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The insect gut is frequently exposed to pathogenic threats and must not only
clear these potential infections, but also tolerate relatively high microbe
loads. In contrast to the mechanisms that eliminate pathogens, we currently
know less about the mechanisms of disease tolerance. We investigated how
well-described mechanisms that prevent, signal, control or repair damage
during infection contribute to the phenotype of disease tolerance. We estab-
lished enteric infections with the bacterial pathogen Pseudomonas entomophila
in transgenic lines of Drosophila melanogaster fruit flies affecting dcy (a major
component of the peritrophic matrix), upd3 (a cytokine-like molecule), irc
(a negative regulator of reactive oxygen species) and egfr1 (epithelial
growth factor receptor). Flies lacking dcy experienced the highest mortality,
while loss of function of either irc or upd3 reduced tolerance in both sexes.
The disruption of egfr1 resulted in a severe loss in tolerance in male flies
but had no substantial effect on the ability of female flies to tolerate
P. entomophila infection, despite carrying greater microbe loads than males.
Together, our findings provide evidence for the role of damage limitation
mechanisms in disease tolerance and highlight how sexual dimorphism in
these mechanisms could generate sex differences in infection outcomes.
1. Introduction
Many insects thrive on decomposing and decaying organic matter containing a
diversity of commensal and pathogenic microorganisms. Like most animals,
insects have evolved diverse responses to infection, including behavioural avoid-
ance of infection, physical barriers to pathogen entry and avariety of humoral and
cellular immune responses [1–3]. These responses have been particularly well
described in the fruit fly Drosophila melanogaster, where signalling pathways
such as IMD and Toll are recognized as major contributors to pathogen clearance
[1,2,4–7]. In addition to mechanisms that reduce pathogen burdens, it is increas-
ingly recognized that mechanisms promoting disease tolerance are equally
important during recovery to a healthy state [8–12]. Disease tolerance is defined
as the ability of hosts to maintain health despite harbouring relatively high
pathogen loads [9,10,13]. Implicit in this definition is that disease tolerance
cannot be measured by assessing host health or pathogen growth separately,
but is instead defined by their relationship [14]. While it is possible to compare
the relative health of an individual for a given pathogen burden (also known as
‘point tolerance’ or the ‘per-pathogen pathogenicity’ [15,16]) a more common
approach is to analyse how host health (often measured as mortality) changes
across a range of pathogen burdens, known as range tolerance [13,15]. Range
tolerance may present as a linear decline in health with increasing pathogen
burdens, where groups of hosts with steep negative slopes indicate lower toler-
ance to increasing pathogen numbers compared with groups with shallower
slopes [13,15]. Nonlinear declines of health are also known, reflecting potential
threshold dynamics in health deterioration with increasing pathogen numbers
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[17–19]. The phenotype of disease tolerance has been observed
in several species, including insects [17,20–23] rodents
[8,24,25], birds [26,27] and humans [11,18,28].

The mechanisms of pathogen clearance are well described
in many animal species [29], but we currently know less
about the mechanisms underlying disease tolerance. Given
that tolerance reflects the ability to maintain health indepen-
dently of pathogen clearance, we might expect tolerance
mechanisms to be related to processes such as detoxification,
reduction of inflammation, or tissue damage control and
cellular renewal [9,11,30]. Genome-wide association or tran-
scriptomic studies in Drosophila have highlighted potential
candidate genes underlying phenotypic variation in disease tol-
erance [21], but it remains unclear how many of these genes
interact with known mechanisms of immunity and recovery.

Furthermore, almost all candidate genes for disease
tolerance in Drosophila arise from systemic infections, where
pathogens are introduced directly into the body cavity of the
fly, resulting in a septic infection [21,31,32]. This leaves a gap
in our knowledge about disease tolerance during orally
acquired infections, which are especially relevant in the context
of the ecology of most insects, that consume decaying organic
matter containing a large diversity of potentially harmful
microorganisms [33–35]. The insect gut is therefore frequently
exposed to pathogenic threats and must be able not only to
detect and clear these potential infections, but also be able to
repair the resulting damage to gut tissues in order to tolerate
relatively high numbers of ingested pathogens.

