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Abstract

Background: Fermentation of xylose, the major component in hemicellulose, is essential for economic conversion
of lignocellulosic biomass to fuels and chemicals. The yeast Scheffersomyces stipitis (formerly known as Pichia stipitis)
has the highest known native capacity for xylose fermentation and possesses several genes for lignocellulose
bioconversion in its genome. Understanding the metabolism of this yeast at a global scale, by reconstructing the
genome scale metabolic model, is essential for manipulating its metabolic capabilities and for successful transfer of
its capabilities to other industrial microbes.

Results: We present a genome-scale metabolic model for Scheffersomyces stipitis, a native xylose utilizing yeast. The
model was reconstructed based on genome sequence annotation, detailed experimental investigation and known
yeast physiology. Macromolecular composition of Scheffersomyces stipitis biomass was estimated experimentally and
its ability to grow on different carbon, nitrogen, sulphur and phosphorus sources was determined by phenotype
microarrays. The compartmentalized model, developed based on an iterative procedure, accounted for 814 genes,
1371 reactions, and 971 metabolites. In silico computed growth rates were compared with high-throughput
phenotyping data and the model could predict the qualitative outcomes in 74% of substrates investigated. Model
simulations were used to identify the biosynthetic requirements for anaerobic growth of Scheffersomyces stipitis on
glucose and the results were validated with published literature. The bottlenecks in Scheffersomyces stipitis
metabolic network for xylose uptake and nucleotide cofactor recycling were identified by in silico flux variability
analysis. The scope of the model in enhancing the mechanistic understanding of microbial metabolism is
demonstrated by identifying a mechanism for mitochondrial respiration and oxidative phosphorylation.

Conclusion: The genome-scale metabolic model developed for Scheffersomyces stipitis successfully predicted
substrate utilization and anaerobic growth requirements. Useful insights were drawn on xylose metabolism,
cofactor recycling and mechanism of mitochondrial respiration from model simulations. These insights can be
applied for efficient xylose utilization and cofactor recycling in other industrial microorganisms. The developed
model forms a basis for rational analysis and design of Scheffersomyces stipitis metabolic network for the
production of fuels and chemicals from lignocellulosic biomass.

Keywords: Genome scale metabolic models, Scheffersomyces stipitis, Metabolic flux analysis, Xylose utilization, Anae-
robic growth

Background
Scheffersomyces stipitis (S. stipitis), formerly known as
Pichia stipitis [1], is a hemiascomycetous yeast, closely
related to several yeast endosymbionts of passalid beetles
that inhabit and decay white-rotted hardwood [2,3]. It

has the highest native capacity for xylose fermentation of
any known microbe [4,5]. Fed batch cultures of S. stipitis
produce around 47 g/l of ethanol with yields of 0.36 g/g
xylose at 30°C [4]. In addition to xylose, S. stipitis has the
capability to ferment sugars from hydrolysates with yields
equivalent to 80% of theoretical yield [6-8]. Auxotrophic
strains have been created and methods for high efficiency
transformation have been developed for S. stipitis [9,10].
Genetic tools based on a loxP/Cre recombination system
have been developed for functional genomics and
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metabolic engineering of this yeast [11]. The availability
of genetic tools and capability for fermentation of hydro-
lysates has made S. stipitis an attractive microorganism
for bioconversion of lignocellulose to fuels and chemicals.
S. stipitis has already been successfully engineered to pro-
duce lactic acid and xylitol [12,13]. However, S. stipitis
suffers from some drawbacks like lower fermentation
rates, lower tolerance to ethanol and absence of anaero-
bic growth [5,14,15].
As a parallel approach, xylose utilization pathway from

S. stipitis has been used to engineer xylose metabolism in
Saccharomyces cerevisiae. Successive cycles of metabolic
engineering have improved xylose utilization in recombi-
nant S. cerevisiae [16,17]. However, the ethanol productiv-
ity from xylose is still low. This has been attributed to: low
substrate affinity of recombinant enzymes [18]; cofactor
imbalance in the XR-XDH reactions [19,20]; low xylose
transport capacity [21,22]; and failure to recognize xylose
as a fermentable carbon source [23,24]. The holistic analy-
sis of metabolism in S. stipitis could provide useful insights
to identify shortcomings in S. stipitis and S. cerevisiae
metabolic networks.
The complete genome of S. stipitis has been sequenced

[25]. The functional annotation of the genome sequence
showed numerous genes for lignocellulose bioconversion
and systematic analysis of the genome sequence annota-
tion is necessary to obtain useful insights. Genome scale
metabolic models, which represent the link between the
genotype and phenotype of the organism, can be recon-
structed based on the genome sequence annotation and
relevant biochemical and physiological information. These
models have the ability to provide a holistic view of the
metabolism of an organism. Once experimentally vali-
dated, these models can be used to characterize the meta-
bolic resource allocation, generate experimentally testable
predictions of cellular phenotypes, elucidate metabolic
network evolution scenarios, design experiments that
most effectively reveal the genotype-phenotype relation-
ships, and design engineered microorganisms with desired
properties like overproduction of commercially valuable
chemicals [26-30]. Due to the genome wide-scale, these
models enable systematic assessment of how perturbations
in the metabolic network affect the organism as a whole
which may not be possible by analyzing a set of enzymes
or isolated pathways.
We have reported a framework for reconstruction of

genome scale metabolic model of S. stipitis [31]. In this
study, a genome scale metabolic model has been devel-
oped for S. stipitis based on the proposed framework and
a recently published protocol [32]. Experimental proce-
dure for the estimation of macromolecular composition
of S. stipitis was standardized and used to obtain the bio-
mass composition. Growth and non-growth associated
maintenance energy requirements were also estimated

from experimental data. The model was refined and
validated based on the ability of S. stipitis to grow on dif-
ferent carbon, nitrogen, sulphur and phosphorus sources.
In silico analysis of the model was used to identify bio-
synthetic requirements for anaerobic growth of S. stipitis
in glucose and to analyze xylose utilization capability in
S. stipitis. Model simulations were carried out to obtain
insights on the recycling of nucleotide cofactors and
mechanisms involved in mitochondrial respiration and
oxidative phosphorylation.

