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Background. Proper management of hyperkalemia that leads to fatal cardiac arrhythmia has become more important because of the
increased prevalence of hyperkalemia-prone diseases. Although T-wave changes in hyperkalemia are well known, their usefulness
is debatable. We evaluated how well T-wave-based features of electrocardiograms (ECGs) are correlated with estimated serum
potassium levels using ECG data from real-world clinical practice. Methods. We collected ECGs from a local ECG repository
(MUSE™) from 1994 to 2017 and extracted the ECG waveforms. Of about 1 million reports, 124,238 were conducted within 5 minutes
before or after blood collection for serum potassium estimation. We randomly selected 500 ECGs and two evaluators measured
the amplitude (T-amp) and right slope of the T-wave (T-right slope) on five lead waveforms (V3, V4, V5, V6, and II). Linear
correlations of T-amp, T-right slope, and their normalized feature (T-norm) with serum potassium levels were evaluated using
Pearson correlation coeflicient analysis. Results. Pearson correlation coeflicients for T-wave-based features with serum potassium
between the two evaluators were 0.99 for T-amp and 0.97 for T-right slope. The coefficient for the association between T-amp, T-
right slope, and T-norm, and serum potassium ranged from -0.22 to 0.02. In the normal ECG subgroup (normal ECG or otherwise
normal ECG), there was no correlation between T-wave-based features and serum potassium level. Conclusions. T-wave-based

features were not correlated with serum potassium level, and their use in real clinical practice is currently limited.

1. Introduction

Hyperkalemia is an electrolyte derangement that can lead
to fatal cardiac arrhythmia. Proper management of hyper-
kalemia has become more important because of the increased
prevalence of hyperkalemia-prone diseases, such as diabetes
mellitus, coronary artery disease, and chronic kidney disease
[1]. Hyperkalemia and hypokalemia or fluctuations in potas-
sium levels are associated with an increased risk of mortality
and life-threatening arrhythmias [2-6]. Moreover, morbidity,
hospitalization, and death can follow even minor changes in
potassium level in patients with renal or cardiac disease [1].
Many of the key drugs used for disease treatment
alter serum potassium levels. Medications targeted at the

renin-angiotensin-aldosterone system have been the main-
stay of treatment for cardiovascular disease or for the preven-
tion of chronic kidney disease progression. The Eighth Joint
National Committee guidelines recommend aldosterone
receptor blockers as key drugs for secondary prevention
of heart failure because aldosterone antagonists can reduce
mortality due to heart failure [7, 8]. However, it is ironic
that the use of aldosterone antagonists increases mortality
due to hyperkalemia, which emphasizes the importance of
proper management of hyperkalemia [9]. Non-steroidal anti-
inflammatory drugs are other medications that cause severe
hyperkalemia but are administered without proper electrolyte
level monitoring. In addition, other risks are associated with
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potassium-rich foods, which can often be fatal in patients
with end-stage renal disease.

Alterations in electrocardiogram (ECG) patterns are
known to be directly associated with serum potassium levels
[10, 11]. Mild to moderate hyperkalemia can lead to PR
interval prolongation and the development of peak T-waves.
Severe hyperkalemia can cause the QRS complex to widen.
Flattened or inverted T-waves, a U wave, ST depression, and
awide PR interval are observed in patients with hypokalemia.
Because of prolonged ventricular repolarization, a prominent
U wave occurs, or a prolonged QT interval can be observed
when U waves are superimposed on a T-wave.

Changes in ECG patterns due to an elevated potassium
level are clear in the experimental setting. However, many
studies have reported that these patterns are not reliable
clinically [12]. Some previous studies have reported that
the performance of potassium level estimation using ECG
information by physicians was poor. The sensitivities of
hyperkalemia detection by two physicians were 0.43 and
0.34 [13]; even when subjects had moderate to severe hyper-
kalemia (potassium level >6.5 mmol/L), the sensitivities were
only 0.62 and 0.55. According to another retrospective review,
T-wave changes assessed by a cardiologist were also not well
correlated with serum potassium level, and most T-wave
changes were nonspecific [12].

