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Intratumoral fibrosis is a histologic manifestation of fibrotic tumor stroma. The
interaction between cancer cells and fibrotic stroma is intricate and reciprocal, involving
dysregulations from multiple biological processes. Different components of tumor
stroma are implicated via distinct manners. In the kidney, intratumoral fibrosis is
frequently observed in renal cell carcinoma (RCC). However, the underlying mechanisms
remain largely unclear. In this review, we recapitulate evidence demonstrating how
fibrotic stroma interacts with cancer cells and mechanisms shared between RCC
tumorigenesis and renal fibrogenesis, providing promising targets for future studies.
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INTRODUCTION

Renal fibrosis is the common outcome of different chronic kidney diseases (CKDs), characterized
by excessive accumulation of extracellular matrix (ECM) and disrupted renal microarchitecture
(Hewitson, 2009). Formation of fibrosis involves numbers of cell subtypes, including epithelial,
endothelial, and inflammatory cells with a purpose to trigger fibrosis and fibroblasts, pericytes that
execute fibrosis (Lovisa et al., 2016). The intricate cross-talk between these cells has been brought
to understanding but still remains largely controversial.

Renal cell carcinoma (RCC) is one of the most common malignancies. It accounts for 85% of
kidney neoplasms (Cancer.Net, 2020), the global incidence of which was estimated to be 403,000
in 2018 worldwide (Bray et al., 2018). It is classified into mainly three subtypes, namely, clear cell
RCC (ccRCC), papillary RCC (PRCC), and chromophobe RCC. The identification of von Hippel–
Lindau (VHL) in ccRCC has furthered our understanding of the underlying mechanisms of RCC
formation. Tumor suppressor VHL serves as a substrate recognition subunit of a ubiquitin ligase
targeting hypoxia-inducible factor (HIF). Inactivation of VHL results in abnormal stabilization
of HIF pathway, favoring atypical cell growth through promoting cell survival under hypoxia
condition (Kaelin, 2008).

As a persistent tissue injury, cancer cells initiate a chronic wound healing response in tumors,
namely, intratumoral fibrosis (ITF). ITF is the result of aberrant accumulation of collagen matrix
produced by cancer-associated fibroblasts (CAFs) (Liu et al., 2019b). As a highly vascularized
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tumor, RCC is frequently found with ITF. Joung et al. (2018)
reported that among 204 ccRCC cases, 167 (81.7%) showed
ITF. Although the correlation between prognosis of ccRCC and
ITF is not significant, ITF proves to be related to other poor
prognostic factors in ccRCC including Fuhrman nuclear grade,
intratumor necrosis, and lymphovascular invasion. It is safe to
acknowledge the contribution of tumor cell microenvironment
in tumorigenesis. A wide range of studies have been conducted to
elucidate the underlying interactions between fibrosis and cancer.
The microenvironment surrounding tumor cells serves as both
powerful tumor suppressor and tumor promoter (Sternlicht et al.,
1999). Fibroblasts, the dominant component of tumor stroma,
were proved to induce oncogenic potential of adjacent epithelia
(Bhowmick et al., 2004) and associated with early and advanced
stages of tumor progression (Rønnov-Jessen et al., 1996; Giussani
et al., 2015). Formation of mature tumor ECM is marked by
high density of fibrillar collagens, especially type I collagen,
and capable of resisting degradation and repetitive mechanical
stress (Yamauchi et al., 2018). Cancer cells trigger the formation
of tumor stroma and stiffening stroma benefits tumor growth
in return, suggesting that the dynamics between stroma and
cancer cells is mutual. Evidence in different organs sustains that
instead of merely preceding or tailing cancer formation, fibrosis
participates in the cancer formation and metastasis (Neesse et al.,
2015; Saito et al., 2018; Tzouvelekis et al., 2019). However, the
evidence describing the correlation between cancer and fibrotic
stroma both clinically and mechanically in kidney is limited.

In this review, we introduce how fibrotic stroma interacts
with tumor cells in different organs: (1) the interplay between
fibrotic stroma and cancer cells via metabolic manners; (2) how
signaling mediates features of fibronectin (FN) and enzymes
regulating collagen exert a protumor effect; (3) robust reciprocal
communications between cancer cells and CAFs mediated by
secretory molecules; (4) demonstration of the pro-inflammatory
feature of CAFs and the controversial involvement of ECM in
tumor immunity. Next, we focus on demonstrating the potential
role of different signaling pathways including mammalian target
of rapamycin (mTOR), Wnt, and Notch and molecules including
non-coding RNA (ncRNA), fumarate hydratase (FH), and other
molecules, promoting both renal fibrosis and RCC, which
hopefully may provide valid insights for future studies regarding
the correlation between these two pathogeneses.