Results
Reconstruction of the genome scale metabolic model for
Scheffersomyces stipitis
An initial metabolic reconstruction for S. stipitis was
developed based on the protocol outlined in the methods
section (Figure 1). Biomass macromolecular composition
was experimentally determined. The constituents of bio-
mass and the fractional contribution of these constituents
to overall cellular biomass are summarized in Table 1.
The growth and non-growth associated maintenance
coefficient (GAM and NGAM) was estimated from
growth rate and substrate uptake rate data. The details of
the estimation are provided in the supplementary infor-
mation (Additional File 1). The initial metabolic network
consisted of 1167 reactions and this network was
expanded to 1371 reactions based on high-throughput
Biolog phenotyping data and metabolic gap analysis.

Characteristics of the reconstructed network
The characteristics of the reconstructed S. stipitis meta-
bolic network are detailed in Figure 2. The complete
reconstruction accounted for 814 open reading frames
(ORFs) and consisted of 1370 reactions and 644 unique
metabolites (Figure 2A). The details of the list of genes,
reactions, metabolites and the GPR associations in the
reconstruction are available as supplementary informa-
tion (Additional File 2). The functional classification of
the ORFs included in the reconstruction is summarized
in Figure 2B. The reactions in the model were assigned
to 57 different subsystems, organized into 8 groups. The
number of non-gene associated reactions in each of these
groups is shown in Figure 2C. The distribution of enzyme
classes in the model is shown in Figure 2D.
The basic capabilities of the in silico model to predict

quantitatively the aerobic growth on glucose was deter-
mined. A growth demand function was formulated based
on the estimated biomass composition detailing the
required metabolites in the appropriate ratios. This
demand function was used as the objective function for
flux balance analysis. The number of genes and reactions
essential for the production of biomass from a glucose
based minimal media was computed. The distribution of
essential reactions and essential genes among pathway
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groups is shown in Figure 3A and Figure 3B. The highest
number of essential genes and reaction where associated
with amino acid metabolism followed by nucleotide and
lipid metabolism. The list of essential reactions is

provided in supplementary information (Additional File
3). Capability to produce various amino acids from glu-
cose was analyzed using the genome scale metabolic
model and compared with that obtained with S. cerevisiae
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Figure 1 Iterative procedure for reconstruction of the genome scale metabolic network of Scheffersomyces stipitis.
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[33]. The theoretical yield of various amino acids on car-
bon mole basis is shown in Figure 3C. The yields
obtained were comparable between the two yeasts, indi-
cating the similarity in the biosynthetic networks for
amino acid synthesis.

Analysis of high-throughput substrate utilization
The in silico computations were compared with the high
throughput phenotyping data from Biolog’s Phenotype
microarray technology [34] (Figure 4). 339 out of the
379 substrates tested (190 for carbon, 95 for Nitrogen,
59 for Phosphorus and 35 for Sulphur sources) were
identified as data with sufficient confidence (Confidence
of the data was estimated as described in the methods
section) and were analyzed for consistency using the S.
stipitis model. The list of substrates, confidence levels of
data and model refinements are described in supple-
mentary information (Additional File 4). Growth on
substrates was simulated by fixing its specific uptake
rate at 5 mmol/gDCW/h under aerobic conditions
based on minimal media (Methods Section). The initial
metabolic network reconstruction could predict qualita-
tively the outcome of Biolog data with 56% accuracy

(189 in 339), but after network expansion and metabolic
gap analysis, overall prediction efficiency was consider-
ably improved to 74% (252 in 339) (Figure 4A). How-
ever, 14 disagreements (9 for carbon and 5 for nitrogen)
were observed (Figure 4B); of these 5 cases were com-
pared with experimental growth data available in litera-
ture for S. stipitis or related yeasts for corresponding
substrates (Figure 4C).
Biolog phenotyping results indicated that capric acid

and caproic acid cannot by utilized by S. stipitis as a
sole carbon source, but the model predicted growth.
However, it has been observed that capric, caproic and
other fatty acids were known to inhibit the growth of
S. stipitis [35,36] and other yeasts [37]. Since the inhibi-
tion mechanisms are not incorporated in the metabolic
model, the in silico computations predicted growth on
these substrates. In the case of nitrogen source utiliza-
tion, Biolog phenotyping results and experimental data
reported by [38,39] indicated growth on lysine as a sole
nitrogen source. However, the in silico predictions did
not predict growth as the pathway enzymes involved in
metabolism of lysine has not been identified in S. stipitis
genome. The in silico growth predictions for Biolog sub-
strates evaluated as low confidence data were also com-
pared with data available in literature for corresponding
substrates. Experimental data was available from litera-
ture [38,39] for 5 out of 40 low-confidence cases and
the model could correctly predict the utilization of these
substrates with 80% accuracy (4 cases)(Figure 4D).
Incorrect prediction for glucuronic acid was due to the
lack of homologs for pathway enzymes. The examples of
lysine and glucuronic acid utilization illustrate the cap-
ability of the model to pinpoint potential gaps in the
understanding of metabolism and to guide experimental
design.

Metabolic requirements for anaerobic growth of
Scheffersomyces stipitis
One drawback for using S. stipitis in industrial fermenta-
tion is its inability to grow under anaerobic conditions.
The model developed was used to analyze the require-
ments for anaerobic growth. The model was simulated
for anaerobic growth on a glucose based minimal media
by reducing the oxygen uptake rate to zero, with an
unconstrained uptake of sterols and unsaturated fatty
acids (which have a known biosynthetic requirement for
oxygen). No growth was predicted by the model simula-
tions under these conditions. Growth under anaerobic
conditions is a complex process. Several requirements
need to be met for growth including biosynthetic require-
ments for oxygen, energy requirements, redox balance
requirements and regulatory requirements.
While performing the model simulations, even though

