < 0.05), and phosphorated forms of
NF-κB, IκBα, and p38 and iNOS protein levels which were evidenced by Western blot
analysis (p < 0.05 for Figure 3E,F).

3.4. Effects of GF on the Hepatic Fibrosis

Next, we further examined the pharmacological effects of GF on hepatic fibrosis. Both
Masson’s trichrome and Sirius Red stains well evidenced that TAA-induced liver fibrosis
by huge amount collagen deposition through hepatic tissue (positive color for blue in
Masson’s trichrome and red color for Sirius Red staining) in the control group as compared
with the normal group (p < 0.001). Representative ECMs molecules of IF or IHC against
α-SMA, Collagen type 1, and Collagen type 3 were also abnormally enhanced through liver
tissue by TAA injection (p < 0.001). These alterations, as our expectation, were significantly
resolved in the GF 200 group as compared to the control group (p < 0.01 in Figure 4A–J).
These alterations were well correlated with the numbers of HSCs in the liver tissue which
were by the performance of IF analysis against Desmin. Desmin positive signals (part of
red fluorescence) were remarkably enhanced in the control group as compared with the
normal group, but these signals were drastically decreased as compared with the control
group (Supplementary Figure S3). Additionally, the representative profibrogenic cytokine
and ECMs-related target proteins including TGF-β1, TIMP-1, MMP-1, and MMP-13 in the
hepatic protein levels were abnormally altered in the control group as compared with the
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normal group (p < 0.05, 0.01, or 0.001, respectively). Administration with GF 200 mg/kg not
only significantly led to a decrease in TGF-β1 and TIMP-1, but also increase MMP-1 and
MMP-13 as compared to the control group (p < 0.05 or 0.01 in Figure 4K,L). Interestingly,
we also examined the ductular reactions of bile duct area through the liver tissue, but
there were no significant features, only the number of bile duct area were increased in the
control group as compared with the normal group. In addition, no differences were not
observed between GF 200 and Sily 50 as compared with the control group by evidence of
IHC analysis against CK-19 (Supplementary Figure S4).
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staining, (C) IF analysis against α-SMA, (D) Collagen type 1, and (E) IHC against Collagen type 3. (F–J) Quantification
analyses for Masson’s trichrome staining, Sirius Red staining, IF analysis against α-SMA, Collagen type 1, and IHC against
Collagen type 3. (K) Western blot analysis of ECM proteins TGF-β1, TIMP-1, MMP-1, and MMP-13 and (L) protein intensity.
Data were expressed mean ± SEM (n = 4 for each group in staining images; n = 3 for each group for Western blot analysis).
N.S, not significant, # p < 0.05, ## p < 0.01, and ### p < 0.001 for Normal vs. Control; * p < 0.05 and ** p < 0.01 for Control
vs. GF 200 or Sily 50. Masson’s trichrome, Sirius Red staining, and IHC against Collagen type 3 images were captured by
light microscope condition (40-,100-, and 200-× magnifications). IF images were observed by fluorescence filtered equipped
microscopy condition (200-×magnifications).
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The positive control group, Sily 50, showed similar properties on the liver fibrosis
by amelioration collagen accumulation as well as exertion of fibrogenic cytokine and
ECMs-related proteins (p < 0.05 or 0.01). The number of HSCs through the liver tissue was
diminished in Sily 50 as compared with the control group (Supplementary Figure S3), but
Sily 50 didn’t alter ductular reactions (Supplementary Figure S4).