Here, we aimed to specifically test how well-established
mechanisms that prevent, reduce or repair tissue damage
contribute to the phenotype of disease tolerance. The Droso-
phila gut is a compartmentalized tubular organ which is
structurally and functionally similar to the vertebrate intesti-
nal tract [2,36–38]. We can consider several stages comprising
gut defence in Drosophila (electronic supplementary material,
figure S1). The first involves the physical barrier of the gut
epithelia and the peritrophic matrix (PM), which is a layer of
chitin and glycoproteins that lines the insect midgut lumen.
The PM is functionally analogous to mammalian mucus mem-
brane in the digestive tract and acts as the first line of defence
against invading pathogens [2,39]. A major component of the
PM is drosocrystallin (dcy). Loss-of-function mutations in dcy
increase the permeability of the peritrophic matrix to larger
molecules and allow leakage of microbial cells, including
pathogens, into the haemolymph. Dcy-deficient flies therefore
exhibit increased susceptibility to oral bacterial infections,
and this has been shown in great detail during infection with
the gram-negative bactrerium Pseudomonas entomophila [2,40].

Another mode of defence during gut infections is the pro-
duction of reactive oxygen species (ROS) by the gut epithelia.
For example, in response to ingested Pseudomonas entomophila,
ROS production is induced by two NADPH enzymes- nox
(NADPH oxidase) and duox (dual oxidase), while irc (immune-
reactive catalase) negatively regulates ROS production once the
infection threat is controlled, which otherwise, would lead to
cytotoxic effects [2,41,42]. ROS production not only targets
pathogens directly, but also plays additional roles in triggering
signalling pathways that lead to the production of IMD- or
Toll-responsive antimicrobial peptides [42–45].

The final stage in gut defence is to repair the damage
caused during the infection. Damage-signalling cytokine-
like molecules upd3 are released from damaged cells which
trigger the Jak/Stat-pathway, stimulating the proliferation of
intestinal stem cells (ISCs) and their differentiation into enter-
ocytes (ECs) via egfr1 (epidermal growth factor receptor)
signalling [46–48]. Flies lacking Jak/Stat or Egfr are therefore
highly susceptible to bacterial infections due to their inability
to repair and renew damaged tissue [46,48,49].

To investigate how these mechanisms of damage preven-
tion (dcy), signalling (upd3) control (irc) and renewal (egfr)
contribute to disease tolerance during gut infections we
employed oral infections in Drosophila transgenic lines with
loss-of-function in each of these genes on a common genetic
background (w1118). We orally challenged these flies with
three infection doses ofPseudomonas entomophila and then quan-
tified their effects on survival, pathogen loads and disease
tolerance responses during the period of peak infection burden.
2. Material and methods
(a) Fly strains
The following fly stocks were obtained from the Bloomington
Stock Centre, Indiana: dcy (w1118; Mi{ET1}CrysMB08319; FB#26106)
[50], irc (w1118; Mi{ET1}IrcMB11278; FB#29191) [51], (#2079), upd3
(w1118; P{XP}upd3d11639; FB#19355) [52]. These lines were sub-
sequently isogenized by backcrossing onto the same w1118

background (VDRC stock# 60000) for at least 10 generations.
The egfrt1 mutant was a kind gift from Carla Saleh (Pasteur Insti-
tute, Paris) and previously isogenized to w1118 first by replacing
the chromosomes not containing the mutation using balancer
chromosomes and then by backcrossing at least 10 times to the
same VDRC w1118 line [53]. The VDRC w1118 line was included
as the control line in all experiments. All fly lines were main-
tained in plastic vials (12 ml) on a standard sugar-cornmeal
medium [54] at a constant temperature of 25°C (±2°C) and
on a 12 h : 12 h light : dark cycle. All experimental flies were
mated, 3–5-day-old males and females.