THE RELATIONSHIP BETWEEN TUMOR
AND STROMA

Metabolic Interaction Between Cancer
Cells and Stroma
Fibrotic stroma drives metabolic shifts in cancer cells, fostering
multiple malignant features. After being activated, CAFs
also shift to aerobic glycolysis (Vander Heiden et al., 2009).
CAFs have been shown to promote glycolysis in ovarian
cancer cells by inducing phosphorylation and activation
of phosphoglucomutase 1, facilitating proliferation and
metastasis (Curtis et al., 2019). Aspartate generated by

CAFs is shown to promote tumor proliferation. In return,
glutamate secreted by tumor cells contributes to maintaining
redox homeostasis of CAFs through glutathione pathway
(Bertero et al., 2019). Involvement of lactate and pyruvate
in promoting the cell growth is also identified in different
cancer cell types (Sanford-Crane et al., 2019). In addition
to aberrant secretion from CAFs, alterations in ECM exert
a certain influence on cancer cell metabolism. Increased
collagen density in ECM was shown to be associated with
decreased oxygen consumption and glucose metabolism
in breast cancer cells (Morris et al., 2016). Degradation of
hyaluronan promoted glucose uptake in several cancer cell
lines. Induction of glycolysis by hyaluronidase accelerated cell
migration (Sullivan et al., 2018).

The Protumor Effect of Fibronectin and
Collagen
The components of tumor stroma contribute to various tumor
hallmarks. Tumor-associated stroma rich in FN and type I
collagen was proved to be associated with enhanced cancer
progression (Li et al., 2003). As the adhesion protein, FN provides
the basic scaffold for nascent collagen deposition by fibroblasts,
which is crucial to regulate cell proliferation and migration
(Sottile and Hocking, 2002). FN plays a significant role in
directing signals, by binding to a wide range of growth factors
including transforming growth factor-β (TGF-β) superfamily,
fibroblast growth factor (FGF) family, insulin-like growth factor
binding protein-5 (IGFBP-5), and IGFBP-3 via FN III12–14, a
highly promiscuous GF binding domain (Martino and Hubbell,
2010). FN-rich ECM drives desmoplastic differentiation of
normal fibroblasts (Amatangelo et al., 2005). In RCC, FN was
shown to promote cell growth and migration in part via Src
and TGF-β1 signaling in vitro, the mechanism of which was not
clearly demonstrated (Ou et al., 2019).

As the most abundant ECM scaffolding protein in the
stroma, collagen is significantly associated with the tensile
strength (Kolácná et al., 2007). Type I collagen protected
against tumor invasion, while increased collagen I expression
was related to elevated incidence of metastasis (Ramaswamy
et al., 2003). Lysyl oxidase (LOX) and LOX-like (LOXL)
family members initiate collagen cross-linking by catalyzing
the oxidative deamination of Lys and Hyl residues and
are found elevated in different tumors (Erler et al., 2009).
Levental et al. (2009) proved that LOX-mediated collagen cross-
linking, final step of collagen biosynthesis, stiffened the matrix,
thereby promoting focal adhesions and tumor progression.
Cox et al. (2013) showed that cross-linking of collagen I
enhanced metastatic growth and that LOX-mediated collagen
cross-linking increased tumor cell proliferation and metastasis.
In RCC, studies showed that procollagen-lysine, 2-oxoglutarate
5-dioxygenases1/2/3 (PLOD1/2/3), and LOXL2, both collagen-
modifying enzymes, were related to high pathological grades;
however, the underlying mechanisms are vaguely depicted (Hase
et al., 2014; Xu et al., 2019). Lysyl hydroxylase 2 (LH2), which is
responsible for the overhydroxylation of the collagen telopeptides
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(van der Slot et al., 2004), shifted the tumor stroma toward high-
Hylald-derived collagen cross-links, low-Lysald-derived collagen
cross-link state, increasing tumor stiffness, and enhanced tumor
cell invasion and metastasis (Chen et al., 2015). This evidence
suggests both that the quality and the quantity of collagen are
related to tumor progression via different mechanisms.

Cancer-Associated Fibroblast and
Cancer Cells
Among all the stromal cells, CAFs share most the intricate
relationship with cancer cells. Under the unabated influence
of a large array of stimuli, e.g., growth factors, cytokines,
and chemokines, normal fibroblasts get activated into CAFs
irreversibly. CAFs display promoted secretory phenotypes, ECM
remodeling ability, and immunomodulatory functions, which
regulate different cancer traits (Kalluri, 2016).