3.5. Pharmacological Properties of GF against TAA-Induced Hepatic Fibrosis via Modulations
of SIRT1

To validate the possible underlying mechanism of GF on TAA-injected hepatic fibrosis,
we focused on the epigenetic regulator, SIRT1 which is well known for a NAD+, NADH-
dependent class III protein deacetylase-enzyme. Our Western blot analysis results well
evidenced that SIRT1 in hepatic protein levels of the control group was considerably
depleted as compared with the normal group (p < 0.001), and H3K9Ac also well support
the above alterations in hepatic protein levels of TAA-injected liver tissue by drastically
increase manners compared to the normal group (p < 0.001). Administration with GF
200 mg/kg significantly normalized against these alterations in hepatic protein levels as
compared with the control group (p < 0.01 for SIRT1 and H3K9Ac). Additionally, the
up-streaming molecule of AMPKα, which is a p-LKB1 was significantly decreased in
the control group as compared with the normal group, the GF significantly increased
p-LKB1 as compared with the control group (p < 0.05). Regarding the molecular levels of
the relationship between SIRT1 and AMPKα, we observed that AMPKα was drastically
activated by the deterioration of SIRT1 (p < 0.05). We further observed that SIRT1 target
oxidative stress-related proteins such as NOX2 and p47phox were significantly normalized
by GF 200 against TAA-injected hepatic fibrosis (p < 0.05 or 0.01). Additionally, AMPKα

targeted proteins which are NADPH activity relying on antioxidant enzymes Nrf2 and
HO-1 were also deterred by TAA and remarkably recovered by GF 200 mg/kg (p < 0.01,
Figure 5A–C).
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Figure 5. GF ameliorates liver fibrosis via regulations of AMPK/SIRT1 signaling pathways. Western blot analysis of SIRT1
and its deacetylate target proteins such as H3K9Ac, Total H3, p-AMPKα, and AMPKα, p-LKB1, and LKB1 (A), and NOX2,
p47phox, Nrf2, and HO-1 (B). (C) Quantification analysis of Western blot analysis. Data were expressed mean ± SEM (n = 3
for each group for Western blot analysis). ## p < 0.01 and ### p < 0.001 for Normal vs. Control; * p < 0.05 and ** p < 0.01 for
Control vs. GF 200 or Sily 50.

As a positive drug treatments Silymarin 50 mg/kg, also well showed beneficial prop-
erties on TAA-induced liver fibrosis by controlling of SIRT1/AMPKα signaling pathways
with statistical significances as compared with the control group (p < 0.01, Figure 5A–C).

3.6. GF Prevents Hepatocyte Oxidation by Increase of SIRT1 in Time Dependent Manners

To explain the pharmacological mechanisms of GF 200 on oxidative stress-induced
hepatocyte damage, we explored hydrogen peroxide (H2O2)-induced hepatocyte oxi-
dation using HepG2 cells which is a human blastoma cell line. First, we intended to
confirm the alterations of SIRT1 would be affected by time-dependent manner or not.
Interestingly, we observed that chronic exposure of H2O2 (500 µM incubation for 24 h,
Figure 6B) in the HepG2 cells were considerably depleted SIRT1 in the protein levels as
compared with the control group, but not acute exposure (6 h, Figure 6A). As expected,
we also confirmed that chronic exposures to H2O2 could significantly enhance dead
cell numbers (p < 0.001, Supplementary Figure S5A,B), which were well supported by
abnormal releases of cytochrome c from mitochondria to cytosolic levels by evidence
of Western blot analysis (Supplementary Figure S5C,D). To verify oxidative stress is a
deciding factor by SIRT1 existence or not, we further performed IHC analysis against
4-HNE and SIRT1 after 24 h of H2O2 incubated cells. 4-HNE positive signals were
also hugely enhanced in H2O2 group as compared with the normal group (p < 0.001
in Figure 6C,E), which were reversely appeared in the positive signals of SIRT1 in the
drug-treated groups (p < 0.001 in Figure 6D,F), respectively.



Antioxidants 2021, 10, 1837 12 of 17

Antioxidants 2021, 10, x FOR PEER REVIEW 12 of 17 
 

 
Figure 6. GF attenuates hepatocyte oxidative stress via prevention from SIRT1 depletions. Western blot analysis in H2O2 
(500 μM) treated HepG2 cells for 6 h or 24 h with or without GF (50, 100, 200 μg/mL). Cellular protein levels of SIRT1 for 
6 h (A) and 24 h (B). IHC analysis against 4-HNE (C) and SIRT1 (D). Quantification analysis of 4-HNE (E) and SIRT1 (F). 
Data were expressed mean ± SEM (n = 4 for IHC analysis). ### p < 0.001 for Normal vs. H2O2 and * p < 0.05, ** p < 0.01, and 
*** p < 0.001 for H2O2 vs. GF or GSH. IHC images were captured by microscope condition (100- or 400-× magnifications). 

