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ABSTRACT: Skin sensitization potential or potency is an
important end point in the safety assessment of new chemicals
and new chemical mixtures. Formerly, animal experiments such as
the local lymph node assay (LLNA) were the main form of
assessment. Today, however, the focus lies on the development of
nonanimal testing approaches (i.e., in vitro and in chemico assays)
and computational models. In this work, we investigate, based on
publicly available LLNA data, the ability of aggregated, Mondrian
conformal prediction classifiers to differentiate between non-
sensitizing and sensitizing compounds as well as between two
levels of skin sensitization potential (weak to moderate sensitizers,
and strong to extreme sensitizers). The advantage of the conformal prediction framework over other modeling approaches is that it
assigns compounds to activity classes only if a defined minimum level of confidence is reached for the individual predictions. This
eliminates the need for applicability domain criteria that often are arbitrary in their nature and less flexible. Our new binary classifier,
named Skin Doctor CP, differentiates nonsensitizers from sensitizers with a higher reliability-to-efficiency ratio than the
corresponding nonconformal prediction workflow that we presented earlier. When tested on a set of 257 compounds at the
significance levels of 0.10 and 0.30, the model reached an efficiency of 0.49 and 0.92, and an accuracy of 0.83 and 0.75, respectively.
In addition, we developed a ternary classification workflow to differentiate nonsensitizers, weak to moderate sensitizers, and strong to
extreme sensitizers. Although this model achieved satisfactory overall performance (accuracies of 0.90 and 0.73, and efficiencies of
0.42 and 0.90, at significance levels 0.10 and 0.30, respectively), it did not obtain satisfying class-wise results (at a significance level of
0.30, the validities obtained for nonsensitizers, weak to moderate sensitizers, and strong to extreme sensitizers were 0.70, 0.58, and
0.63, respectively). We argue that the model is, in consequence, unable to reliably identify strong to extreme sensitizers and suggest
that other ternary models derived from the currently accessible LLNA data might suffer from the same problem. Skin Doctor CP is
available via a public web service at https://nerdd.zbh.uni-hamburg.de/skinDoctorII/.

■ INTRODUCTION

Skin sensitizers are substances that have the potential to cause
allergic contact dermatitis (ACD) during repeated exposure.1

ACD is a major cause of occupational illnesses2,3 and can
severely diminish the quality of life of affected individuals.
Therefore, thorough safety assessment is required prior to
market release of new substances to prevent the induction of
occupational or product exposure-based ACD. Moreover, in
case of a skin sensitization hazard, potency information (i.e.,
the concentration required to induce skin sensitization) is key
to determine safe use concentrations that do not result in the
induction of skin sensitization.4

Historically, the skin sensitization potential and potency of
substances have been mainly assessed by in vivo studies on
animals and, rarely, complemented by confirmatory studies
using safe doses on humans. The local lymph node assay
(LLNA),5 conducted in mice, is today considered the most
advanced animal testing system for skin sensitization potential

and potency.6 In contrast to other animal assays, the LLNA
assesses solely the induction phase and delivers potency
information in the form of an EC3 value, which is considered
to be a quantitative measure of the skin sensitization potency.7

The EC3 value represents a concentration required to derive a
point of departure for quantitative risk assessment. However,
the predictive capacity of animal testing for humans is limited
(in general8 and also with regard to skin sensitization
prediction9), and ethical and practical considerations as well
as regulatory constraints have led to the development of
alternatives to animal testing. These alternatives comprise in
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chemico and in vitro testing methods,10−13 as well as in silico
tools that predict a compound’s skin sensitization potential
based on its chemical structure or properties calculated
therefrom.12−15 Nevertheless, the reliability and coverage of
the individual alternative approaches is still limited, primarily
due to the scarcity of available high-quality data for the
development and validation of methods. For this reason,
researchers have been exploring strategies for the combination
of multiple nonredundant assays to achieve or exceed the level
of predictive hazard or potency information provided by
animal model data.16 These combined approaches are known
as defined approaches (DAs) and as integrated approaches for
testing and assessment (IATAs) and have been recently
reviewed in ref 9. For the qualification of cosmetic compounds,
in silico predictions can contribute to the prioritization of
chemicals for efficacy testing and, subsequently, to early phases
of (tiered) safety assessment strategies. For the latter,
predictions can be used in “weight of evidence” considerations
for risk assessment such as the dermal sensitization threshold
approach17 or as input for DAs and IATAs. For a computa-
tional model to be accepted within a regulatory context, it
should fulfill the five validation principles outlined by the
OECD:18 a defined end point, an unambiguous algorithm, a
defined applicability domain (AD), appropriate measures of
goodness-of-fit, robustness, and predictivity, and, if possible, a
mechanistic interpretation.
In the context of in silico prediction tools, the AD of a

method defines the chemical space within which a method
produces results with a defined reliability.19,20 Most AD
definitions include a more or less arbitrary or user-defined
threshold to differentiate between reliable and unreliable
predictions based on similarity to training data or the class
probability returned by the modeling algorithm.21