Stromal cell-derived factor 1 (SDF-1) secreted by CAFs
was found to accelerate tumor growth directly and promote
angiogenesis via recruiting endothelial progenitor cells (Orimo
et al., 2005). In RCC, under hypoxic conditions, accumulation of
HIF-1α upregulated chemokine receptor 4 (CXCR4), the receptor
of SDF-1, leading to elevated metastatic ability (Pan et al.,
2006). This evidence suggested that SDF-1/CXCR4 biological
axis regulated organ-specific metastasis of RCC. As ECM-
degrading proteases, matrix metalloproteinase (MMP)-1 and 3
produced by the CAFs contribute to tumor invasiveness (Lochter
et al., 1997; Boire et al., 2005). A similar correlation was
reported in RCC. Paracrine platelet-derived growth factor-CC
(PDGF-CC) signaling pathway was reported to control breast
cancer basal-like subtype (Roswall et al., 2018). The evidence
of CAF secretion enhancing tumorigenesis is numerous and
comprehensive. In breast cancer, cancer-derived osteopontin
and WNT7A activated mesenchymal stem cells into CAFs
and enhanced invasive features of CAFs, respectively, in a
TGF-β-dependent manner (Weber et al., 2015; Avgustinova
et al., 2016). ccRCC cells induced CAF-derived periostin
expression, and elevated periostin promoted tumor cell itself
and CAF proliferation, in return (Bakhtyar et al., 2013).
Taken together, these evidences indicate a robust reciprocal
relationship between cancer cells and CAFs. Particularly
interesting is the physical force that CAFs exert on cancer
cells promoting cancer invasion, via E-/N-cadherin adhesion
(Labernadie et al., 2017).

Given the mounting publications delineating protumor effects
of CAFs, it is reasonable to assume that increased fibrosis is
positively associated with poor prognosis. However, signs of
cancer cells progression being impeded by the tumor stroma have
also been observed. In non-small cell lung carcinoma (NSCLC),
a correlation of increased desmoplasia with longer survival was
observed (Paulsson and Micke, 2014). Moreover, in pancreatic
ductal adenocarcinoma cells, deletion of sonic hedgehog (SHH),
an overexpressed soluble ligand driving formation of a fibroblast-
rich desmoplastic stroma, results in more malignant features.
The tumor-suppressing effect could be partially due to the
unique capability of Hedgehog-driven stroma to restrain tumor
angiogenesis (Rhim et al., 2014). Slit2 and Asporin, both secreted

by stromal fibroblasts, were identified as tumor suppressor in
breast cancer. Slit2, a ligand of Robo1 receptor, was found
to restrain tumorigenesis via blocking PI3K/AKT/β-catenin
pathway (Chang et al., 2012). High expression of Asporin,
an inhibitor of TGF-β1, was significantly associated with less
aggressive tumors (Maris et al., 2015). However, the exact
subtype of stromal fibroblasts responsible for expressing Slit2 and
Asporin remains to be determined. More studies are required to
demonstrate the tangled functions of CAFs.

Fibrotic Stroma and Cancer Immunity
As another essential component of tumor stroma, immune
cells receive heated attention following the success of
novel immunotherapies targeting adaptive immune system.
Chemokine ligand 12 (CXCL12) solely produced by CAFs was
shown to negatively regulate T-cell accumulation. By targeting it,
a promising synergistic effect with anti-PD-L1 immunotherapy
was observed in pancreatic cancer (Feig et al., 2013). On the other
hand, the innate immune system is of great significance as well,
given its dynamic reciprocity between fibrosis and inflammation
(Alexander and Cukierman, 2016).

CAFs regulate hallmark features of tumor by mediating
tumor-promoting inflammation. A large array of cytokines and
chemokines are related to CAFs and exert pro-inflammatory
effects (Servais and Erez, 2013; Acerbi et al., 2015). Pro-
inflammatory gene signature has been identified in CAFs in
different organs, and the underlying mechanisms are becoming
understood. CAFs were shown to promote tumor growth and
macrophage recruitment with participation of nuclear factor-
kappaB (NF-κB) signaling pathway (Erez et al., 2010). More
evidence suggests that CAFs induce Th2 and Th17 inflammation
response in a thymic stromal lymphopoietin (TSLP)-dependent
manner and TLR, nucleotide oligomerization binding domain 2
signaling, respectively (Su et al., 2010; De Monte et al., 2011).
In contrast to various cross-talks between immune cells and
CAFs, fibrotic ECM serves as a barrier against immune cells.
Matrix areas packed with aligned fiber and collagen hindered
migration of T cells, blocking them from approaching cancer
cells (Salmon et al., 2012; Hartmann et al., 2014; Chen et al.,
2018). However, under the assistance of a novel computational
imaging technology, Carstens et al. (2017) discovered no positive
correlation between T-cell accumulation and collagen-I, α-SMA
fibroblasts. Further investigation is required to determine the
specific contribution of each component of ECM and to explore
corresponding therapeutic treatments.