Based on known T-wave patterns, however, other stud-
ies have attempted to determine potassium levels using
machine learning [14-16]. According to these studies involv-
ing patients undergoing hemodialysis, single-lead ECG data
(V3, V4, or V5) are as precise as 12-lead ECG data with
reported absolute errors of 0.5+0.42 and 0.46+0.39 mmol/L
[15,16], respectively. These studies suggest that ECG patterns,
especially the shape of the T-wave, could be helpful in deter-
mining serum potassium levels in clinical settings. However,
these studies have the limitation that the model that was
employed was developed and validated with a limited number
of patients (26 patients for the development and 19 for the
validation), and the subjects were restricted to patients on
hemodialysis.

Moreover, to the best of our knowledge, no study has
directly evaluated how well T-wave-based features correlate
with serum potassium level in the real clinical practice
setting. In the present study, we conducted quantitative
evaluation of ECGs captured in real-world clinical practice
to determine whether T-wave-based features are useful for
estimating serum potassium level in general clinical practice.

2. Methods

The requirement for informed consent was waived and
the study was approved by the Ajou University Hospital
Institutional Review Board (IRB) (IRB number AJIRB-MED-
MDB-17-273). We only used de-identified data and analyzed
the information retrospectively.

2.1. Data Source. We used a clinical research database that
included patient demographics, diagnoses, drug prescrip-
tions, and laboratory test results extracted from the electronic
health records of a tertiary teaching hospital in Korea (Ajou
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University Hospital) between September 1994 and December
2017 (Figure 1). The database included 134,011,566 prescrip-
tions, 32,956,672 diagnoses, and 278,011,281 laboratory test
results from 2,940,379 patients.

The ECG typically consists of alphanumeric values
and waveform graphs (Figure 2(a)). Alphanumeric values
included demographics, the patient identification number,
date of electrocardiography, and ECG parameters (RR, QT
intervals, etc.). Waveform graphs are time series data rep-
resenting changes in electronic signals from the heart over
a few seconds. After all data from the ECGs, which were
stored in PDF format in the local ECG repository (MUSE™
system), were collected, the part containing the waveform was
extracted and transformed to SVG format [17]. Subsequently,
we converted the x- and y-coordinates of vector images
into an equidistant time series (500 data points per second,
500 Hz) via linear interpolation to retain a data format similar
to that obtained from the sensor directly.

Of about 1 million collected ECGs, 124,238 were obtained
within 5 minutes (time window) before or after blood collec-
tion for serum potassium estimation. Of these, we randomly
selected 500 ECGs for manual evaluation.

2.2. Data Preprocessing. A web-based tool was developed to
measure amplitude (T-amp; the difference in millivolts (mV)
between the peak and the end of the T-wave) and the right
slope of the T-wave (T-right slope; the slope at the steepest
part of the descending portion of the T wave). This tool
helped us evaluate and efficiently manage the measurement
results of each ECG signal (Figure 2(b)) quickly. The tool
displays a 3-second ECG waveform, allowing the user to
measure T-amp and T-right slope. Regarding the 500 selected
ECGs, T-amp and T-right slope on the waveforms of five leads
(V3, V4, V5, V6, and II) were manually and independently
measured by two evaluators using this tool.

Waveforms in the ECGs usually included two or three
beats. Evaluators selected the beat of the baseline that was
most stable and had less noise. T-amp and T-right slope
were measured on selected beats. Measurements of differ-
ences between the two evaluators that were greater than
mean+2xstandard deviation (SD) or less than mean-2xSD
were excluded from further analysis (Figures 2(c) and 2(d)).
The degree of correlation between the two evaluators was
determined by Pearson correlation coefficient analysis.