An alternative for defining the reliability of a model for a
certain compound of interest, without the definition of an AD,
is offered by conformal prediction (CP).22−24 Whereas
classical, standalone machine learning models based on
support vector machines (SVMs), random forests (RFs), or

other methods return a distinct prediction for a compound of
interest (or, in the case of RF, a class probability, if desired), a
CP model returns statistically justified class membership
probabilities for each of the classes. Users may select a desired
confidence level, 1−ε, and CP will return an observed error
equal to, or very close to, the chosen error rate ε, as long as the
randomness assumption of the samples (an assumption that is
also made for classical machine learning models) holds true.
On the basis of the class probabilities and the selected
confidence level, the model determines whether a compound is
within the AD of the model. If it is within the AD, one or more
class labels will be assigned to the compound; if it is outside
the AD, no class label will be assigned (or, more precisely, the
compound will be assigned to the empty (null) class). As with
the AD of classical machine learning models, different
measures of the reliability of a prediction (conformity
measures) may be selected for the model. However, the CP
model offers the advantage that the manual selection of a cutoff
value for this measure is not required. Instead, it is deduced in
a straightforward mathematical way from the selected
confidence level.
Different variants of CP support different needs regarding

the characteristics of the modeling data, and the computational
effort that should be invested.25 A CP variant that has been
shown to perform favorably on imbalanced data is Mondrian
CP, because it treats each class independently of all other(s),
thereby ensuring the validity of each individual class without
the need for over- or under-sampling.26−28 An additional type
of CP is aggregated CP, which repeats the workflow several
times so that each training compound could be used as a
proper training and calibration compound.29 Aggregated CP is
therefore favorable for small data sets. The combination of
Mondrian CP and aggregated CP works particularly well on
small, imbalanced data sets.
In this study, we apply aggregated, Mondrian CP to develop

classifiers for the prediction of the skin sensitization potential
of small molecules. We start with the development of a binary
classifier that distinguishes nonsensitizers from sensitizers and

Figure 1. Overview of LLNA data sets and subsets employed in this study.
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then explore strategies to obtain a differentiation of weak to
moderate sensitizers from strong to extreme sensitizers. The
performance of the models is determined with thorough
validation protocols and compared to the performance of
existing in silico models. The final classifier, called “Skin
Doctor CP”, is available as a web service, free of charge for
academic use.

■ METHODS
Data Sets. For the purpose of model development and evaluation,

LLNA data sets on the skin sensitization potential of small organic
compounds (Figure 1) were derived from the data published by Alves
et al.30 and Di et al.31 (all data are provided as Supporting
Information, SI). The data set was prepared following a protocol
described previously,32 which includes the removal of counterions,
neutralization, standardization of tautomers, removal of stereo-
chemical information, and removal of duplicate compounds and
compounds with conflicting activity data based on canonical SMILES.
For the current work, we refined this protocol by discarding any
entries for which, based on the information provided by Alves et al.
and Di et al., the exact molecular structure of the compound in
question could not be conclusively confirmed. More specifically, we
discarded any entries that match at least one of the following criteria:

• the CAS number provided refers to a polymer, an unspecified
substance, or an incompletely defined substance (this concerns
49 and 60 entries of the data sets of Alves et al. and Di et al.,
respectively)

• the CAS number provided refers to a multicomponent
substance for which the relevant component could not be
unequivocally identified (this concerns 2 and 0 entries,
respectively)

• the CAS number provided refers to a metal complex (this
concerns 1 and 7 entries, respectively) or a metal salt (this
concerns 1 and 1 entries, respectively)

• the CAS number provided refers to a substance with a
molecular structure that is not consistent with the SMILES
notation provided (this concerns 5 and 5 entries, respectively)

• the CAS number, EC number, compound name, and any
further information provided did not allow to confirm the
molecular structure of the substance in question (this concerns
2 and 40 entries, respectively)