3.7. GF Promotes Inactivation of TGF-β1 Incubated Culture-Induced Activated HSCs by 
Prevention of SIRT1  

To validate the underlying mechanisms of GF against liver fibrosis, we performed 
TGF-β1 treated LX-2 cell activation in vitro experiment. As our expectation, TGF-β1 
considerably decreased cellular protein levels of SIRT1 which was well supported by 
Western blot analysis of H3K9Ac and H3K56Ac. Cellular protein levels of both Collagen 
type 1 and α-SMA were drastically increased by TGF-β1, whereas pre-treatment with GF 
considerably decreased the above alterations by reverse manners of SIRT1 in protein 
levels (Figure 7A,B). Accordingly, the Western blot analysis results and IHC analysis well 
supported the effects of GF by regulations of SIRT1 with statistical significances (Figure 
7C–F).  

Figure 6. GF attenuates hepatocyte oxidative stress via prevention from SIRT1 depletions. Western blot analysis in H2O2

(500 µM) treated HepG2 cells for 6 h or 24 h with or without GF (50, 100, 200 µg/mL). Cellular protein levels of SIRT1 for
6 h (A) and 24 h (B). IHC analysis against 4-HNE (C) and SIRT1 (D). Quantification analysis of 4-HNE (E) and SIRT1 (F).
Data were expressed mean ± SEM (n = 4 for IHC analysis). ### p < 0.001 for Normal vs. H2O2 and * p < 0.05, ** p < 0.01, and
*** p < 0.001 for H2O2 vs. GF or GSH. IHC images were captured by microscope condition (100- or 400-×magnifications).

Pre-treatment with GF with various doses (6 h prior to hydrogen peroxide with 50, 100,
and 200 µg/mL) significantly prevented the depletion of SIRT1 in cellular protein levels of
the chronic exposure condition (p < 0.001 for Figure 6B,D,F). According to these properties,
GF could block oxidative stress as well as cell death which were well evidenced by 4-HNE
(p < 0.001 for Figure 6C,E), LIVE/DEAD cell (p < 0.001 for Supplementary Figure S5A,B),
Western blot analysis of cytochrome c in mitochondria and cytosolic levels (Supplementary
Figure S5C,D).

3.7. GF Promotes Inactivation of TGF-β1 Incubated Culture-Induced Activated HSCs by
Prevention of SIRT1

To validate the underlying mechanisms of GF against liver fibrosis, we performed
TGF-β1 treated LX-2 cell activation in vitro experiment. As our expectation, TGF-β1
considerably decreased cellular protein levels of SIRT1 which was well supported by
Western blot analysis of H3K9Ac and H3K56Ac. Cellular protein levels of both Collagen
type 1 and α-SMA were drastically increased by TGF-β1, whereas pre-treatment with
GF considerably decreased the above alterations by reverse manners of SIRT1 in protein
levels (Figure 7A,B). Accordingly, the Western blot analysis results and IHC analysis



Antioxidants 2021, 10, 1837 13 of 17

well supported the effects of GF by regulations of SIRT1 with statistical significances
(Figure 7C–F).
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Figure 7. GF Alleviates TGF-β1-induced LX-2 Cell Activation via Enhancement of SIRT1. Western blot analysis in TGF-β1
treated LX-2 cells with or without GF. (A) Cellular protein levels of SIRT1, H3K9Ac, H3K56Ac, and Total H3. (B) Cellular
protein levels of Collagen type 1, α-SMA, and β-actin. IHC analysis against SIRT1 (C) and its quantification analysis
(D), and Collagen type 1 IHC (E) and its quantification analysis (F). Data were expressed mean ± SEM (n = 3 for Western
blot analysis, n = 4 for IHC analysis). ### p < 0.001 for Control vs. TGF-β1 and *** p < 0.001 for None vs. GF 200. IHC images
were captured by microscope condition (100×magnifications).

4. Discussion

Liver fibrosis is a process of wound and healing under the pathological status of
chronic liver diseases. In liver fibrosis, the HSCs are well known to target cell type in
the liver tissue to decide progression the next step of liver disease called liver cirrho-
sis or reversible to the non-pathological status of liver diseases [8,15]; however, there
is no therapeutics to cure the liver fibrosis globally till nowadays. Thus, we aimed to
investigate to develop medicine to treat liver fibrosis based on the natural plant, GF, espe-
cially [16] (Figure 1E–H), but didn’t significantly recover in general physiological outcomes
(Figure 1A–D).