sterol and unsaturated fatty acids were added there

Table 1 Macromolecular composition of S. stipitis
Biomass

Biomass Composition of Scheffersomyces stipitis

Metabolite mmol/
gDCW

Metabolite mmol/
gDCW

Amino Acids DNA

Aspartic Acid 0.1566 dAMP 0.0112

Threonine 0.1809 dTMP 0.0112

Serine 0.2330 dGMP 0.0084

Glutamic Acid 0.3190 dCMP 0.0084

Glycine 0.4724 RNA

Alanine 0.4735 AMP 0.0444

Cystine 0.0511 UMP 0.0522

Valine 0.2201 GMP 0.0361

Methionine 0.0559 CMP 0.0388

Iso-Leucine 0.1454 Lipids

Leucine 0.2451 Sterol (ergosterol) 0.0560

Tyrosine 0.0741 Phospholipids

Phenylalanine 0.1127 PhosphatidylInositol 0.0015

Histidine 0.1005 Phosphatidylethanolamine 0.0041

Lysine 0.2624 Phosphatidylcholine 0.0255

Arginine 0.1821 Carbohydrates

Tryptophan 0.0248 Glycogen 0.2714

Proline 0.1592 Trehalose 0.0760

Asparagine 0.1511 Glucan 0.6107

Glutamine 0.1817 Mannan 0.7156

Chitin 0.4528
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could be other metabolites or biomass constituents in
yeasts that requires oxygen for their biosynthesis. To
identify the biosynthetic requirements for anaerobic
growth, reaction insertion analysis was performed on
the model using the reference metabolic database KEGG
[40]. An initial set of metabolic reactions (802 reactions)
were compiled from the KEGG database that is made
up of only metabolites present in the model. These reac-
tions were then inserted one at a time to determine

their effect on growth under anaerobic conditions. Reac-
tions already present in the model were ignored. Single
reaction additions that resulted in a positive biomass
flux were identified. The list of reactions leading to a
positive biomass flux is summarized in Table 2. There
were 28 such reactions, 12 of these reactions directly
resulted in oxygen production. 10 reactions resulted in
oxygen production through the formation of H2O2

(either directly or through glutathione or pyridoxine)

Genome Characteristics

Genome Size 15.4 Mb

Total coding sequences 5841

In Silico Model Characteristics

Metabolic genes 814

Percentage of genome 14.4%

Metabolic reactions 1370

Gene associated 872

Non- gene associated 498

Exchange reactions 211

Metabolites(unique) 971(644)

Compartments 3(c, m, e)

Subsystems 57
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Figure 2 Characteristics of the genome scale metabolic network. A) Statistics. B) Functional classification of metabolic reactions in the
model. C) Functional classification of the non-gene associated metabolic reactions in the model. D) Functional classification of enzyme classes in
the model.
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and the remaining 6 reactions were selected for further
analysis. Four of these reactions involve phospholipids
and the stoichiometry of these reactions in the KEGG

database is different from the way lipid metabolism
reactions are represented in the metabolic model. The
remaining two reactions convert dihydroorotate to
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Type Prediction
(In 
vivo/in 
silico)

Network Expansion Gap 
Analysis

Before After
C-Source 
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Figure 4 Network expansion and metabolic gap analysis based on high-throughput substrate utilization data. A) Comparison of
experimental data from Biolog phenotype micro-arrays to model predictions across different substrate categories. Results are scored as + or -
meaning growth or no growth determined from in vivo/in silico data. The n represents that corresponding pathway could not be included in
the S. stipitis network due to unknown pathway enzymes. B) Improvement of prediction accuracy C) Comparison of incorrect predictions (+/-
and -/+ cases in (A)) with published experimental results. (D) Comparison of in silico predictions with published experimental results for the
Biolog substrates identified as low-confidence data. The Biolog data was considered as low confidence growth when the inference of growth/
no-growth was difficult from the absorbance measurements. In vivo1 from Biolog phenotyping, in vivo2 from literature.
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orotate. The URA1 gene from S. cerevisiae, which con-
verts dihydroortate to orotate with fumarate added to
the medium as electron acceptor, was reported to result
in enhanced anaerobic growth in S. stipitis [15]. This
serves as a validation of the model developed for S.
stipitis.
Model simulations were also carried out with xylose as

the carbon source. The gene candidate identified for
anaerobic growth on glucose resulted in a very low bio-
mass flux. This flux was observed when xylose reductase
activity was solely dependent on NADH and there was
no flux when xylose reductase enzyme used NAPDH or a
ratio of NADH and NADPH. S. stipitis strain with URA1
gene was not able to grow on xylose under anaerobic
conditions [15]. In addition to biosynthetic requirements,
further analysis has to be performed on energy, redox
balance and regulatory requirements to understand the
limitations for anaerobic growth on xylose.

Xylose utilization by scheffersomyces stipitis
Xylose is generally utilized by a two-step oxidoreductase
reaction catalyzed by xylose reductase and xylitol dehy-
drogenase. The difference in cofactor specificity between
these two reactions often hinders the utilization of xylose
and results in the production of xylitol [41,42]. The S. sti-
pitis xylose reductase accepts both NADPH and NADH
as cofactors with higher preference for NADPH [43] and
the xylitol dehydrogenase utilizes NAD as a cofactor.
However, xylitol accumulation was found to be negligible
in S. stipitis [44]. This aspect was analyzed using the
model developed for S. stipitis. Model simulations were
carried out for various ratios of NADPH and NADH
dependent xylose reductase and for various uptake rates
of xylose and oxygen. No xylitol accumulation was
observed in these simulations. The capability of S. stipitis
to efficiently interconvert NADPH and NADH might be
a reason for lower xylitol accumulation. However when

Table 2 List of reactions that lead to anaerobic growth on glucose identified by single reaction insertion analysis