Further, multicomponent mixtures that have been tested negative
and for which the least represented component accounts for at least
one-third of the proportion of the major component were split into
separate entries, each assigned to the “nonsensitizer” class (this
concerns 7 and 15 entries of the data sets of Alves et al. and Di et al.,
respectively). In the case of two-component mixtures that (i) have
been tested positive, (ii) for which one component is listed as a

known nonsensitizer in the data sets of Alves et al. or Di et al., and
(iii) for which the known nonsensitizer accounts for at least one-third
of the mixture, the class label “sensitizer” was assigned to the other
component (this concerns 1 entry derived from the data set compiled
by Di et al.). The curated data set (Table SI_1) as well as the
substances removed by the manual data curation process
(Table SI_2) can be found in the SI published with this article.

Binary Data Set. The binary class labels of the data set were
retrieved by a protocol identical to the one published in ref 32.

Multiclass Data Sets. All compounds included in the data set of Di
et al.31 and approximately half of the compounds included in the data
set of Alves et al.30 are annotated with quinary LLNA data (Figure 1).
The quinary potency information was used to derive a ternary data set
(for the development of a ternary classifier) and a quinary data set
(for the evaluation of the binary classifier with regard to quinary class
memberships) following the identical data processing protocol of
Wilm et al.32

Compounds originating from the work of Alves et al. were assigned
class labels based on the “LLNA class” property, whereas compounds
sourced from the work of Di et al. were assigned class labels according
to the “Classes” property. Compounds labeled as “Nonsensitizer”
(Alves et al.) or “Negative” (Di et al.) were assigned the class label
“non-sensitizer”. For the compilation of the quinary data set, the class
labels “Weak”, “Moderate”, “Strong”, and “Extreme” sensitizers from
both sources were preserved. For the compilation of the ternary data
set, the quinary data were converted according to the following rules:
“Weak” and “Moderate” skin sensitizers from both sources were
assigned to the class “weak to moderate sensitizers”, whereas “Strong”
and “Extreme” skin sensitizers from both sources were assigned to the
class “strong to extreme sensitizers”. Compounds without data on
their skin sensitization potential were removed (220 compounds).
Following the conversion of the activity labels, three compounds were
removed from the data set because of conflicting class labels.

Determination of Functional Groups for Data Set Analysis.
The binary data set was analyzed with respect to the prevalence of the
functional groups in organic chemistry encoded by 309 SMARTS
patterns.33 SMARTS pattern matching was performed with RDKit.34

Any patterns matched by at least 20 out of the investigated
compounds (1285 in the case of data set analysis, 275 in the case
of performance analysis of the binary classifier) were included in the
analysis.

Descriptor Calculation. Skin Doctor CP uses MACCS keys
(166 bits), which have been identified as the most suitable descriptors
during the development of Skin Doctor.32 These descriptors are
calculated with RDKit.

Model Generation with Aggregated Mondrian Conformal
Prediction. Definition of Training and Test Sets. The binary data
set was divided into a training set (80% of the data) and a test set
(20% of the data). To maximize the comparability of the current
study with our previous work,32 we preserved the data set split.

Figure 2. Schematic workflow of the aggregated Mondrian CP model.
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However, because of the data set refinements described above (first
and foremost, the removal of potentially problematic compounds),
this means that the test set for the current study is effectively a subset
of the previous work (test set present work: 257 compounds; test set
previous work: 284 compounds). The 14 additional compounds that
resulted from the splitting of two-component mixtures were added to
the training set (training set present work: 1028 compounds; training
set previous work: 1132 compounds). For both multiclass data sets,
the same split into training and test sets was performed as on the
binary data set. Thus, the training and test sets of the multiclass data
sets are subsets of the training and test sets of the binary data set.
Each training set was divided into a proper training set (80%) and a

calibration set (20%) by stratified random splitting with the
train_test_split function of the model_selection module of scikit-
learn35 (data shuffling prior to data set splitting enabled), as shown in
Figure 2. A random forest model was derived with scikit-learn from
each proper training set (hyperparameters adopted from Wilm et al.,32

with n_estimators = 1000, max_features = “sqrt”, random_state = 43)
and applied to the calibration set.
Model Development Approach. Two binary aggregated Mondrian

CP models based on RF estimators were generated (technical details
of the CP approach are provided in the next subsection): one classifier

to distinguish nonsensitizers from sensitizers, and one classifier to
distinguish weak to moderate sensitizers from strong to extreme
sensitizers. The initial version of the classifier distinguishing
nonsensitizers from sensitizers was evaluated on the respective
training set within a 10-fold cross-validation framework. The second
and final version of this classifier was trained on the full training set
and evaluated on the corresponding test set. The performance of the
final binary classifier was also evaluated on the quinary test set with
regard to the quinary class membership. The classifier distinguishing
weak to moderate sensitizers from strong to extreme sensitizers was
trained and tested on all sensitizers included in the ternary training
and test sets, respectively.