2.3. Feature Extraction. We excluded ECGs, which had dis-
crepancies in their interpretation between the two evaluators
in one or more leads. T-amp and T-right slope values
measured by the two evaluators were averaged and used as
final values of T-amp and T-right slope of corresponding
ECGs. According to the following formula, which was used
to normalize features for estimating serum potassium level in
a study by Zachi et al., [16] two features were normalized and
integrated into one feature:

T — right slope
\T —amp

First, we measured or calculated the three features (T-
amp, T-right slope, and T-norm) in each lead of the ECGs.

T — norm =

@
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FIGURE 1: Overview of the study process. Three hundred and thirty manually reviewed electrocardiograms (ECGs) were used to evaluate
the linear correlation between T-wave features and serum potassium level. Two hundred and thirty-one ECGs were independently analyzed
to exclude bias due to abnormal heart rhythm. ECG: electrocardiogram; no.: number; M, million; EHR: electronic health record.

Second, the lead that had the most prominent T-wave (the
largest T-amp) among V3, V4, and V6, and II, named Pt, was
selected and used as the representative feature of each ECG.

2.4. Feature Evaluation and Statistical Analysis. One-way
analysis of variance and Post-Hoc Tukey’s test were con-
ducted to evaluate the difference between measured T-amp
and T-right slope values between different leads. A p-value
<0.05 was considered significant.

We evaluated the linear correlation between T-wave
features and the actual serum potassium level using Pearson
correlation coeflicient analysis. To exclude the effect of
underlying diseases, which can affect cardiac rhythm, we
conducted subgroup analysis in which only ECG results
showing normal ECG (n=191) or otherwise normal ECG
(n=40)—the normal ECG subgroup—was included. The
detailed interpretation lists of otherwise normal ECG and the
count per interpretation are provided in Table S1.

MS-SQL 2017 (Microsoft Corp.) was used for data man-
agement, and R (version 3.2.2, Foundation for Statistical

Computing) was used for data preprocessing and statistical
analysis.

3. Results

3.1. Datasets for Analysis. T-amp and T-right slope from 500
ECGs were measured by two evaluators. The measurements
between two evaluators were well correlated in terms of
both T-amp and T-right, as shown in Figures 2(c) and 2(d).
After excluding ECGs that were discrepant between the two
evaluators, data from 330 ECGs (including 231 ECGs from
the normal ECG subgroup) were finally selected. The baseline
characteristics of the subjects are shown in Table 1.

Absolute values of measured T-amp and T-right slope
were highest in lead V3 and lowest in lead II for both the
total number of subjects (n=330) and for the normal ECG
subgroup (n=231). The values were significantly higher in
precordial lead than in lead II in both groups (p<0.001).

3.2. Linear Correlation between T-Wave-Based Features and
the Serum Potassium Level. Pearson correlation coefficients
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FIGURE 2: Process and quality evaluation of T-amp and T-right slope measurements. Original ECGs are stored in PDF format (a). ECG
waveforms have been extracted and evaluated using web-based evaluation tools (b). Measurements of T-amp (c) and T-right slope (d) between
the two evaluators are well correlated. Measurements that have a discrepancy between the two evaluators (marked with orange color) are
excluded from further analysis. T-amp: amplitude; T-right slope: right slope of T-waves.

TABLE 1: Baseline characteristics of the subjects.

Variable Total Normal ECG subgroup
No. of patients, n 330 231
Age (years), mean+SD 47.6x17.2 45.9+15.1
Male sex, n (%) 140 (42.4) 89 (38.5)
Potassium level (mmol/L), mean+SD 4.17+0.39 4.35+0.59
No. of normal sinus rhythms, n (%) 254 (77.0) 191 (82.7)
No. of normal ECG, n (%) 231(70.0) 231 (100.0)
Amplitude of T-wave (mV), mean+SD
Lead I 0.23+0.11 0.24+0.10
Lead V3 0.43+0.24 0.42+0.23
Lead V4 0.40+0.22 0.39+0.20
Lead V5 0.38+0.19 0.37+0.17
Lead V6 0.32+0.16 0.32+0.14
Gradient of T-wave (mV/s), mean+SD
Lead I -3.06+1.51 -3.1+£1.39
Lead V3 -5.13+3.18 -5.02+3.07
Lead V4 -5.02+3.13 -4.93+2.88
Lead V5 -4.81+2.78 -4.78+2.49
Lead V6 -4.21+2.30 -4.24+2.07

SD: standard deviation; no.: number; ECG: electrocardiogram. #Normal ECG or otherwise normal ECG.
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TABLE 2: Pearson correlation coefficients between T-wave features from each lead and serum potassium level.