Cancer cells trigger the alterations in stroma. A reciprocal
relationship is identified in all four sections, especially a
notably beneficial interaction between CAFs and cancer cells. To
various degrees, most components of fibrotic stroma including
infiltrating lymphocytes are implicated. Secretory molecules play
a vital part in the communications between fibrotic stroma
and cancer cells owing to their capability of recruiting and
activating the target cells. Tumor immunity and metabolism
both contribute greatly to RCC tumorigenesis. Evidence revealed
how metabolic alterations in RCC affected tumor immune
microenvironment (Xiao and Meierhofer, 2019). However, no
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effort has been made to determine whether fibrotic stroma re-
shapes the tumor immunity in RCC as well. Crossing these two
fields yields a promising direction for future exploration.

MECHANISMS SHARED BETWEEN
RENAL CELL CARCINOMA
TUMORIGENESIS AND RENAL
FIBROGENESIS

Wnt Signaling
Initiated by Wnt ligands binding to the extracellular domain of
frizzled (Fzd) receptor and co-receptors, low-density lipoprotein
receptor-related proteins 5 and 6 (LRP5 and LRP6), the canonical
Wnt signaling depends on the intracellular molecular β-catenin
to exert its influence on multiple biologic processes (Clevers and
Nusse, 2012). Wnt ligands embrace 19 different members; and 16
of them, except Wnt3a, Wnt8a, and Wnt10b, are upregulated in
the unilateral ureteral obstruction (UUO) model (He et al., 2009).
Zhou et al. (2017) reported that blocking the WNT secretion
in renal tubular cells reduced β-catenin activation and inhibited
myofibroblast activation in vivo, whereas blocking in fibroblasts
showed little effect, suggesting that Wnt/β-catenin signaling
displays its functions in the tubular epithelium in the renal
fibrotic diseases. WNT1 has been reported to be related to both
RCC and renal fibrosis. Not only high WNT1 was associated with
more advanced stage, increased size, and overall survival, but it
also promoted renal fibroblast proliferation in vitro (Kruck et al.,
2013; Maarouf et al., 2016). However, few research on WNT1
has been conducted to explore the interaction between the two
major diseases so far. Moreover, WNT2, WNT3A, and WNT4
were shown to induce fibroblast proliferation and myofibroblast
differentiation in vitro, respectively (DiRocco et al., 2013; Zhou
et al., 2017). WNT10A expression induced RCC cell proliferation
and aggressiveness, while WNT7A displayed tumor suppression
function in vitro (Hsu et al., 2012; Kondratov et al., 2012).
Abnormal accumulation of β-catenin was related to both renal
fibrogenesis and RCC carcinogenesis (Kruck et al., 2013; Maarouf
et al., 2015). On the other hand, the expression of Fzd7 and
mRNA expression of Fzd5 and 8 were shown to be upregulated
in RCC and contributed to cell proliferation (Janssens et al.,
2004; Xu et al., 2016), while no Fzd genes were repressed
after obstructive injury, suggesting an underlying correlation to
explore (He et al., 2009). Extensive studies have determined the
functions of different components of Wnt signaling in renal
fibrosis and RCC, whereas the interaction between these two
fields has been rarely explained.

Mammalian Target of Rapamycin
Signaling
The mTOR is a component of two distinct complexes, mTOR
complex 1 (mTORC1) and mTORC2. As an evolutionarily
conserved serine–threonine kinase, mTOR regulates cell growth,
proliferation, autophagy, and metabolism (Ma et al., 2018). AMP-
activated protein kinase (AMPK) and PI3K-AKT-dependent
pathways converge on tuberous sclerosis complex (TSC),

which subsequently activates mTORC1 by releasing Rheb, a
Ras family GTPase. The well-described downstream factors
of mTORC1 include p70S6K and 4EBP, which favor cell
growth and proliferation via enhancing proteins and nucleotide
synthesis (Fantus et al., 2016). Mechanically, mTORC1 is
better characterized in both kidney malignancy and fibrosis.
Chen et al. (2012) determined the interstitial macrophages
and myofibroblasts as the main cell subtypes with persistent
activation of mTORC1 signaling. Decreased levels of profibrotic
cytokines, including TGF-β1, VEGF, glomerular connective
tissue growth factor, and monocyte chemoattractant protein-1,
were observed in models treated with rapamycin in vivo (Lloberas
et al., 2006; Yang et al., 2007; Liu et al., 2014). Rapamycin was
proved to reduce tubulointerstitial fibrosis in the UUO model and
block TGF-β1-induced loss of E-cadherin expression, suggesting
that mTOR signaling also contributed to the transdifferentiation
from tubular epithelial cells to α-SMA-positive myofibroblasts
(Wu et al., 2006). In addition to mTORC1, the engagement of
mTORC2 in renal fibrogenesis was also recognized. Li et al.
(2015) reported that Rictor/mTORC2 signaling induced TGF-
β1-promoted fibroblast activation independent of mTORC1
signaling, indicating that both mTORC signaling was involved in
the fibroblast response to TGF-β1.