S.NO R Numbers Reaction Formula Biomass Flux Reaction Flux

1 R00090* h2o2[c] + h[c] + nadh[c] < = > 2 h2o[c] + nad[c] 0.4049 -20.0000

2 R00094* nad[c] + 2 gthrd[c] < = > h[c] + nadh[c] + gthox[c] 0.4049 20.0000

3 R00113* h2o2[c] + h[c] + nadph[c] < = > 2 h2o[c] + nadp[c] 0.4491 -20.0000

4 R00115* nadp[c] + 2 gthrd[c] < = > h[c] + nadph[c] + gthox[c] 0.4491 20.0000

5 R00211$ o2[c] + pyr[c] + coa[c] < = > h2o2[c] + accoa[c] + co2[c] 0.2279 -2.6049

6 R00319$ o2[c] + lac-L[c] < = > h2o[c] + ac[c] + co2[c] 0.6300 -20.0000

7 R00360$ o2[c] + mal-L[c] < = > oaa[c] + h2o2[c] 0.2079 -0.1820

8 R00475$ o2[c] + glyclt[c] < = > glx[c] + h2o2[c] 0.2038 -0.0225

9 R00481$ asp-L[c] + o2[c] < = > h2o2[c] + iasp[c] 0.2055 -0.1579

10 R00500* 2 gthrd[c] < = > gthox[c] 0.6061 20.0000

11 R00533$ h2o[c] + o2[c] + so3[c] < = > h2o2[c] + so4[c] 0.2133 -0.2130

12 R00846$ o2[c] + glyc3p[c] < = > h2o2[c] + dhap[c] 0.2075 -0.1817

13 R01712* pyr[c] + pydam[c] < = > ala-L[c] + pydx[c] 0.4073 20.0000

14 R01713* oaa[c] + pydam[c] < = > asp-L[c] + pydx[c] 0.4049 20.0000

15 R01769$ h2o[c] + o2[c] + hxan[c] < = > h2o2[c] + xan[c] 0.2079 -0.1820

16 R01797# h2o[c] + cdpdag[c] < = > pa[c] + cmp[c] 17.8571 -7.4901

17 R01799# pa[c] + ctp[c] < = > ppi[c] + cdpdag[c] 17.8571 7.5572

18 R01800# ser-L[c] + cdpdag[c] < = > cmp[c] + ps[c] 0.2073 -0.0005

19 R01866# nadp[c] + dhor-S[c] < = > h[c] + nadph[c] + orot[c] 0.2062 0.0228

20 R01869# nad[c] + dhor-S[c] < = > h[c] + nadh[c] + orot[c] 0.2056 0.0227

21 R01879$ akg[c] + o2[c] + duri[c] < = > co2[c] + succ[c] + uri[c] 0.3581 -12.8155

22 R01909* atp[c] + pydxn[c] < = > adp[c] + pdx5p[c] 0.3147 -20.0000

23 R01911* pi[c] + pydxn[c] < = > h2o[c] + pdx5p[c] 0.2312 -1.0484

24 R02107$ h2o[c] + o2[c] + xan[c] < = > h2o2[c] + urate[c] 0.2079 -0.1820

25 R05717* amp[c] + gthox[c] + so3[c] < = > 2 gthrd[c] + aps[c] 0.3186 -20.0000

26 R05794# chol[c] + cdpdag[c] < = > pc[c] + cmp[c] 0.2051 -0.0002

27 R07171$ o2[c] + h[c] + nadh[c] < = > h2o2[c] + nad[c] 0.2079 -0.1820

28 R07172$ o2[c] + h[c] + nadph[c] < = > h2o2[c] + nadp[c] 0.2125 -0.2089
$ Direct formation of oxygen; # Indirect formation of oxygen through H2O2;

# Reactions selected for further analysis
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the xylose reductase activity was more dependent on
NADPH and under lower oxygen uptake rates, it was
observed that the xylose uptake rates were limited by
oxygen uptake rate (Figure 5). The dependence of xylose
uptake rate on oxygen transfer rates has been observed in
S. stipitis [44] and the substrate consumption rates were
improved by having higher initial cell concentration [45].
Reaction insertion analysis used for the identification

of metabolic requirements for anaerobic growth was
used to identify reactions that enable enhanced uptake
of xylose under this condition. Several reactions were
able to enhance xylose uptake rate and biomass flux
[Data not shown]. A majority of these reactions were
able to enhance the uptake rate of xylose by the effective
production of the cofactors NADPH and NAD. This was
evident when the reversible transdehydrogenase reaction
which inter converts NADPH and NAD to NADH and
NADP was introduced. This indicates that the metabolic
network of S. stipitis lacks a sufficient NADPH forming
transdehydrogenase reaction.
The production of ethanol from xylose by S. stipitis

was analyzed using the model. The existence of an opti-
mal oxygen uptake rate for maximum ethanol yield was

observed in the model simulations as reported in litera-
ture [14]. A plot of ethanol production rates at various
oxygen uptake rates for various ratios of NADPH and
NADH dependent xylose reductase activity is shown in
Figure 6. It is evident that as the dependency of xylose
reductase on NADPH increases, the dependence of opti-
mal ethanol production on oxygen uptake rate also
increases.

Flux variability analysis of the genome scale metabolic
model
Flux variability analysis (FVA) was carried out for
growth on glucose and xylose using the COBRA tool-
box. Reactions known to result in loops within the
major metabolic pathways were manually removed from
the model before performing the flux variability analysis.
The normal FVA calculates the minimum and maxi-
mum fluxes across various reactions in major metabolic
pathways when maximizing the objective function (Bio-
mass Flux). A variant of FVA called the sub-optimal
FVA has been found to be more informative [46],
wherein instead of fixing the objective value to an opti-
mal value from the initial FBA, objective lower limit was
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chosen at 95% of the initial objective value. The normal-
ized flux ranges (normalized with respect to substrate
uptake rate) for the major reactions obtained using the
suboptimal FVA is shown in supplementary Figures S1-
S4 (Additional File 5). Experimental values for the meta-
bolic flux distribution in S. stipitis are scarce. The only
report on the metabolic flux profiling of S. stipitis com-
pared the central carbon metabolism of this yeast with
that of S. cerevisiae [47]. This data cannot be directly
compared with the model simulations as the substrate
uptake rates and oxygen transfer rates were not
reported.
Analysis of the suboptimal flux variability values for

major metabolic pathways in S. stipitis metabolic net-
work grown in glucose minimal media revealed a few
key reactions which could carry zero flux. One such
reaction is phosphoglucose isomerase reaction catalyzed
by the pgi1 gene (PICST_84923). Phosphoglucose iso-
merase pgi1-deletion mutants of S. cerevisiae cannot
grow on glucose as the sole carbon source. The inability
of S. cerevisiae to efficiently recycle the NADPH gener-
ated by the oxidative pentose phosphate pathway has
been cited as the major reason for this growth defect
[48,49]. However, in S. stipitis in silico growth rates
were not significantly reduced. In silico metabolic flux

analysis was performed for the pgi1-mutant S. stipitis to
obtain insights on various pathways employed by S. sti-
pitis to recycle NADPH generated from oxidative pen-
tose phosphate pathway. Several pathways that could
recycle cytosolic NADPH were identified in the S. stipi-
tis network. The most promising pathways are listed
below

1. NAD-dependent glutamate dehydrogenase and
NADP-dependent glutamate dehydrogenase which
causes a substrate shuffling between 2-oxoglutarate
and glutamate which restores NADP from NADPH
through the coupled conversion of NAD to NADH.
2. NADPH dehydrogenase which couples the oxida-
tion of cytoplasmic NADPH to mitochondrial
respiratory chain.
3. NAD-dependent alcohol dehydrogenase and
NADP-dependent alcohol dehydrogenase which
causes a substrate shuffling between ethanol and
acetaldehyde which restores NADP from NADPH
through the coupled conversion of NAD to NADH.