(b) Bacterial culture preparation
To test the impact of bacterial infection on fly survival, we used
the gram-negative bacteria Pseudomonas entomophila (a kind gift
from Ben Longdon in 2014), that was originally isolated from a
wild D. melanogaster [41] is able to establish infection in broad
range of insects and other invertebrates [55]. In flies, P. entomophila
infection mainly occurs in the intestinal epithelium and eventually
causes death [41]. To obtain bacterial cultures for oral exposure, we
inoculated frozen isogenic bacterial stock cultures stored at −80°C
onto fresh 15 ml LB broth (media composition) and incubated
overnight at 37°C with shaking at 120 r.p.m. (revolutions per
minute). The overnight cultures were diluted 1 : 100 into 500 ml
of fresh LB broth and incubated again at 30°C with shaking at
120 rpm. At the mid-log phase (OD600= 0.75), we harvested
the bacterial cells by centrifugation at 5000 r.p.m. for 15 min and
re-suspended the bacterial pellet in 5% sucrose [56]. The final
inoculum was adjusted to three different bacterial concentrations
or infection dose OD600= 10 (low dose), OD600= 25 (medium
dose) and OD600= 45 (high dose).

(c) Experimental design
Measuring tolerance as a linear decline in survival with increas-
ing pathogen growth requires collecting matching data on
survival and pathogen loads, ideally from the same individual.
However, this is challenging in the fly model because quantifying
microbe loads requires destructive sampling. Instead, we con-
sidered the vial as the unit of replication, and employed a
split-vial design (electronic supplementary material, figure S2).
In total, we set up 500 infection vials, split across 2 experimental
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blocks (n = 10 vials for OD600= 10 and OD600= 45; n = 30 vials for
OD600= 25, for each combination of sex (2) per fly line (5)—with
each vial containing 27–30 flies for all doses). Following oral
bacterial exposure (see below) each vial containing 25 flies of
each infection treatment, sex and fly line combination were
split into two vials for measuring (1) survival following infection
(15 flies per combination) and (2) internal bacterial load (10 flies
per combination) (electronic supplementary material, figure S2).
This split-vial design allowed us to use replicate-matched data
for both the proportion of flies surviving and the average bac-
terial load for each replicate vial to estimate the linear
relationship between fly survival and internal bacterial load for
each fly line.

(d) Oral infection and survival assay
Before infecting flies we prepared infection vials by pipetting
350 µl of standard agar (1 l triple distilled H2O, 20 g agar, 84 g
brown sugar, 7 ml Tegosept anti-fungal agent) onto the lids of
7 ml tubes (bijou vials) and allowed it to dry. Simultaneously,
we starved the experimental flies in 12 ml agar vials (1 l triple
distilled H2O, 20 g agar) for 4–5 h. Once the agar in the bijou
lids dried, we placed a filter disc (Whattmann-10) in the lid
and pipetted 80 µl of bacterial culture directly onto the filter
disc. For control (mock) infections, we replaced bacterial culture
with a 5% sucrose solution. We then orally exposed flies inside
the bijou vials for 18-hours and then transferred the flies onto
fresh vials containing standard sugar-cornmeal medium [56].
No flies died during the exposure period. Following this
exposure period, flies were checked for survival every 3–6 h
(days 1–3) and then every 12 h until 13 days following the
exposure period. During the survival assay, live flies were
tipped into vials with fresh medium every 3 days.