As an intermediate regulator, a wide range of molecules
contribute to RCC different malignant phenotypes via mTOR
signaling pathway, including pyruvate kinase M2 (PKM2) (Dey
et al., 2019), enoyl-CoA hydratase short-chain 1 (ECHS1) (Qu
et al., 2020), nucleobindin-2 (NUCB-2) (Tao et al., 2020), miR-
100 (Liu et al., 2020b), and maternal and embryonic leucine
zipper kinase (MELK) (Zhang et al., 2019). Mutations in
upstream factors of mTOR signaling pathway were also involved.
Phosphatase and tensin homolog deleted on chromosome 10
(PTEN) mutation correlated with high-grade, advanced ccRCCs
with enhanced ability of invasion (Kondo et al., 2001). In
addition to the well-established TSC-mTOR signaling, Brugarolas
et al. (2003) revealed an mTOR-independent pathway, possibly
associated with chromatin remodeling. Intriguingly, epithelial–
mesenchymal transition (EMT) was induced though mTOR
pathway in two diseases (Wu et al., 2006; Tao et al., 2020).

Currently, use of mTOR inhibitor is mainly restricted to
patients with advanced RCC and refractory to anti-VEGF
therapy. Temsirolimus and everolimus both targeting mTORC1
were put into clinical use (Hudes et al., 2007; Motzer et al.,
2008). In order to avoid activation of phosphatidylinositol 3-
kinase (PI3K)/AKT initiated by sole inhibition of mTORC1,
novel mTOR ATP-competitive blocker AZD-2014 targeting
mTORC1/2 was developed and showed superior potency to
restrain RCC cell growth both in vivo and in vitro as compared
with mTORC1 inhibitor (Zheng et al., 2015). Interestingly, AZD-
2014 activated cancer cells autophagy, which could prolong
cancer cells survival. Co-administration of autophagy inhibitor
3-MA enhanced AZD-2014 growth arrest effect. However, in
the randomized Phase II study, AZD-2014 failed to surpass
everolimus in progression-free survival and overall survival in
patients with VEGF-refractory metastatic ccRCC (Powles et al.,
2016). Autophagy was also found to be activated in CAFs
and foster tumor progression via modulating secretory factors
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including IL-6 and IL-8 in head and neck cancer (New et al.,
2017). Focusing on the combined therapy of deactivation of
autophagy in both cancer cells and tumor stroma and developing
novel mTORC1/2 dual inhibitor could forward mTOR inhibitors
to overcome resistance and display better efficacy in clinical trials.

Non-coding RNA
NcRNAs is divided into two classes mainly by their length:
small (<200 nucleotides) and long (>200 nucleotides) ncRNAs.
MicroRNAs (miRNAs) are included in the small ncRNAs, along
with small interfering RNAs and small nucleolar RNAs (Mattick
and Makunin, 2006). MiRNAs are short ncRNAs that modulate
various physiological and pathological processes by negatively
regulating the expression of their target genes via blockade
of protein translation or by inducing mRNA degradation
(Ambros, 2004). The studies of miRNAs profiling shed some
light on the role of miRNAs in RCC tumorigenesis, while
the underlying mechanism has not been well-demonstrated.
A fraction of studies merely predicted the target genes of
dysregulated miRNA using different analysis approaches without
verifying it experimentally. Some of these genes are related
to RCC tumorigenesis, remaining to be promising directions
(Table 1). On the other hand, efforts have been made to
delineate how miRNAs contribute to fibrosis, mostly in diabetic
nephropathy (DN). Multiple studies we detected overlap on
the E-box repressor such as δEF1, Smad-interacting protein 1
(SIP1), zinc finger E-box binding homeobox 1 (ZEB1), and ZEB2,
indicating its significant role as a mediator in TGF-induced
fibrosis (Table 2).

TABLE 1 | Studies of miRNA in renal cell carcinoma.

MicroRNA Mechanisms Sources References

MiR-122, 155,
21, and 210

Overexpression (predicted targets
including HIF-1α, VEGF receptor
2, mTOR, etc.)