Accumulated documents well displayed that TAA is a toxic agent to induce liver dis-
eases via abnormal modulations of liver detoxification enzymes which can evoke oxidative
stress-induced liver tissue damage and progress severe stages of liver diseases, called liver
fibrosis and cirrhosis [17–19]. Thus, we addressed the effects of GF on the TAA-injected
hepatic tissue oxidation. As expected, GF not only led to decreases of 4-HNE formations,
serum and hepatic tissue levels of MDA, and serum MPO activities (Figure 2A–E) but
also prevented hepatic endogenous antioxidants depletions such as SOD and GPx-1/2,
respectively (Figure 2F,G). Additionally, chronic liver inflammation is invariably connected
to liver fibrosis [20,21], and we partially proved the anti-inflammatory activities of GF
against TAA-induced liver tissues. As shown in Figure 3A,B, the numbers of Kupffer cells
in the hepatic tissue were considerably decreased by GF and pro-inflammatory such as
IL-1β and TNF-α which are mainly activated by NF-κB in activated Kupffer cells during
hepatic inflammation (Figure 3C,D). Furthermore, proteins by pending of NF-κB signaling
pathway were normalized by GF (Figure 3E,F). Our findings are well comprised of the
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representative pathophysiological status of hepatic inflammation by TAA-induced hepatic
liver injury [22,23] and sufficient to support anti-hepatic inflammation effects on liver
fibrosis by attenuations of pro-inflammatory cytokines as well as Kupffer cells activation
related molecules (Figure 3A–F).

As we above mentioned, finally our mice were led to liver fibrosis conditions that
mean excessive accumulation of ECMs proteins including predominantly fibrillar Collagen
type 1 or Collagen type 3, and α-SMA, respectively [2,15]. Thus, we next investigated that
the effects of GF on the modulations of activated HSCs in the hepatic tissue. Regarding
liver fibrosis, our first finding which is IF analysis against HSCs by stating of HSCs were
well corresponded to the GF effects by reducing their numbers in liver tissues (Supple-
mentary Figure S3). Next, we further confirmed that anti-hepatofibrotic effects of GF
are mainly attributed to alleviations of the huge amount of ECMs accumulation in liver
tissues by evidence of both Masson’s trichrome and Sirius Red stains (Figure 4A,B,F,G).
These results are well supported by degradations of ECMs including α-SMA, Collagen
type 1, and Collagen type 3, respectively (Figure 4C–E,H–J). Hepatic protein levels of TGF-
β1, known for pro-fibrogenic cytokine to promote HSCs activation or proliferation were
drastically normalized by GF and other proteins such as TIMP-1, MMP-1, and MMP-13
which are known as ECMs promoters or degradations as responses of liver fibrosis [24,25].
Previous studies well reported that bile duct cells proliferation or ductular reactions in
the liver tissue by TAA-induced liver fibrosis model [26]; however, in the present study
ductular reactions in hepatic tissues were not affected by treatment with either TAA or GF
(Supplementary Figure S4).

Liver fibrosis is normally comprehended by complicated events from various liver
tissue-specific cell types including hepatocyte, Kupffer cells, and HSCs, respectively. There-
fore, it is needed to understand the whole liver tissue events with specific molecular
signaling transduction pathways. On the other hand, SIRT1 that is an epigenetic regulator
well known to NAD+-dependent histone deacetylase is deeply implicated in liver diseases
by modulations of redox status, inflammation, and cell death, respectively [27–31]; how-
ever, its roles in liver fibrosis is not clearly studied yet. Thus, we focused on our liver tissues
by application of Western blot analysis and obtained that GF apparently inhibited H3K9Ac
by blocking SIRT1 depletion in the liver protein levels (Figure 5A,C). As a partnership
with SIRT1, AMPK is applied to regulate energy metabolism especially various energy
homeostasis imbalances provoked pathological conditions [32]. This signaling pathway is
a crucial factor in the approaches of various liver diseases [33–35]. The up-stream molecule
of AMPKα, which is known to LKB1 is deeply associated with liver inflammation and
metabolism [36,37]. According to our expectation, GF not only drastically increase AMPKα

in liver protein levels, but also normalized hepatic protein levels of AMPK/SIRT1 signal-
ing related or target molecules including NOX2, p47phox, Nrf2, and HO-1, which mainly
belong to liver tissue oxidation were significantly normalized by GF, especially respectively
(Figure 5A,C).