(e) Bacterial load measurement
To test whether variation in mortality of experimental flies after
P. entomophila infection is explained by the ability to clear infection,
we measured bacterial load using 3–5-day-old flies (w1118 and
transgenic flies) following enteric infection with either OD600= 10
(low dose), OD600= 25 (medium dose) or OD600= 45 (high dose)
of P. entomophila. For OD600= 25 (mediumdose), wemeasured bac-
terial load at three timepoints (immediately after oral exposure
0–15 min, 24 h and 96 h) following P. entomophila infection, while
other doses CFUs were only measured at 24 h following the infec-
tion period. To confirm oral bacterial infection, we thoroughly
surface-sterilized flies (group of 3) with 70% ethanol for 30–60 s
and then rinsed twice with sterile distilled water. We plated the
second wash on LB agar plates and incubated overnight at 30°C
to confirm that surface bacteria were successfully removed after
alcohol sterilization. We transferred flies onto 1.5 ml micro centri-
fuge tubes and homogenized using a motorized pestle for
approximately 30–60 s in 100 µl LB broth (n = 30 homogenates
per sex per infection treatment per fly line). We performed serial
dilution of each homogenate up to 10−6-fold and added 4 µl ali-
quot on an LB agar plate. After this, we incubated the plate
overnight for 18-h at 30°C and counted the resultant bacterial colo-
nies manually. We note that mock-infected control fly
homogenates did not produce any colonies on LB agar plates [56].
3. Statistics
(a) Survival following oral infection
We analysed survival data using a mixed effects Cox model
using the R package ‘coxme’ [57]. We specified the model
as: survival∼fly line × treatment × sex + (1|vials/block), with
‘fly line’, ‘treatment’ and ‘sex’ and their interactions as fixed
effects, and ‘vials’ nested in ‘block’ as a random effect for
w1118 and flies deficient of damage prevention and repair
mechanisms.

(b) Internal bacterial load
We found that residuals of bacterial load data were non-
normally distributed when tested using Shapiro–Wilks’s test.
Hence, we first log-transformed the data and then confirmed
that the log-transformed residuals were still non-normally
distributed. We analysed the log-transformed data, using a
generalized linear model best fitted to gamma distribution,
with ‘fly line’ and ‘sex’ as a fixed effect and ‘vials’ as random
effect. Subsequently, for pairwise contrasts (i.e. comparing
the changes in bacterial load for each fly line relative to the
w1118 across males and females following oral P. entomophila
infection) we used a Kruskal–Wallis test (non-parametric pair-
wise comparisons using Wilcoxon method).

(c) Measuring disease tolerance
Finally, to understand how damage-signalling and repair
mechanisms affect disease tolerance in males and females
during oral P. entomophila infection, we analysed the linear
relationship between fly survival against bacterial load
(measured at 24 h, as this was the peak microbe load) by fit-
ting linear models [8,10,17,19,22,58]. We assessed differences
in disease tolerance (fly survival with increasing bacterial
load) by fitting ‘fly line’ and ‘sex’ as categorical fixed effects,
‘average bacterial load (log10)’ as a continuous covariate, and
their interactions as fixed effects. Significant interaction
effects between fly line and bacterial load would indicate
that the slope of the relationship between fly survival and
load varies between fly lines, that is, the tolerance response
differs between lines. Because our interest was to quantify
the effect of damage prevention and repair mechanisms on
disease tolerance, we compared the slope estimates of each
of the transgenic lines with the slope of w1118 line using a
pairwise comparison (F-test).
4. Results
(a) Flies lacking dcy are more susceptible to oral

Pseudomonas entomophila infections than those
lacking components that minimize, signal or repair
damage

Following oral infection with three different doses of Pseudomo-
nas entomophila, flies with disrupted components of damage
prevention (dcy), signalling (upd3), renewal (egfr1) and regu-
lation (irc), were all significantly more susceptible to oral
P. entomophila infections compared to w1118 flies (figure 1; elec-
tronic supplementary material, table S1; figure 1a for infection
dose OD600= 25; figure 1b for infection dose OD600= 10;
figure 1c for infection dose OD600= 45). Among these lines,
dcy knockouts were particularly susceptible to infection, even
at the lowest dose of OD600= 10 (figure 1; see electronic
supplementary material, figure S3 and table S2 for hazard
ratios). The effect of each gene disruption on the survival of
flies following infection was similar in males and females
(fly line × sex × treatment interaction = non-significant; elec-
tronic supplementary material, table S1), compared to control
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w1118 flies at all doses (figure 1; electronic supplementary
material, table S1).
(b) Both w1118 and flies with disrupted tissue damage
prevention and repair mechanisms show sex
differences in bacterial load during oral infections