Comparison of the literature on the phosphoglucose
isomerase mutant (pgi1-mutant) S. cerevisiae, Escheri-
chia coli and Kluyveromyces lactis has indicated that the
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above mentioned pathways are either present in these
organisms or when introduced has enhanced the growth
of these organisms. K. lactis is reported to possess the
mitochondrial NADPH dehydrogenase and a transdehy-
drogenase cycle involving the alcohol dehydrogenase
[50,51]. In E. coli and S. cerevisiae the introduction of a
soluble transdehydrogenase gene was found to enhance
the growth of pgi1-mutants on glucose [47,52]. Further,
in S. cerevisiae, over expression of the NAD-dependent
glutamate dehydrogenase restored growth in these
mutants [49]. From the Biolog phenotype data presented
earlier in this paper it can be observed that S. stipitis
can grow on glutamate as the sole carbon source. The
first step in glutamate utilization is NAD-dependent glu-
tamate dehydrogenase and thus this pathway might be
responsible for the growth of pgi1-mutant S. stipitis.
However, all these pathways and the pgi1-mutant strains
have to be evaluated experimentally to confirm their
roles. Nevertheless, the analysis highlights the usefulness
of the metabolic model developed in the designing
microbial strains with desired properties.
Even though S. stipitis metabolic network possesses

numerous ways for NADPH consumption, the genera-
tion of NADPH and NAD to efficiently utilize xylose
under lower oxygen uptake rates was limited. One parti-
cular pathway was observed to be induced under oxygen
limited conditions when the cells are grown on xylose
and this pathway was considered to be effective in tack-
ling the cofactor imbalance caused by the first two steps
in xylose utilization [25,53]. This pathway involved the
four enzymes; NAD-dependent glutamate dehydrogen-
ase (GDH2) which converts 2-oxoglutarate to L-gluta-
mate consuming NADH, glutamate decarboxylase
(GAD2) which decarboxylates L-glutamate to 4-amino-
butyrate, 4-aminobutyrate aminotransferase (UGA1.1 or
UGA1.2) which transaminates 4-aminobutyrate to Succi-
nate semialdehyde and Succinate semialdehyde dehydro-
genase (UGA2 or UGA2.2) which oxidizes Succinate
semialdehyde to Succinate using NADP (Figure 7). The
net result is the conversion of NADH to NADPH. How-
ever, the suboptimal flux variability analysis shows that
flux through this pathway is limited (maximum of about
35% of substrate uptake rate) and the maximum flux
achievable is very low under oxygen limited conditions
(about 1-2% of substrate uptake rate) when biomass is
maximized. This flux may not be sufficient to generate
enough NADPH to increase the substrate uptake rates.

Mechanism of mitochondrial respiration and oxidative
phosphorylation
The role of the model in enhancing the understanding
of cellular phenotypes and identifying requirements for
metabolism were explained in the previous sections. In
addition, the model can also be used to probe

mechanisms in metabolism of a microorganism. In this
section, the mechanisms involved in mitochondrial
respiration and oxidative phosphorylation are analyzed
using the model developed.
S. stipitis is known to possess a branched respiratory

chain which composes of the basic respiratory chain
complexes I-IV, an alternative oxidase and alternative
NADH dehydrogenases [54]. The effect of inhibition of
various complexes in the respiratory chain on the
growth of S. stipitis has been investigated [55]. Experi-
ments have been carried out to study the role of cyto-
chrome-C oxidase and alternative oxidase on respiration
and growth of S. stipitis [56-58]. However, a consistent
mechanism that explains the mechanism of mitochon-
drial respiration and oxidative phosphorylation was not
immediately evident from these experimental data. To
further investigate the mechanism of oxidative phos-
phorylation in S. stipitis, simulations were carried out
using the model developed. Simulations were able to
predict increase in the ethanol yield observed in a cyto-
chrome-C mutant [57]. However, a simple knockout of
individual components of the respiratory chain was not
sufficient to explain all the experimental observations
reported. The comparison of qualitative model simula-
tions with the experimental data obtained for growth on
glucose and xylose is shown in Table 3. The structure of
model suggests that all components in the respiratory
system are always available and organized into a path-
way as needed (when optimized for a particular objec-
tive). However this may be not true in the real situation.

Discussion
One of the well established ways by which microorgan-
isms attain different phenotypic characteristics is by gene
regulation. However, in the case of mitochondrial
respiration, channeling the electron flow by the forma-
tion of super-complexes has been reported as a common
mechanism [59-62]. Analysis of the inhibition data on
glucose and xylose suggest that either the alternative oxi-
dase or the alternate NADH dehydrogenase may be
repressed when grown on glucose. However, studies on
cytochrome-C mutants suggest that alternative oxidase
may be expressed constitutively [56,57]. Various hypothe-
tical complexes were analyzed through model simulations
and were then combined with regulation of gene expres-
sion (alternative NADH dehydrogenase) to result in a
mechanism which explains all the experimental observa-
tions qualitatively. Based on the analysis, the complex
formation between alternate oxidase and either Complex
III or Complex IV is critical to explain the experimental
observations. The proposed mechanism was also able to
predict the observed increase in the growth yield in the
presence of SHAM (an alternative oxidase inhibitor) dur-
ing the growth of S. stipitis on xylose [56]. This again

Balagurunathan et al. Microbial Cell Factories 2012, 11:27
http://www.microbialcellfactories.com/content/11/1/27

Page 11 of 18



highlights the utility of model in enhancing our under-
standing of metabolism of an organism.
An iterative procedure has been designed and used to

develop the genome scale metabolic model of S. stipitis.

The procedure begins with the reconstruction of genome
scale metabolic network which is then converted to a
fully functional in silico model by incorporating the
experimentally determined macromolecular composition,

2 Oxoglutarate GlutamateGDH2

NADH NAD

4 aminobutyrate CO2

GAD2

Succinate Semialdehyde

2 Oxoglutarate

Glutamate UGA1

NADP

Succinate

NADPH

UGA2

Figure 7 Cofactor balancing pathway. Enzymatic reactions which were reported to convert NADH to NADPH in S. stipitis. GDH2–NAD-
dependent Glutamate dehydrogenase, GAD2–Glutamate decarboxylase, UGA1–4-aminobutyrate aminotransferase (UGA1.1 or UGA1.2) and
UGA2–Succinate semialdehyde dehydrogenase (UGA2 or UGA2.2).