Group Feature II V3 V4 V5 Vo6 Pt
T-amp 0.08 0.18 0.17 0.17 0.13 0.19

Total T-right slope -0.02 -0.12 -0.10 -0.12 -0.07 -0.11
T-norm -0.14 -0.19 -0.21 -0.21 -0.18 -0.22
T-amp 0.05 0.15 0.15 0.15 0.11 0.16

Normal ECG subgroup+ T-right slope -0.00 -0.13 -0.10 -0.11 -0.07 -0.12
T-norm -0.08 -0.15 -0.16 -0.16 -0.13 -0.17

T-amp: amplitude; T-right slope: right slope of the T-wave; T-norm: normalized feature. *Normal ECG or otherwise normal ECG.

of T-amp with the serum potassium level in all the leads
indicated a positive correlation but the coefficient values were
low and ranged from 0.08 to 0.19 (Table 2). In contrast, T-
right slope and T-norm had a negative correlation but their
coefficient values were also low (T-right slope: range -0.11
to -0.02; T-norm: range -0.22 to -0.14). Correlation degrees
were generally the lowest at lead II and the highest at Pt, the
lead that had the most prominent T-wave. However, Pt also
showed a poor linear correlation with the serum potassium
level (Figures 3(a)-3(f)). Lead V3 was mainly selected (53.3%)
for Pt, followed by leads V5 (15.8%), V4 (13.9%), V6 (13.6%),
and II (0.03%).

3.3. Linear Correlation in Normal ECG Subgroup. After
excluding abnormal ECGs (only normal ECGs or otherwise
normal ECGs), the results showed the same pattern as
those from total number of ECGs selected; similar to the
results in the total number of ECGs, the Pearson correlation
coeflicients of T-amp were positive and those of T-right slope
and T-norm were negative in all leads. However, there was
no correlation between T-wave-based features and serum
potassium level in this subgroup as coefficient values ranged
from -0.17 to 0.16 (Figure 3 and Table 2).

4. Discussion

This study directly evaluated the degree of correlation
between blood potassium concentration and T-wave-based
features of ECGs. Manually reviewed T-wave-based features
of ECGs conducted in daily practice did not correlate with
serum potassium level. Moreover, in the normal ECG sub-
group, we did not detect any correlation.

In this study, the T-amp and T-right slope from the
waveforms of five leads (V3, V4, V5, V6, and II) were selected
and evaluated. The waveforms of the four leads (V3-V6)
were used in previous studies [16] for estimating the serum
potassium level. Lead II is most popularly used in patient
monitoring. Thus, we aimed to evaluate the possibility of
applying the features to a clinical setting where patients are
monitored, such as in an intensive care unit.

The pattern of values, which was extracted as features (T-
amp and T-right slope from lead II, V3, V4, V5, and V6),
showed well-known patterns. It is known that the amplitude
of T wave is maximal in lead V3 [18]. In addition, T wave
in the precordial leads (<10 mm or <1 mV) is usually greater
than that in the limb (<5mm or 0.5 mV) leads [18]. In our

results, only less than 2% in the total patient group (6 in lead
II, 5 in lead V3, 5 in lead V4, 1 in lead V5, and 0 in lead V6
among 330 ECGs) and the normal ECG subgroup (2 in lead
II, 4 in lead V3, 1in lead V4, 0 in lead V5, and 0 in lead V6
among 231 normal ECGs) exceeded 0.5mV in the limb lead
or 1 mV in the precordial leads, respectively. Furthermore, the
average value of measured T-amp was highest in V3 and that
of precordial leads was significantly higher than that of the
limb lead (lead IT) in one-way analysis of variance and in Post-
Hoc Tukey’s test (p<0.001). It could signify that the extracted
values are reliable and could be used for further analysis.