The higher susceptibility of all transgenic flies to oral bacterial
exposure could either be caused by their inability to supress the
bacterial growth or due to their inability to tolerate the damage
inflicted during oral infection. To distinguish between these
mechanisms, we first quantified internal bacterial loads at
15 min, 24 h and 96 h following the overnight oral exposure
period to OD600= 25 of P. entomophila. We observed a peak in
microbe loads at 24 h post-infection in all fly lines (see elec-
tronic supplementary material, figure S4 and table S3) at this
dose, and all fly lines showed sex differences at this timepoint
(figure 2; electronic supplementary material, figure S4 and
table S3), though by 96 h following oral infection this sex
difference was no longer present in flies lacking upd3 or egfr
expression (electronic supplementary material, figure S4
and table S3). However, it is important to note that by 96 h
following the exposure, a considerable fraction of flies had
experienced mortality (figure 1), and bacterial loads were
necessarily only measured in flies able to mount a successful
immune response.

Focusing only on the peak microbe load at 24 h following
the end of the exposure period, we observed sex differences
in microbe load in low OD600= 10 and medium dose
OD600 = 25, but not at the higher dose of OD600 = 45
(figure 2; electronic supplementary material, table S4). How-
ever, while the magnitude of sex differences was similar for
all lines at OD600 = 10, at OD600= 25 the magnitude of the
sex differences in microbe loads depended on the fly line
(electronic supplementary material, table S4; line-by-sex
interaction p < 0.001). It was also notable that some w1118

flies and some with disrupted irc exposed to OD600= 10
showed complete clearance of infection after 24 h (figure 2).
Analysing microbe load at OD600= 10 data including or
removing these flies did not yield qualitatively different
results (electronic supplementary material, table S5). Flies
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lacking irc expression exhibited levels of bacterial load similar
to the w1118 flies when infected with OD10, but showed lower
bacterial load relative to w1118 flies at OD600= 25 and OD600=
45 (figure 2; electronic supplementary material, table S3).
(c) Damage repair mechanisms mediate sex differences
in disease tolerance during oral bacterial
Pseudomonas entomophila infections

While some of the variation in survival between fly lines
(figure 1) may be explained by variation in resistance—that
is, their ability to clear infection (figure 2)—some of that vari-
ation may also arise due to differences in tolerance. We were
therefore interested in measuring disease tolerance, where
the slope of the linear relationship of survival relative to peak
bacterial loads (measured at 24 h post-infection) reflects
the degree of tolerance: steep negative slopes indicate a rapid
mortality with increases in pathogen loads (low tolerance),
while less steep or flat slopes reflect relatively more tolerant
host [8,17,58,59].Whilewe carried out this analysis for all infec-
tion doses (electronic supplementary material, figure S5 and
table S6), here we focus on flies infected with the intermediate
dose (OD600= 25), as we had 30 replicate-pairedmeasurements
of survival and microbe loads, and therefore greater power to
estimate tolerance slopes relative to the extreme doses, where
only 10 replicates were performed for each line/sex/infection
combination.

At OD600 = 25, we found that the disruption of damage
prevention, signalling and repair genes resulted in reduced
tolerance, measured as the rate at which fly survival changed
with bacterial load relative to w1118 flies (figure 3; tables 1
and 2). The rate at the rate at which survival declined with
increasing microbe loads (tolerance), depended on the mech-
anisms of damage repair that was disrupted, and there were
also sex differences in these effects (figure 3b and table 1; sig-
nificant ‘line-by-sex-bacterial load’ interaction). For example,
both males and females lacking the major component of
the peritrophic matrix dcy showed significantly reduced sur-
vival, but did not show marked decrease in tolerance with
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Table 1. Summary of ANCOVA. To assess differences in infection tolerance (fly survival with increasing bacterial burden) following oral P. entomophila infection
with OD600 = 25 infection dose, after 24 h. We analysed ANCOVA and fitted ‘sex’ as categorical fixed effects, ‘average bacterial load’ as a continuous covariate
and their interactions as fixed effects for each of the fly lines (w1118 and flies lacking damage prevention and repair mechanisms). See electronic supplementary
material, table S6 for a full set of analyses on all three doses.