Since we revealed that GF showed its pharmacological properties via regulation of
hepatic SIRT1 and its related proteins, we further validated its pharmacological functions
of GF in liver cell type-specific manners using HepG2 cells and LX-2 cells which are well
corresponded to the hepatocytes and HSCs, respectively. First, we verified chronic oxidative
stress depleted hepatocyte cellular levels of SIRT1 in H2O2 incubation HepG2 cells of 24 h
experiment, not 6 h by applications of Western blot analysis and IHC analysis (p < 0.001
in Figure 6A,B,D,E). The IHC against 4-HNE analysis well supported the above results
(p < 0.001 in Figure 6C,E). Pre-treatment with GF with various doses significantly prevented
the depletion of SIRT1 in cellular protein levels of the chronic exposure against H2O2
condition (p < 0.001). Moreover, GF could block oxidative stress by the suppression of 4-
HNE (p < 0.001). Along with this finding, the cell death signals were also normalized by GF
by relieving apoptosis-related proteins, especially cytochrome c (p < 0.001 in Supplementary
Figure S5A–D). In the case of HSCs, we can explain GF efficiently worked decreases of
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ECMs including Collagen type 1, 3, and α-SMA by prevention of SIRT1 deteriorations in
TGF-β1 treated activated HSCs (p < 0.001 in Figure 7A–F and Supplementary Figure S6).

Previous studies well reported that geniposide which is an active compound from
GF in various liver diseases especially NASH using pre-clinical in vivo models [38,39]
and it also exerted to inhibit activations of HSCs [40], respectively. Pathophysiological
progression of liver fibrosis, HSCs are the main target of advance this disease or reversely
regression to the normal status [41]. Furthermore, GF also exerted antioxidant effects
against ischemia/reperfusion in liver tissue of mice model [42] and alcoholic liver injury.

Unfortunately, till nowadays, there is no therapeutic access to treat liver fibrosis in
the clinical area, so it is urgently sounded to develop efficacy guaranteed drugs based on
the explanations of underlying mechanisms. Based on the accumulations of numerous
clinical practice experiences, there are many possible candidates using herbal drugs to treat
liver fibrosis [43–45]. Additionally, it is also needed to consider a possible mechanism to
treat liver fibrosis based on the clear molecular levels of interactions. According to this,
we focused on the well-known epigenetic regulator, SIRT1, which is histone deacetylase
targeted to HSCs activation, hepatocyte oxidation, and inflammation, respectively [46,47].

In the present manuscript, we proved GF exerted to attenuate hepatic fibrosis against
TAA-induced mice model by reduction of hepatocyte oxidation, amelioration of hepatic
inflammation, decreases of ECM deposition through the liver tissue during fibrosis pro-
gression. Regarding the pharmacological effects of GF, we can conclude its actions as
follows; (1) GF showed strong antioxidant effects by enhancement of endogenous an-
tioxidant components in the liver tissue especially recoveries of SOD and GPx. (2) GF
could regulate Kupffer cell activation and their numbers by diminishing pro-inflammatory
cytokines. (3) GF strongly led to inactivate HSCs activation by evidence of amelioration
of ECM resolutions and pro-fibrogenic cytokines during liver fibrosis. The corresponded
mechanisms for the above properties of GF may regulate AMPK/SIRT1 signaling pathway
in hepatocytes and HSCs, especially focusing on the beneficial effects of SIRT1 in both
cell types.

Liver fibrosis is very a critical stage in the progression, which can decide to reserve
normal stage or its advanced pathological stage such as liver cirrhosis or HCC, respectively.
Nevertheless many trials to develop anti-hepatofibrosis therapeutics, there is no effective
way existed in the world. From our study, we believe that GF would be one of the potential
drug candidates to care for liver fibrosis. Therefore, further studies would be acquired to
prove the safety and toxicity for clinical uses in the upcoming future.
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