Table 3 Effect of inhibition of various mitochondrial respiratory complexes on the growth of Scheffersomyces stipitis in
glucose and xylose. (–) Complete Inhibition; (-) Partial Inhibition; (0) Negligible; (++) Enhanced; NA - Information not
available

Complex/Inhibitor Effect on Growth Effect on Growth Complex formation AOX and Complex
III or IV (Predicted from model analysis)

References

Glucose
(in Vivo/
In Silico)

Xylose
(in Vivo/
In Silico)

Glucose
(in Vivo/
In Silico)

Xylose
(in Vivo/
In Silico)

Complex I
(Rotenone)

(–/0) (-/0) (–/–) (-/-) Shi et al., 2002

Complex III
(Antimycin A)

(NA/-) (-/-) (NA/-) (-/-) Lighthelm et
al., 1988

AOX (SHAM) (0/0) (++/0) (0/0) (++/++) Jeppsson et al., 1995

Complex IV
(Cyanide)

(-/-) (-/-) (-/-) (-/-) Jeppsson et al., 1995

Complex IV and
AOX (Sodium Azide)

(NA/–) –/–) (NA/–) –/–) Lighthelm et al., 1988

Complex IV(Cyanide) and AOX (SHAM) (–/–) (–/–) (–/–) (–/–) Jeppsson et al., 1995

Mutant/Inhibition combination

Complex I (Rotenone) + del AOX (–/0) (–/0) (–/–) (–/–) Shi et al., 2002

Complex I (Rotenone) + del Complex IV (–/-) (–/-) (–/–) (–/–) Shi et al., 2002
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maintenance coefficients and minimal medium require-
ments. Even though assumption of macromolecular com-
position based on other related microorganisms or
compiling fragmented data from different sources is a
common practice [46,63-65], it may lead to improper
predictions of essential genes and metabolic flux distribu-
tion. Determination of macromolecular composition is
critical as it defines the minimal number of metabolites
that has to be produced for growth and the relative con-
tribution of these metabolites to growth. Further, it helps
in refinement of the genome annotation as some path-
ways producing these metabolites might not be anno-
tated properly. In the case of S. stipitis, higher content of
chitin is observed as compared to other yeasts like S. cer-
evisiae (chitin is not a part of the biomass equation used
for S. cerevisiae genome scale model [33]). Similarly,
phosphatidyl-inositol was found in S. stipitis biomass but
a pathway enzyme which converts myo-inositol to inosi-
tol was not annotated in S. stipitis genome. A homolog
was identified for this enzyme (PICST_63214) and was
incorporated into the model. The in silico model was
validated for consistency against newly generated high-
throughput substrate phenotyping data. The model was
subjected to iterative refinements based on identified
inconsistencies, leading to additional reactions incorpo-
rated into the network and other modifications to the
model content. The net result is a biochemically and
genetically detailed in silico model that consists of 1371
reactions that are catalyzed by 814 genes. To our knowl-
edge this is the first genome scale metabolic model devel-
oped for S. stipitis and it qualitatively predicts the
phenotypic behaviors for substrate utilization with 74%
agreement (252 out of 339 cases).
The model developed has also generated several

experimentally verifiable hypotheses that could provide
insight into the metabolism of S. stipitis. Generation of
new annotation for metabolic genes based on network-
based gap analysis and high-throughput phenotyping is
one such example. Another example is the insight
obtained on the mechanism involved in mitochondrial
respiratory chain of S. stipitis. The results of the inhibi-
tion experiments carried out for the various complexes
in the mitochondrial respiration chain where explained
based on a hypothetical complex formation using in
silico metabolic flux analysis. The hypothetical complex
formation has to be verified by designing appropriate
experiments. Further, the formation of mitochondrial
super complexes has already been reported in several
yeasts like S. cerevisiae and Yarrowia lipolytica [61,62].
The predictive capability of the genome scale meta-

bolic network was demonstrated by identifying the bio-
synthetic requirements for anaerobic growth of S.
stipitis. The gene insertion analysis performed on the
metabolic model was able to identify the particular

conversion essential for anaerobic growth on glucose
and this was validated by comparing with literature.
However, the identified reaction did not enable in silico
growth on xylose and this was also observed in experi-
ments [15]. As mentioned in the results sections anaero-
bic growth is a complex phenotype with biosynthesis
complemented by energy, redox balance and regulatory
requirements. However, the ability to grow on glucose
under anaerobic condition suggests that anaerobic
growth on xylose can also be achieved if the other
requirements are analyzed systematically. In silico analy-
sis revealed that unconstrained supply of ATP could
support anaerobic growth on xylose. Many pathways are
known to generate ATP. For example, the bacterial acet-
ate production pathway is commonly employed to
improve ATP production [66]. Since acetate has been
reported to inhibit xylose fermentation in S. stipitis [67],
other pathways for ATP generation needs to be investi-
gated. Further redox balance requirements and regula-
tory requirements should also be considered when
developing strategies to promote anaerobic growth.
Xylose uptake analysis carried out using the model

indicated that S. stipitis metabolic network may not pos-
sess sufficient NADPH and/or NAD generation capabil-
ity under lower oxygen uptake rates. Even though S.
stipitis is considered to be an efficient xylose utilizing
yeast, the metabolic model developed emphasizes the
need for further characterization of this yeast to under-
stand and improve its fermentation performance. High
throughput techniques routinely used in the characteri-
zation of industrial yeasts like S. cerevisiae should also
be developed for S. stipitis. Furthermore, analysis of
pgi1-mutant shows that S. stipitis metabolic network
possess many pathways to consume NADPH and recycle
NADP. When grown on glucose the xylose utilization
pathway itself can be considered as one such pathway.
Thus by performing a detailed analysis on the various
NADP recycling pathways and carefully designing suita-
ble mutants the S. stipitis metabolic network can be
optimized for simultaneous consumption of glucose and
xylose. This trait has been a subject of active investiga-
tion and is of industrial significance [68].