Finally, both classifiers were combined in a two-step workflow.
First, the model distinguishing nonsensitizers from sensitizers (in its
final version) is applied to each compound of interest. Compounds
classified by that model as sensitizers (independent of the predicted
class membership of the nonsensitizing class) are then subjected to
predictions with the second classifier to distinguish weak to moderate
sensitizers from strong to extreme sensitizers. The two-step workflow
was evaluated by applying it to the ternary test set.

Figure 3. Schematic overview of the workflow underlying the ternary prediction of the skin sensitization potential of compounds. In the first step,
the binary model differentiating nonsensitizers from sensitizers (as described in the subsection “Development of Binary Classifier for Predicting
Skin Sensitization Potential”) is applied to a compound. Depending on the p-values and the selected significance level (a compound is considered
to belong to a certain class if the corresponding p-value exceeds the selected error significance), the compound is labeled “sensitizer”, “non-
sensitizer”, “both”, or “null”. For compounds labeled “non-sensitizer” or “null”, these predictions are final. Compounds labeled “sensitizer” or “both”
are forwarded to a second model for the discrimination of weak to moderate from strong to extreme sensitizers. Note that compounds labeled by
the first binary classifier as “both” and labeled by the second binary classifier as “weak to moderate sensitizer” or “strong to extreme sensitizer”
assigned to more than one class. Compounds labeled “sensitizer” by the first model and not assigned to any potency class by the second model are
automatically labeled as both weak to moderate sensitizers and as strong to extreme sensitizers. This procedure is to ensure consistent predictions
of the binary and the ternary classifiers. Note that this procedure increases the validity and decreases the efficiency of the second model (the
performance measures validity and efficiency are explained in the section “Performance metrics”).
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Technical Aspects of Conformal Prediction. Nonconformity
scores (α-values) for the calibration and test data were calculated
based on the following nonconformity function for each class i:

α = −
̂ | − ̂ |≠P y x max P y x

0.5
( ) ( )

2i
i i y y ii

with P̂(yi|xi) being the class probability for class i returned by the RF
model, and maxy≠yiP̂(y|xi) being the maximum class probability for
any other class returned by the RF model.
The α-values for each class (nonsensitizers and sensitizers, or weak

to moderate sensitizers and strong to extreme sensitizers) from the
calibration set were sorted, and p-values for each class were derived
for each test compound based on the rank of the corresponding α-
value of the test compound.
This procedure to derive p-values for each compound of the test set

by developing a RF model on the proper training data and applying it
to the calibration and test sets was repeated 100 times with different
splits into proper training and calibration data to achieve aggregated
CP. This was realized by random states (ranging from 0 to 99)
assigned to the function used to split the data into a proper training
and a calibration set. All 100 models were applied to the test data, and
the median p-values from all 100 runs were used as the final p-values
for the test data.
If the p-value of a test compound for a given class exceeded the

selected significance level ε, the compound was assigned to that class.
A compound may be assigned to a single class, to several classes, or to
no class, depending on the p-values and significance level.
Combined Workflow for Prediction of Ternary Skin

Sensitization Potential. Finally, the two binary models were
integrated into a workflow for the ternary classification of the skin
sensitization potential of compounds (Figure 3).
Within the workflow, the binary model is first applied to distinguish

nonsensitizers from sensitizers. If this model assigns a compound to
the sensitizer class (note that the compound may, in addition, be
assigned to the nonsensitizer class), it is forwarded to the second
classifier to differentiate weak to moderate from strong to extreme
sensitizers. To result in a ternary prediction, the predictions of the two
classifiers are combined in an array of three values (Booleans), one for
each potency class. The selection rules of this process are illustrated in
Figure 3.
Performance Metrics. For all models, the CP-specific measures