dose source d.f. sum of sq. F ratio p

OD-25 fly line 4 93.60 82.41 <0.001

sex 1 6.006 21.15 <0.001

bac. load 1 47.66 167.8 <0.001

fly line × sex 4 10.11 8.904 <0.001

fly line × bac. load 4 21.18 18.65 <0.001

sex × bac. load 1 1.552 5.468 0.02

fly line × sex × bac. load 4 5.357 4.716 0.001
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increasing microbe loads (figures 1 and 3). By contrast, flies
lacking the damage renewal mechanisms egfr1 showed sex
differences in disease tolerance (figure 3 and table 2; elec-
tronic supplementary material, table S7), as the disruption
of egfr1 resulted in males, but not females becoming less
tolerant of P. entomophila, showing a much steeper decline
in survival with increasing microbe loads compared with
females (figure 3). Notably, egfr1 males were less tolerant
than w1118 males despite harbouring comparable microbe
loads (figure 2).
5. Discussion
In the present work, we tested how mechanisms of damage
prevention (dcy), signalling (upd3) control (irc) and renewal



Table 2. Summary of pairwise comparisons (F-test) of linear slope estimates from linear reaction norm for w1118 flies and flies lacking damage prevention and
repair mechanisms.

sex fly line SSE F ratio p

female dcy versus w1118 7.32 4.85 0.03

egfr1 versus w1118 18.32 1.88 0.17

irc versus w1118 17.75 28.00 <0.001

upd3 versus w1118 18.33 29.79 <0.001

male dcy versus w1118 10.66 2.17 0.14

egfr1 versus w1118 29.07 21.41 <0.001

irc versus w1118 16.06 18.72 <0.001

upd3 versus w1118 24.87 27.01 <0.001
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(egfr) contribute to disease tolerance during enteric infection.
We present evidence that all these mechanisms contribute to
disease tolerance during bacterial gut infection, and that
some of these effects are sexually dimorphic. Previous tran-
scriptomic, genome-wide association (GWAS) or microarrays
studies have identified several candidate genes associated
with disease tolerance, including—CrebA, grainyhead and
debris buster, dFOXO [21,31,32,60]. However, all this work has
focused on flies infected systemically by directly injecting bac-
teria into the fly. Here, we investigated tolerance during the
natural oral route of infection, and we took a more targeted
approach to specifically investigate how some of the well-
described tissue damage prevention and repair mechanisms
affect disease tolerance during enteric bacterial infections.

Though repairing infection-damage is crucial to fly survi-
val, we found that flies lacking damage-preventing (dcy) are
particularly susceptible to oral infections compared to those
lacking components that minimize, signal or repair damage.
In other words, preventing damage is clearly preferable to
repairing damage from the perspective of fly survival. This
result is consistent with previous work showing that loss-
of-function in dcy increases the peritrophic matrix width
making the gut leaky and compromising gut barrier function
during oral infections with P. entomophila [2,50,61–63]. We
also found increased bacterial loads relative to the w1118 con-
trol line, measured after 24 h following infection in both male
and female dcy knockouts. This is likely because of the com-
bination of leaky gut and pore-forming toxin produced by
P. entomophila [2] resulting in higher bacterial growth in the
fly haemolymph.

In the case of upd3-knockout flies, we found reduced sur-
vival and higher bacterial loads compared to w1118 flies.
Previous work has shown that in response to P. entomophila
infections, excessive reactive oxygen species (ROS) produced
by host cells destroy the gut epithelia and block the gut repair
process [62,64,65]. The JNK and Hippo pathways are activated
in damaged enterocytes, which produce upd3, in turn activat-
ing the Jak/Stat pathway in intestinal stem cells. We found
that both male and female upd3 knockout flies showed
reduced tolerance and this is probably because in the absence
of upd3 released from damaged cells the Jak/Stat-pathway
activation is reduced, which is further necessary for intestinal
stem cell proliferation and differentiation into enterocytes,
together renew the damaged tissues [2,36,62]. We also
found that functional disruption of irc results in lower bac-
terial loads. This effect might be expected because irc is a
negative regulator of ROS [2], and higher ROS levels would
lead to improved bacterial clearance.