Conclusion
In this study, we have reconstructed a genome scale
metabolic model for S. stipitis by combining information
from genome sequence annotation, pathway databases,
literature and experimental data. The model was refined
using high-throughput phenotyping data. The model
predictions were in good agreement with experimental
observations, thus allowing us to systematically investi-
gate the physiological characteristics and metabolic cap-
ability of this yeast. In silico model analysis shows that
S. stipitis possesses several pathways to recycle
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nucleotide cofactors and thus efficient xylose utilization.
However, the flux through of these pathways needs
experimental investigation. Analysis of mitochondrial
respiration and identification of mitochondrial super-
complexes demonstrate the novel applications of the
model developed. Incorporation of thermodynamic con-
straints, enzyme kinetics information and high-through-
put omics data can further improve the predictability of
these models

Materials and methods
Metabolic network reconstruction
Figure 1 outlines the overall procedure for reconstruc-
tion and validation of the genome scale metabolic
model for S. stipitis. The entire procedure is based on
the recently published protocol for generation of gen-
ome scale metabolic models [32]. The reconstruction
process was initiated based on annotated genome of
Scheffersomyces stipitis [25] and ORF (open reading
frame) information available on the National Centre for
Biological Information http://www.ncbi.nlm.nih.gov/.
The biochemical reactions corresponding to the ORFs
were mainly compiled from KEGG Database [40,69,70]
and MetaCyc Database [71], resulting in a draft recon-
struction comprising of enzymes and metabolic
reactions.
The next step is the refinement of the draft. For each

reaction, gene-protein-reaction association, localization,
cofactor specificity, and directionality were identified and
assigned. The gene-protein-reaction associations include
definitions for isoenzymes and enzyme complexes. The
metabolic reactions in the model were organized into
three compartments (Cytoplasm, Mitochondria and
Extracellular) based on the localization of associated
enzymes, which was obtained using the protein localiza-
tion predictors [72,73] (Lu et al., 2004; Claros and Vin-
cens, 1996). The cofactor and substrate specificity and
reaction directionality information were compiled from
available literature information, completed genome scale
reconstructions [33,63,74-76] and BRENDA database
[77,78]. The reactions were then organized into path-
ways/subsystems. For each metabolite, the charge, for-
mula and identification information were compiled from
KEGG database and BIGG database. In the next step,
some spontaneous and non-gene associated reactions
whose existence was supported by physiological or
experimental data from the literature and databases were
included. In addition to these reactions, exchange reac-
tions and intracellular and extracellular transport reac-
tions were added. The genes associated with the
transport reactions were identified using the transport
protein predictor [79]. The final step is the incorporation
of biomass equation and, growth and non-growth asso-
ciated maintenance coefficient.

The final reconstruction was then loaded into Matlab
and the in silico model obtained was evaluated for its
capability to produce biomass precursors and known by-
products from minimal media and gaps in the metabolic
network were identified. The gaps were then filled based
on pathway databases and published reconstructions.
The dead-end reactions in the network were identified
and appropriate exchange reactions were added when
applicable. The model was then refined and validated
iteratively using Biolog phenotyping data. The final
model was used for the simulation studies.

Biomass macromolecular composition estimation
Media and cultivation conditions
Scheffersomyces stipitis CBS 6054 (CBS6054 = ATCC
58785 = NRRL Y-11545 = IFO 10063) was purchased
from American Type Culture Collection. It was routinely
cultured in yeast extract, peptone, dextrose (YPD) med-
ium and samples were collected at the exponential
growth phase for the estimation of biomass macromole-
cular composition. Experimental data for biomass com-
position estimation were collected in duplicates and
average values obtained are reported. For growth rate
and substrate uptake rate measurements, experiments
were carried out in minimal media containing 0.17%
yeast nitrogen base without amino acids, 0.5% ammo-
nium sulphate and 2% glucose. Experiments were carried
out in 1 liter Erlenmeyer flasks at 30°C and 200 rpm. The
OD600 was measured periodically for several hours to cal-
culate the growth rates and the supernatant was collected
and analyzed using HPLC for calculating the substrate
uptake rates. The macromolecular composition of S. sti-
pitis biomass was estimated by measuring carbohydrate,
protein, lipid and nucleic acid content and the compo-
nents making up these macromolecules.
Biomass carbohydrate content
The cell wall polysaccharides (Glucan, Mannan and
Chitin) and intracellular carbohydrates (Glycogen and
Trehalose) together contribute to the total carbohydrate
content. Cell wall isolation and quantification of poly-
saccharides in the cell wall was carried out as described
by Francois, 2007 [80]. Cells were harvested and then
lyzed using glass beads in a homogenizer. The cell wall
was separated by high speed centrifugation and dried.
The supernatant was used for nucleic acid analysis. The
dried cell wall was hydrolyzed with 72% sulphuric acid
and the sugars liberated were analyzed using HPLC.
Glucan and Mannan content was estimated from these
liberated sugars. Laminarin and Mannan were used for
calibration and galactose was used as the internal stan-
dard. For the analysis of chitin content, the cell wall was
heated with 6% KOH to liberate chitin. The chitin was
treated with chitinase to liberate glucosamine which was
detected using Reissig’s reagent. Glycogen content was

Balagurunathan et al. Microbial Cell Factories 2012, 11:27
http://www.microbialcellfactories.com/content/11/1/27