validity and efficiency were used for evaluation. In the context of CP,
validity is defined as the percentage of predictions that include the
true class of a compound. For a binary model, this includes distinct
predictions (i.e., predictions that predict exactly one class to be true)
for the true class as well as predictions that state both classes are true.
Analogous to a classical model, which returns correct predictions with
a defined reliability only for compounds that are within the AD of the
model, predictions made by a CP model can be considered valid as
long as the correct label is part of the returned prediction set. The
percentage of compounds for which a distinct prediction is obtained is
quantified as efficiency. As such, efficiency is equivalent with the
definition of coverage found for most non-CP models in the field of
toxicity prediction (and also consistent with the definition of coverage
used for the non-CP version of Skin Doctor).32 Analogous to the
definition of the AD in classical models, validity and efficiency were
calculated based on all predictions. In addition, the values of the
general performance measures accuracy (ACC), Matthews correlation
coefficient (MCC),36 correct classification rate (CCR, also known as
balanced accuracy), sensitivity (SE), specificity (SP), positive
predictive value (PPV) and negative predictive value (NPV) were
calculated based on all distinct predictions (i.e., all predictions that
assigned a compound to exactly one activity class). For the binary as
well as for the ternary model, class-wise validity and efficiency are the
validity and efficiency measured on a subset of the tested compounds
that have been experimentally determined to belong to the particular
potency class.
For the ternary model, we consider both overall and class-wise

performance, whereby overall performance refers to the mean values

for each of the performance measures from the three potency classes.
Class-wise performance measures are calculated individually for each
potency class. In the cases of the non-CP performance measures
(ACC, MCC, CCR, SE, SP, NPV, and PPV), class-wise performance
values are calculated by combining all experimental and predicted
class labels not belonging to the class of interest so that the
performance measure can be calculated as if defined for two classes.

■ RESULTS
Development of Binary Classifier for Predicting Skin

Sensitization Potential. The processed and refined data sets
of Alves et al. and Di et al. comprise binary activity data for a
total of 946 and 909 substances, respectively. Among those,
562 substances are listed in both data sets. After duplicate
removal (during which 7 unique substances, distributed over
15 entries, were removed because of conflicting class labels),
the (final) binary data set comprises 760 nonsensitizers and
525 sensitizers. The prepared data set was divided into a
training set (610 nonsensitizers and 418 sensitizers) and a test
set (150 nonsensitizers and 107 sensitizers) for model
development and evaluation, respectively (Table 1).

Generation of Initial Binary Classifier and Its Performance
during Cross-validation. An initial binary classifier was trained
on a set of 610 nonsensitizers and 418 sensitizers and tested
within a 10-fold cross-validation framework. The model was
valid at all of the four tested significance levels (ε = 0.05, 0.10,
0.20 and 0.30), meaning that the validity was equal or close to
1−ε. The standard deviations of the model validity and
efficiency were all below 0.04 and 0.05 (Table 2). The highest
standard deviation for each value was generally observed for
ε = 0.05. This observed trend is related to the comparably
small number of compounds for which the model returns
unambiguous results at this significance level.
Some of the models were overconservative (i.e., the validity

was higher than 1−ε), which is a known phenomenon of
aggregated CP classifiers at low significance levels (ε ≤ 0.40)
and is caused by an insufficient ability to properly rank the
compounds of interest based on the selected nonconformity
measure or one of the factors (modeling algorithm, type of
descriptors, etc.) contributing to it. Overconservativeness of
the model does not call into question the validity of the model
and might, on the contrary, be favorable with respect to the
reliability of predictions. Nevertheless, due to the trade-off
between error rate and efficiency with regard to choice of
significance level, overconservativeness coincides with an
unnecessarily low efficiency for the selected significance level.37

At a significance level of 0.05, the model obtained an ACC
of 0.88 and an MCC of 0.73 during cross-validation, with an
efficiency of 0.28. At a significance level of 0.30, predictions
could be made for almost all test compounds (96%), at the
cost of a reduced ACC and MCC (0.76 and 0.51, respectively).
Predictions of compounds being nonsensitizers were very
reliable. For significance levels from 0.05 to 0.30, the NPVs
were between 0.93 and 0.82, indicating that the model could
be particularly valuable in a regulatory context where harmful