Regarding the effects of these damage limitation mechan-
isms on disease tolerance, overall, we found that both male
and female w1118 flies were quite tolerant of enteric bacterial
infections (reflected in their relatively flat tolerance slopes;
figure 3 and table 2), while disrupting most damage preven-
tion and repair mechanism lowered disease tolerance (decline
in slopes relative to w1118). While we found reduced tolerance
in all knockout lines, disrupting some components of damage
limitation had particularly severe effects on disease tolerance.
Significant reductions in disease tolerance were observed in
flies with disrupted irc and upd3, and in these fly lines the
effect was comparable in both sexes. Irc-deficient flies are
unable to regulate ROS levels which would lead to increased
cytotoxic effects [2,42] while upd3 cytokine molecules are
important for the activation of the Jak/Stat pathway [46,49].
In the case of dcy-knockout flies, survival did not deteriorate
much further, possibly because it was already too poor
to worsen further (figure 3). It is important to emphasize
that all tolerance analyses were carried out using data on
microbe loads measured at 24 h, and therefore is necessarily
biased to individuals that were able to survive past this
timepoint, although survival at 24 h post-infection was still
considerably high.

We observed the fastest decline in tolerance in male flies
lacking egfr1, but the disease tolerance of female egfr1 knock-
outs appeared unaffected. This sex difference in tolerance
may arise as the result of sex differences in gut physiology
and repair. Recent work has demonstrated that during oral
Ecc15 infection, males showed significantly lower gut intesti-
nal stem cells in response to infection, while female had
higher intestinal stem cells and were resistant to infection
and other stress [66]. The differentiation and proliferation of
intestinal stem cells via Jak/Stat signalling into enterocytes
via egfr is indispensable for tissue damage renewal. Loss of
egfr1 signalling might therefore be felt more severely in
males than in females, explaining why male but not female
egfr1 knockouts showed a severe decrease in disease toler-
ance. To date, only a small proportion of studies have
compared sex differences in intestinal immunity, with the
majority of work focusing on one particular sex, usually
females [47,66–68].

Another possibility for the observed sex difference in
damage repair process, might relate to gut-plasticity such as
gut remodelling. For instance, females of mammals such as
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mice extensively remodel their guts, increasing both diges-
tive and absorptive capacity depending on the nutritional
demands of lactation [69]. The remodelling of the gut might
be one of the possible driving factors for dimorphism in
gut immunity, since males and females differ in their nutri-
tional needs [68]. Studies using Drosophila have shown that
males and females can make different diet or nutritional
choices in accordance with their reproduction role and
demand [70] and the Drosophila midgut plastically resizes in
response to changes in dietary sugar and yeast [71]. Whether
gut remodelling and nutritional choice-demand causes sex
differences in damage repair process during disease tolerance
remains a question for future research. This also highlights
a potential limitation of the current study, as we did not
measure if males and females have different feeding rates
or if disruption of the genes in focus resulted in differences
in feeding rates, which could affect the likelihood of pathogen
acquisition and infection progression. It is possible that some
of the variation in observe in tolerance could arise by small
differences in pathogen intake during feeding.
0220837
6. Concluding remarks
Although host mechanisms of immune-mediated clearance are
key for pathogen defence and elimination, there is an increas-
ing appreciation that additional defence mechanisms which
prevent, signal, repair or renew the extent of tissue damage
are also key to infection outcomes by promoting disease toler-
ance [30,72]. Tissue damage repair mechanisms that promote
disease tolerance are interesting from a therapeutic perspective
[9,10,73]. For instance, in mice, mechanisms that prevent or
repair damage have been shown to confer disease tolerance
duringmalarial Plasmodium infection and also during co-infec-
tions by pneumonia causing bacteria (Legionella pneumophila)
and influenza virus [74,75]. Understanding how tissue
damage prevention and repair mechanisms contribute to dis-
ease tolerance may also help explain how other arthropods
are able to vector bacterial and viral infectionswithout substan-
tial health loss [22,76,77]. In summary, our results show that the
disruption of tissue damage repair processes resulted in severe
loss of disease tolerance and highlight how sex differences
in some damage repair mechanisms could generate sexual
dimorphism in gut immunity.
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