PS Juan et al.,
2010; White
et al., 2011a

MiR-200c, 335,
199, and 218

Downregulated (predicted targets
including AKT, RAS, Rheb, etc.)

PS Chow et al.,
2010; White
et al., 2011a

MiR-141 and
200c

Inhibit E-cadherin expression via
a ZHFX1B-mediated
transcriptional repression

PS Nakada et al.,
2008

MiR-215 Negatively regulate cellular
migration and invasion

In vitro White et al.,
2011b

MiR-192, 194,
and 215

Suppress tumor progression
convergently

In vitro Khella et al.,
2013a

MiR-377 Reduce cell proliferation,
migration, and invasion by
targeting ETS1

In vitro Wang et al.,
2015

MiR-29s induce cell migration and invasion
via miR-29s–LOXL2 axis

In vitro Nishikawa
et al., 2015

MiR-93 Inhibits apoptosis and promotes
proliferation, invasion, and
migration via TGF-β/Smad
signaling

In vitro Liu et al., 2017

PS, patient specimens; miRNA, microRNAs; mTOR, mammalian target of
rapamycin; EMT, epithelial–mesenchymal transition; TGF, transforming growth
factor.

Nakada et al. (2008) reported that downregulation of miR-
141 and miR-200c in ccRCC suppressed CDH1/E-cadherin
transcription via upregulation of ZEB2, also known as ZFHX1B.
MiR-200a and miR-141 were shown to abrogate EMT of tubular
epithelial cells by targeting ZEB1 and ZEB2, revealing an
anti-fibrotic effect of the miR-200 family (Jung et al., 2009).
This evidence demonstrated that miR-200 family was involved
in mediating the transcriptional repressor of E-cadherin and
induction of EMT, leading to RCC and renal fibrosis separately.
Additionally, several studies identified engagement of multiple
miRNAs including miR-382 (Kriegel et al., 2010), miR-23a (Xu
et al., 2018), and miR-133b and 199b (Sun et al., 2018) in renal
fibrogenesis or tumorigenesis via EMT, suggesting EMT as a
promising target to bridge two diseases.

Both classes are well-established to exert a certain influence
on various biological processes, and the interactions among
them are coming into the view (Yoon et al., 2014). Long
ncRNAs (lncRNAs) regulated miRNA function by acting
as miRNA sponges and inhibiting their binding to target
mRNAs (Paraskevopoulou and Hatzigeorgiou, 2016). Fibrogenic
effects of lncRNAs were observed in several CKD models.
Liu et al. (2020a) showed that metastasis-associated lung
adenocarcinoma transcript 1 (MALAT1)/miR-145/focal
adhesion kinase (FAK) pathway was implicated in TGF-β1-
induced renal fibrosis in obstructive nephropathy. MALAT1
regulated high glucose (HG)-induced EMT and fibrosis
by functioning as a sponge RNA for miR-145, resulting
in derepressing the expression of target gene ZEB2 (Liu
et al., 2019a). Multiple publications revealed how MALAT1

TABLE 2 | Studies of miRNAs in renal fibrosis.

MicroRNA Mechanisms Sources References

MiR-200s Protect tubular epithelial cells
from mesenchymal transition
via A. targeting ZEB1 and ZEB2
B. downregulated in a
TGF-β1/Smad
signaling-dependent manner

In vitro Xiong et al.,
2012

MiR-192 Controls TGF-β-induced
fibrosis via mediating E-box
repressor A. SIP1 and δEF1 B.
ZEB1 and ZEB2 C. ZEB2 (with
miR-215)

In vivo and in
vitro; In vivo;
In vitro

Kato et al.,
2007; Krupa
et al., 2010;
Wang et al.,
2010

MiR-377 Increases fibronectin protein
production

In vivo and
in vitro

Wang et al.,
2008

MiR-29a
MiR-29b

A. Negatively regulates collagen
IV by directly binding to its
3’-UTR B. A downstream
inhibitor of TGF-β
/Smad3-mediated fibrosis C.
Regulates Ang II-induced EMT
via targeting PI3K/AKT
signaling pathway

In vitro; In
vivo and in
vitro; In vitro

Qin et al.,
2011; Wang
et al., 2012; Hu
et al., 2018

MiR-93 Abrogate VEGF downstream
targets, collagen IV, and
fibronectin

In vivo and
in vitro

Long et al.,
2010

miRNA, microRNAs; TGF, transforming growth factor; EMT,
epithelial–mesenchymal transition.
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contributed to RCC tumorigenesis (Xiao et al., 2015; Zhang
et al., 2015). Hirata et al. (2015) reported that MALAT1
promoted RCC progression via Ezh2, the potential binding
protein of MALAT1, and interacting with miR-205, which led
to blockage of EMT via E-cadherin recovery and β-catenin
downregulation. Additionally, various lncRNAs have been
confirmed to facilitate processes such as cell migration,
metastasis, invasion, proliferation, and apoptosis verified in
different cell lines (Moghaddas Sani et al., 2018).