Similar to the findings of previous research conducted
in clinical settings, T-wave-based features had no clear
relationship with serum potassium level. According to a prior
study, changes in ECG pattern, which are suggestive of hyper-
kalemia, were noted in only 46% of patients whose potassium
level ranged between 6 and 9.3 mEq/L [19]. Several other
case reports also supported the finding that significant ECG
changes are not related to markedly elevated potassium levels
[20, 21]. In addition, patients we meet in daily practice have
diverse confounding factors, such as medications, comorbidi-
ties, and demographics. Because these confounding factors
might alter ECG data, they make discovering patterns that are
clearly associated with serum potassium level more difficult.
Because of this, the sensitivities of detecting hyperkalemia by
two physicians in an emergency department were very low at
0.43 and 0.34 [13].

In the subgroup analysis of normal ECG or otherwise
normal ECG, the results showed the same pattern of no
correlation between T-wave features and serum potassium
level. We believe that this cannot be due to contamination by
abnormal ECGs. Although we selectively applied the serum
potassium level determination model to normal ECG, it
might be difficult to get reliable performance.

Zachi et al. also attempted to estimate serum potassium
level based on T-wave features, and the estimation perfor-
mance decreased when the developed model was applied to
another independent test group [16]. Higher performance
was observed when the estimation model was applied to
the patients who were used for model development but at
different time points. This finding suggests that unique ECG
patterns are caused by different characteristics of each patient;
therefore, a personalized model rather than one that can be
generally applied should be developed.

The deep learning approach could be an alternative
model. Deep learning, a machine learning model, has
emerged as the most popular design in various applications,
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FIGURE 3: Linear correlations between features of T-norm and serum potassium level. There is no linear correlation in all leads: II (a), V3
(b), V4 (c), V5 (d), V6 (e), and the lead with the most prominent T-wave (f). Data of the normal ECG subgroup (normal ECG or otherwise
normal ECG) is marked with orange color and their correlation coeflicients are marked with ‘+> Absolutely no correlation was found in all

leads. T-norm: normalized feature.

including computer vision and natural language processing.
In particular, convolutional neural networks can act as feature
extractors from data even in the absence of prior knowledge
of the domain [22], and the recurrent neural network model
identifies temporal dependencies in time series problems
[22]. Feature extraction and time dependencies can be
effectively captured by combining both models. If the deep
learning-based model is used, more diverse and complex
features can be extracted from ECG.

Our study has some limitations. First, T-amp and T-right
slope were measured manually rather than automatically
because there have been issues with determining the end
of the T-wave. Because the end of the T-wave transits very
slowly from around the signal, locating the end of the T-
wave is one of the most challenging issues in the evaluation

of the ECG waveform [23-25]. By having two independent
evaluators perform the measurements and then using only
accordant results, we attempted to ensure the reliability of our
results. Second, the length of the waveform used in the study
was short (about 3 seconds). Our data might be relatively
limited and less tolerant of noise or artifacts. Finally, we did
not consider other ECG patterns, such as QRS widening or P
wave flattening, which can also be observed in hyperkalemia.
However, T-wave change is known as the most representative
and earliest sign of hyperkalemia.

5. Conclusions

As shown by findings from previous research, our study also
showed that T-wave-based features were not correlated with
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serum potassium levels in real-world clinical practice in the
Korean population; even in the normal ECG subgroup, we
could not detect any correlation. Therefore, the use of these
features in the estimation of serum potassium level in real
clinical practice is very limited.

Data Availability

Data of the measurement of T-wave-based features used
to support the findings of this study are included in the
supplementary information file.
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