Table 1. Composition of Binary Training and Test Data Sets

training set test set

nonsensitizers 610 150
sensitizers 418 107
total no. compounds 1028 257
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properties of substances in question should be ruled out with
high reliability.38 While for the four investigated significance
levels only minor differences were observed for SE (between
0.76 and 0.86) and SP (between 0.76 and 0.89), the PPV
(between 0.69 and 0.80) was lower than the NPV (between
0.82 and 0.93). Therefore, a negative prediction (non-
sensitizer) made by the model seems to be more reliable
than a positive prediction (sensitizer).
We also investigated model efficiency as a function of the

selected significance level (Figure 4). Efficiency is found to

increase steeply with low significance levels, reflecting the
ability of the model to make distinct, single label predictions
for an increasing amount of compounds (if we allow an
increasing amount of erroneous predictions). Maximum
efficiency is reached at a significance level of 0.28. Beyond
this significance level, efficiency again decreases. This reflects
the fact that the CP model will always guarantee an error rate
close to the significance level. If, for example, a significance of
0.5 is desired (which in the binary case corresponds to a
random model), predictions must be assigned to the empty
class to fulfill this criterion (since the underlying model would
have a better predictivity than 0.5).
Generation of Final Binary Classifier and Its Performance

on the Test Set. Following the CV studies, a final binary

classification model, which we call “Skin Doctor CP”, was
trained on the full training set and evaluated on a test set of
150 nonsensitizers and 107 sensitizers (Figure 1). The final
p-values of the test set compounds can be found in Table SI_4.

Overall Performance on the Test Set. The model was valid
for all four significance levels (Table 3). Although the validity
at the significance level of 0.3 was only 0.69, which is 0.01
lower than the expected validity of 1−ε, this value is within the
standard deviation observed for validities within CV. Therefore
we assume that this slight under-predictivity is caused by
statistical fluctuations and consider the model to be valid. The
validity and efficiency of the final model were comparable to
the values for the initial model (Table 3). The NPV (0.94 to
0.84) and SE (0.91 to 0.81) were higher than the PPV (0.83 to
0.65) and SP (0.88 to 0.70) for all of the four significance
levels. While SE and NPV only slowly decreased with
increasing error significance (ΔSE = 0.10 and ΔNPV = 0.10
between significance levels 0.05 and 0.30), SP and PPV
decreased more drastically (ΔSP = 0.18 and ΔPPV = 0.18 over
the range of significance levels). Therefore, negative
predictions produced by this model can be considered reliable
at all significance levels investigated, while positive predictions
should be considered less reliable at high significance levels.
The confusion matrices of the model (Figure 5) reveal that

the decrease in PPV observed with increasing error significance
originates from an increasing tendency of the model to predict
a compound to be a sensitizer (42%, 48%, 49%, and 51% of the
molecules were predicted to be sensitizers at an significance
level of 0.05, 0.10, 0.20, and 0.30, respectively), while the
percentage of experimentally determined sensitizers remained
comparably stable, between 38% and 41%.

Class-Wise Performance on the Test Set. To better
understand the performance of the model within the CP
setting, the class-wise validity and efficiency (i.e., the model’s
validity and efficiency calculated separately for each class of
compounds, nonsensitizers and sensitizers, in the test set) of
the binary classifier were analyzed for the selected significance
levels (Table 4).
The validity of the model was higher for sensitizers than for

nonsensitizers at all significance levels. A slight preference of
the model to produce positive predictions was observed that
increased proportionally with the significance level. Never-
theless, the difference in model validity between nonsensitizers

Table 2. Overall Performance during 10-Fold Cross-validation of Binary Aggregated Mondrian CP Classifier Differentiating
Nonsensitizers from Sensitizers1

ε validity efficiency ACC MCC CCR SE SP NPV PPV

0.05 0.96 (0.02) 0.28 (0.05) 0.88 (0.07) 0.73 (0.15) 0.87 (0.08) 0.86 (0.13) 0.89 (0.09) 0.93 (0.06) 0.80 (0.14)
0.10 0.91 (0.02) 0.51 (0.05) 0.83 (0.03) 0.66 (0.06) 0.84 (0.03) 0.84 (0.07) 0.83 (0.06) 0.89 (0.05) 0.76 (0.05)
0.20 0.82 (0.03) 0.83 (0.04) 0.78 (0.03) 0.56 (0.07) 0.78 (0.04) 0.78 (0.09) 0.78 (0.05) 0.84 (0.05) 0.71 (0.04)
0.30 0.73 (0.04) 0.96 (0.02) 0.76 (0.03) 0.51 (0.06) 0.76 (0.03) 0.76 (0.06) 0.76 (0.05) 0.82 (0.04) 0.69 (0.05)

1Standard deviation in brackets next to the values.

Figure 4. Efficiency of the binary classifier differentiating non-
sensitizers from sensitizers within 10-fold CV in dependence of the
significance level.