New targets and functions of miRNAs are being determined
at a tremendous rate; however, our understanding of miRNAs
fails to go further correspondingly. The overlap of target gene
prediction using different algorithms is far from satisfactory, and
subsequent experimental validations are inadequate. Moreover,
one target gene could be controlled by multiple miRNAs,
and vice versa (Khella et al., 2013b). Studies focusing on
convergent and divergent effects of certain miRNAs would
be more eloquent to elucidate how such network regulates
its target gene. On the grounds that lncRNAs display its
function partly through regulating miRNAs, it is paramount
to launch studies delineating the network interactions between
the two different classes of ncRNAs, hopefully reaching a more
comprehensive understanding.

Notch Signaling
The Notch signaling pathway is an evolutionarily conserved
signaling pathway, composed of four Notch receptors (Notch
1–4) and five ligands [delta-like ligand (DLL)-1, DLL-3, DLL-
4, Jagged-1, and Jagged-2] (Artavanis-Tsakonas et al., 1999).
Its role in renal malignancy and fibrosis was demonstrated
separately. Huang et al. (2018) recognized that Jagged1 and
Notch2 contributed to kidney fibrosis development by regulating
mitochondrial transcription factor A (Tfam) expression and
metabolic reprogramming. Notch-induced kidney fibrosis was
related to metabolic dysregulations and could be restored
by peroxisomal proliferator-g coactivator-1a (PGC-1a). The
downstream target of Notch1 signaling, Hes1, was capable of
regulating PGC-1a directly (Han et al., 2017). Both publications
revealed aberrant metabolism disturbed by activated Notch
signaling, resulting in a profibrotic feature.

High-level expression of Notch signaling positively correlates
with tumor size, nuclear grade, and TNM stage and risk of
metastasis in T1 stage ccRCC (Wu et al., 2011; Ai et al., 2012).
JAGGED1 and 2 were confirmed to be associated with loss of CpG
methylation of H3K4me1-associated enhancer regions and gene
amplification, respectively, indicating that the activation of Notch
signaling pathway could result from both genetic and epigenetic
alterations (Bhagat et al., 2017). Activated Notch signaling was
identified in renal cancer stem cells by both transcriptional
profiling and single-cell sequencing (Fendler et al., 2020). Xiao
et al. (2017) showed that overexpression of Notch1 exerted an
upregulatory impact on chemotaxis of RCC cancer stem cells via
SDF-1/CXCR4 axis.

Fumarate Hydratase
In terms of FH, extensive researches have been carried out
to demonstrate how such mutations of metabolic enzymes

TABLE 3 | Molecules involved in renal cell carcinoma and fibrosis.

Molecules Mechanism (fibrosis/cancer) Anti/pro References

HMGB1 A. TGF-β-mediated
NLRP3-HMGB1 activation leads to
tubulointerstitial fibrosis B.
Facilitating ccRCC tumorigenesis
via ERK1/2 activation, partially
mediated by RAGE

Pro Lin et al., 2012;
Zhang et al.,
2020

Basigin/
CD147

A. Upregulating MMPs, TGF-β B.
Upregulating proliferation and
invasive potential by promoting
VEGF and bFGF expression

Pro Kato et al.,
2011; Sato
et al., 2013

MXRA5 A. Reducing the expression of gene
encoding fibronectin and type IV
collagen B. A direct relationship
between VHL and MXRA5
transcriptional expression
(underlying mechanism
undetermined)

Anti Poveda et al.,
2017

Nox4 A. Involved in TGF-β1-induced
EMT, mediated by RhoA/Rho
kinase B. Promoting the expression
and nuclear accumulation of HIF-2α

Pro Gregg et al.,
2014;
Manickam
et al., 2014

YAP/TAZ A. Enhancing TGF-β-induced EMT
and β-catenin expression B.
Upregulating CYR61 and c-Myc

Pro Schütte et al.,
2014; Seo
et al., 2016

HMGB1, high mobility group box 1; TGF, transforming growth factor; ccRCC, clear
cell renal cell carcinoma; MMP, matrix metalloproteinase; VHL, von Hippel–Lindau;
EMT, epithelial–mesenchymal transition.