Page 14 of 18

http://www.ncbi.nlm.nih.gov/


determined as explained by Smolders et al., 1994 [81].
Approximately 20 mg of lyophilised cells was resus-
pended in 10 ml of 0.6 M HCl and boiled on a heating
block at 100°C for 1 h. Glucose liberated from glycogen
hydrolysis was quantified using HPLC. For the measure-
ment of trehalose content, cells were washed twice with
cold water and resuspended in 3 ml of water for 15 min
at 100°C. Sample was incubated overnight with trehalase
in 60 ul of acetate buffer. Glucose liberated from treha-
lose hydrolysis was quantified using HPLC.
HPLC analysis of sugars
The sugars glucose and mannose was measured by
HPLC using the Biorad Aminex HPX-87H column.
5 mM Sulphuric acid was used as mobile phase and
sugars were detected using RID detector operating at
50°C.
Biomass protein and amino acid content
Total protein content of S. stipitis biomass is deter-
mined using nitric acid method [82]. The harvested cells
were washed in TE buffer and centrifuged. The cells
were then solubilized in 70% nitric acid and incubated
at 22°C for 24 h. The absorbance was measured at 358
nm to obtain the protein content. Calibration curves for
protein estimation were obtained using BSA. The amino
acid content of S. stipitis biomass was measured using
standard protocols as explained in AOAC Official
Method 994.12 and AOAC Official Method 985.28 [83].
Biomass nucleic acid content
The DNA and RNA content was determined using Orci-
nol reagent (0.1% Orcinol, 0.1% FeCl3.6H2O in concen-
trated HCl) [84]. Freeze-dried cell lysate was
resuspended and diluted in autoclaved MilliQ water for
DNA and RNA analysis. Equal volumes of diluted sam-
ple and freshly prepared Orcinol reagent were mixed
and incubated at 100°C for either 2 min (for DNA esti-
mation) or 15 min (Total nucleic acid estimation). The
mixtures were immediately cooled on ice. The mixture
incubated for 2 min was further incubated at 37°C for
2 h after cooling on ice. The absorbance was measured
at 600 nm to obtain the DNA and total nucleic acid
content. The values obtained from DNA measurements
were subtracted from the total nucleic acid values to
obtain the RNA content of the cell lysate. Calibration
curves were obtained using standard DNA and RNA.
Biomass lipid content
The total lipid content was determined as explained by
Matyash et al., 2008 [85]. Harvested cells were washed
twice with 10 ml of 0.1% ammonium acetate solution
and resuspended in 6 ml of ammonium acetate solution.
Optical density was measured and 5 ml of cell suspen-
sion was added to 7.5 ml of methanol and vortexed vig-
orously. 25 ml of methyl-tert-butyl ether was added and
the mixture was shaken at 250 rpm for 1 h. Cell debris
was removed by filtration and 6.25 ml of water was

added to the mixture. The organic phase was extracted
twice with the solvent mixture and dried in a pre-
weighed round bottom flask. Lipid content was then cal-
culated based on the weight of the lipids extracted. The
individual lipid classes were measured using TLC. Polar
lipids were separated on a silica gel TLC plate with
chloroform/methanol/water (65:25:4) as an eluent as
described by Skipski et al., 1962 [86]. Neutral lipids
were separated on a silica gel TLC plate with hexane/
Diethyl ether/formic acid (45:5:1) as an eluent as
described by Low et al., 2009 [87]. The separated lipids
were quantified by densitometry using standard lipids.
The fatty acid composition of S. stipitis was obtained
using standard protocols as explained in AOAC Official
Method 996.06 [83].
The composition of the various biomass macromole-

cules estimated were converted to a biomass synthesis
equation to be incorporated into to model developed.
The growth and substrates uptake data estimated in the
present study, along with reported data from continuous
cultivation experiments [88] were used to calculated the
growth and non-growth associated maintenance coeffi-
cients (Refer to Additional File 1 for details).

In silico computations
The metabolic network was loaded into Matlab using
functions available in the COBRA toolbox [89,90]. The
metabolic capabilities of S. stipitis network were calcu-
lated by using flux balance analysis and linear optimiza-
tion. For growth simulations, biomass synthesis was
selected as the objective to be maximized and the optimi-
zation was solved using the COBRA Toolbox. The exter-
nal metabolites were allowed to freely cross the system
boundary by having unconstrained exchange reaction.
Units of all flux values are in mmol/gDCW/h. For the
simulation of aerobic growth on minimal media, the fol-
lowing external metabolites were allowed to freely enter
and leave the network: NH4, O2, H+, SO4, PO4, CO2 and
H2O (exchange fluxs -1000-1000 mmol/gDCW/h). All
other external metabolites, except the substrates tested
were only allowed to leave the system (exchange fluxes 0-
1000 mmol/gDCW/h). Growth on different substrates
was simulated by allowing the corresponding external
metabolite to enter the system with the definite exchange
rate (10 mmol/gDCW/h). For the simulation of anaerobic
growth, oxygen uptake was reduced to zero and uncon-
strained uptake of sterols and unsaturated fatty acids was
allowed.

Phenotype microarray analysis of scheffersomyces stipitis
Biolog’s Phenotype MicroArray™ technology [34] was
used for the phenotypic analysis of Scheffersomyces stipitis.
It permits assays of 190 carbon (PM1- and PM2A- micro-
plates), 95 nitrogen (PM3BMicroplate), 59 phosphorus
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and 35 sulphur-source (PM4A-Microplate) utilizations at
once. A defined medium containing 100 mM glucose, 5.0
mM NH4Cl, 2.0 mM NaH2PO4, 0.25 mM Na2SO4, 100
mM NaCl, 30 mM triethanolamine HCl (pH 7.1), 0.05
mM MgCl2, 1.0 mM KCl, 1.0 mM FeCl3, and 0.01% tetra-
zolium violet was used for the PM tests. The PM plates
contained various carbon-, nitrogen-, phosphorus-, or sul-
phur-sources which are omitted from the defined medium.
The microplates were incubated at 30°C and the dye
reduction data were collected in 15-min intervals for 48 h.
In addition to time profile dye reduction data, the absor-
bance was measured at 590 nm and 750 nm after 24 h and
48 h incubations. The colorimetric assay was considered
positive when the absorbance corresponding to reduced
dye was 1.2 times higher than the negative control. Similar
threshold was applied for the absorbance at 750 nm. The
threshold was set at 1.3 for sulphur source data as the
negative control was observed to have a higher back-
ground. The confidence with which growth can be pre-
dicted based on these measurements was determined
based on the number of positive reactions out of 4 absor-
bance measurements. High confidence growth (+) if all
measurements were above threshold and high confidence
no-growth (-) if below. The remaining cases were classified
as low-confidence data.

Additional material

Additional file 1: Estimation of growth and non-growth associated
maintenance requirements.

Additional file 2: Details of the reactions and metabolites in the
genome scale metabolic model of Scheffersomyces stipitis.

Additional file 3: List of essential reactions in the genome scale
model.

Additional file 4: Comparison of model predictions and Biolog
substrate utilization data. The details of substrates tested, abbreviations
used for these substrates in the model, additional experimental evidence
and model refinements are described in this file.

Additional file 5: Sub-Optimal Flux variability analysis of
Scheffersomyces stipitis metabolic model (Figures S1-S4).
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