Table 3. Overall Performance of Binary Aggregated Mondrian CP Classifier, Differentiating Nonsensitizers from Sensitizers,
on the Test Set

ε validity efficiency ACC MCC CCR SE SP NPV PPV

0.05 0.96 0.32 0.89 0.78 0.89 0.91 0.88 0.94 0.83
0.10 0.91 0.49 0.83 0.66 0.84 0.90 0.78 0.92 0.72
0.20 0.82 0.79 0.77 0.55 0.78 0.84 0.72 0.88 0.65
0.30 0.69 0.92 0.75 0.51 0.76 0.81 0.70 0.84 0.65
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and sensitizers was relatively small and was highest (0.12) at
the significance level of 0.20.
The model was valid for the sensitizer class at all four

significance levels. For the nonsensitizer class, the model was
valid at the significance level of 0.05 and only slightly under-
predictive at the significance levels of 0.10 and 0.20. Since the
deviation from the expected validity is only 0.01 and 0.03,
which is within the standard deviations observed for the
validity of the models during cross-validation, we nevertheless
consider the model as valid for both classes at the significance
levels of 0.10 and 0.20. At the significance level of 0.30, the
validity of the nonsensitizing class was only 0.65. Because the
deviation from the expected validity of 0.70 is not within the

standard deviation observed during cross-validation (0.04), we
assume that this might not only be caused by statistical
fluctuations but might also originate from an underlying
systemic problem of the model. We therefore suggest that
predictions of sensitizer at this significance level be handled
with care.
Differences in efficiency between both classes were similar to

the differences observed for validity. The maximum difference
in efficiency (0.12) was found at the significance level of 0.20.

Analysis of Performance of Final Binary Classifier Based
on Quinary LLNA Data. False predictions are of varying
degrees of concern, depending on the specific application
scenario. In the regulatory context, false negative predictions
will be of primary concern, whereas false positive predictions
during the discovery phase may lead to a costly false
deprioritization of compounds. Moreover, there is a distinction
to be made between the false prediction of a weak skin
sensitizer as nonsensitizer, and the false prediction of an
extreme sensitizer as nonsensitizer. These types of distinction
were examined using the quinary LLNA data (Figure 6).
Quinary LLNA data are available for 124 nonsensitizers, 37

weak sensitizers, 29 moderate sensitizers, 10 strong sensitizers,
and 9 extreme sensitizers in the test set. At the significance
levels of 0.05, 0.10, 0.20, and 0.30, a distinct prediction could
be made for 22%, 53%, 90%, and 82% of compounds in this
subset of the binary test set, respectively.

Figure 5. Confusion matrices reporting the classification results for the final binary classifier on the test set.

Table 4. Class-Wise Performance of Binary Classifier
Differentiating Nonsensitizers from Sensitizers on the Test
Set

ε class validity efficiency

0.05 nonsensitizer 0.96 0.34
sensitizer 0.97 0.30

0.10 nonsensitizer 0.89 0.52
sensitizer 0.95 0.45

0.20 nonsensitizer 0.77 0.84
sensitizer 0.89 0.72

0.30 nonsensitizer 0.65 0.93
sensitizer 0.74 0.91
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The PPV of the quinary subset ranges from 85% at the
significance level of 0.05 to 64% and 68% at the significance
levels of 0.20 and 0.30. Compounds predicted as nonsensitizers
are correctly classified in 90% to 100% of the cases (NPV). At
all significance levels investigated, the majority of sensitizers
falsely predicted to belong to the nonsensitizing class belong to
the class of weak sensitizers. One moderate sensitizer (CAS
No. 5205−93−6, an amino functional methacrylamide
monomer that is a known skin irritant) was falsely predicted
as nonsensitizers at the significance levels of 0.10 or higher. In
addition, a strong sensitizer (CAS No. 106359−91−5, a
complex naphthalenetrisulfonic acid dye and known skin
irritant) has been misclassified as a nonsensitizer at the
significance level of 0.20. No extreme sensitizers have been
misclassified. Thus, there seems to be an inverse trend between
the potency of a sensitizer and the likelihood of it being falsely
predicted as a nonsensitizer, which is an encouraging result.
Analysis of Performance of Final Binary Classifier with