engage in hereditary cancer syndromes. FH inactivation was
proved to predispose individuals to hereditary leiomyomatosis
and renal cell cancer (HLRCC) (Kim and Kaelin, 2006). In
addition to Krebs cycle, further studies spotted significant
changes in the urea cycle and determined cytosolic metabolic
pathways in FH-associated oncogenesis (Adam et al., 2013).
Both in vivo and in vitro evidence supported that accumulation
of fumarate caused stabilization of HIF-1α (Pollard et al.,
2005). However, based on a much more thorough study, a
distinct mechanism of Fh1-dependent, the murine homolog
of FH, cyst formation was proposed. Adam et al. (2011)
provided solid evidence asserting the absence of Hif/Phd pathway
and introducing nuclear factor-like 2 (NRF2) dysregulation
as an oncogenic pathway involved in FH-associated disease.
Interestingly, FH inactivation also engages in renal fibrosis.
Reduction of FH caused the accumulation of fumarate, leading
to fibrosis in DN in Goto–Kakizaki (GK) rats. Increased
levels of HIF-1α and TGF-β1 were detected, suggesting
candidate mechanisms accounting for such fibrosis (Miura
et al., 2019). Although these studies on FH inactivation leading
to renal carcinoma and fibrosis were conducted separately,
it still provided insights to bridge our understanding of
two major diseases.

Other Molecules
Apart from the major signaling pathways and molecules
that we mentioned above, several scattered individual studies
also come into our view. YAP/TAZ is associated with the
mechanical traits of the cell microenvironment, while not
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as well-described as the pathways we mentioned before. We
detected two proteins regarding ECM remodeling, Basigin
and MXRA5, suggesting a more comprehensive engagement
of ECM in RCC tumorigenesis. High mobility group box 1
(HMGB1) is a nuclear protein that acts as a co-factor for
gene transcription. As the major NADPH isoform in kidney,
Nox4 contributes to redox processes by mainly producing
H2O2. These publications receive less attention but still
broaden our view and provide interesting insights to better
demonstrate how RCC and fibrosis may interact with each
other (Table 3).

All these signaling pathways and molecules are related to
renal fibrogenesis and tumorigenesis, some components of which
are directly involved in both pathologies. Future experiments
focusing on these directions may be of importance to unveil

how fibrotic stroma facilitates RCC aggressiveness. EMT is a
canonical process that shifts the cancer cells into a mesenchymal
phenotype, hence being a driver of the metastasis. TGF-β1
secreted by CAFs led to EMT of urinary bladder cancer cells
through lncRNA-ZEB2NAT (Zhuang et al., 2015). This study
revealed that tumor stroma could prompt cancer development
via inducing EMT of cancer cells. As we demonstrated
above, EMT and its secretory mediator TGF-β1 have been
identified in two renal diseases repeatedly; however, in RCC,
there has been no study conducted to determine whether
EMT caused by tumor stroma is capable of facilitating RCC
tumorigenesis. It remains to be a promising direction to explore
ncRNA and different signaling pathways as demonstrated,
which may further our understanding by elaborating the
underlying mechanisms.

FIGURE 1 | This schematic shows the interactions between stroma and cancer cells. Cancer-associated fibroblasts (CAFs) display an enhanced secretory
phenotype, regulating immune cells and cancer cells and producing excessive extracellular matrix (ECM). Both CAFs and cancer cells shift to glycolysis and share a
dynamic exchange of metabolites. The force transmission is mediated by E-cadherin/N-cadherin. Fibrotic ECM induces CAF activation, facilitates tumor invasion,
and hinders T-cell migration. Type I collagen exerts a quantity-dependent pro- or anti-tumor effect on cancer cells. *Represents the data collected from renal cell
carcinoma (RCC) models.
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CONCLUSION

The contribution of tumor stroma to cancer cell is widely
acknowledged. We provide evidence in different organs depicting
how reciprocal interactions between cancer cells and fibrotic
stroma function, few of which are regarding RCC. On the
grounds that ITF was shown to correlate with several indicators
of poor prognosis of ccRCC, it is logical to broaden our
view of RCC by investigating the contribution of fibrotic
stroma and delineating concerned mechanisms. We show that
such reciprocal interactions are joint efforts from different
dysregulations, including various components of excessive ECM,
aberrant metabolisms, activation of CAFs, and tumor immunity
(shown in Figure 1). Next, we recapitulate mechanisms shared
between RCC progression, metastases, and formation of renal
fibrosis. mTOR, Notch, Wnt signaling pathways, and ncRNA
widely participate in RCC tumorigenesis and renal fibrogenesis
via different manners. Additionally, secretory molecules and
process of EMT are widely implicated and may be promising
targets. The majority of publications we detected regarding the
interactions between fibrotic stroma and cancer cells are based

on experiments conducted in the lung, breast, pancreas, etc.,
suggesting an absence of deserved attention on the kidney.
Hopefully, the evidence we collect may provide promising targets
for future experiments.
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