Respect to Functional Groups Present in the Test
Compounds. Using a collection of 309 SMARTS patterns
representing functional groups in organic chemistry, we
identified 35 such groups that are presented in at least 20
compounds of the test set (Table SI_5). At the significance
level 0.3, the binary classifier was found to perform particularly
well (ACC values between 0.83 and 0.90) on compounds that
contained at least one of the following functional groups:
1,5-tautomerizable moiety, amide, phenol, ketone, primary
alcohol, secondary amide, sulfonic acid (derivative), or
carboxylic acid (derivative). Among those, phenols are a

particularly interesting case as the number of nonsensitizers
and sensitizers among this group is nearly balanced (59% vs
41%). The model correctly identified 10 nonsensitizers and 9
sensitizers while only assigning three nonsensitizers and no
sensitizer to the wrong activity class. Note that the model
assigns 19% of the phenols to the empty class, which is the
highest percentage of empty predictions among the 35 selected
functional groups.
In contrast, we found low rates of prediction accuracies

(between 0.56 and 0.67) for compounds comprising a
heteroaromatic ring system with a nonbasic nitrogen atom,
carboxylic esters, and dialkylethers (for the individual groups of
compounds the ratio between nonsensitizers and sensitizers is
well balanced).
The tendencies observed for the significance level of 0.3

could also be recognized for the other significance levels that
we investigated but are based on weaker statistics.

Comparison of Model Performance with Skin Doctor. The
binary classifier enveloped in the CP framework presented in
this work was developed using the identical machine learning
method and hyperparameters as in one of the previously
reported “Skin Doctor” models.32 However, Skin Doctor CP is
trained on a modified training set and tested on a subset of the
test set compared to the original Skin Doctor models. This
limits direct comparability between the two approaches.
Nevertheless, a qualitative comparison was performed here to
estimate the main differences between the two approaches.
Whereas the CP model allows the definition of the error
significance level, the Skin Doctor model (“non-CP model”)

Figure 6. Distribution of the five potency classes among compounds predicted as nonsensitizers or sensitizers by the final binary classifier
differentiating nonsensitizers from sensitizers. The percentages reported in parentheses refer to the total number of compounds reported in each
column.
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features an AD definition that is based on the Tanimoto
coefficient, calculated using Morgan2 fingerprints and averaged
over the five nearest neighbors in the training set. Any
compound with a Tanimoto coefficient below a threshold
(usually 0.5) is considered to be outside of the AD.
When a Tanimoto coefficient of 0.5 is applied as the

threshold for the AD, the classical Skin Doctor model yields a
coverage of 0.96 for the test set (Table 5), which is comparable
to the efficiency of the CP model at a significance level of 0.3
(efficiency 0.92). In this setting, the classical Skin Doctor
model obtained an ACC of 0.73 and an MCC of 0.43, which is
comparable to the performance of the CP model (ACC = 0.75,
MCC = 0.51). When increasing the threshold of the AD to
0.75, the classical Skin Doctor model yielded a coverage of
0.28. This is comparable to the efficiency of the CP model at a
significance level of 0.05 (efficiency 0.32). In this setup, the CP
model clearly outperformed the non-CP model by obtaining an
ACC of 0.89 (vs 0.78) and an MCC of 0.78 (vs 0.59). At a
significance level of 0.2, the performance of the CP model is
comparable to that of the non-CP model with the strict
definition of the AD (ACC 0.77 vs 0.78 and MCC 0.55 vs
0.59), despite superior efficiency/coverage (0.79 vs 0.28).
In-depth analysis of model performance showed that for the

non-CP model the NPV increases with a stricter definition of
the AD, whereas the PPV does not. This means that a stricter
definition of the AD improves the reliability of the negative
predictions but not of the positive ones. Within Skin Doctor
CP, an increase in NPV from 0.84 to 0.94 and in PPV from
0.65 to 0.83 with decreasing error significance from 0.3 to 0.05
was found. Therefore, the use of Skin Doctor CP should in
general be advantageous over the use of the non-CP models of
Skin Doctor.
Development of Ternary Classifier for Predicting Skin

Sensitization Potential. In an attempt to extend the
capabilities of the machine learning approach to distinguish
between three potency classes (nonsensitizer, weak to
moderate sensitizer, and strong to extreme sensitizer), the
feasibility of a two-step ternary model was explored, in which
the (final) binary classifier forwards all compounds predicted
as sensitizers to a downstream binary classifier to discriminate
weak to moderate sensitizers from strong to extreme
sensitizers. To ensure the validity of the two-step approach,
the downstream binary model as well as the combined
workflow was evaluated separately using (a subset of) the
ternary data set. The composition of the full ternary training
and test sets is shown in Table 6.
The binary classifier distinguishing weak to moderate

sensitizers from strong to extreme sensitizers was developed
following the same protocol and identical hyperparameters as
described for the binary model distinguishing nonsensitizers
from sensitizers (RF with 1000 estimators, enveloped by
aggregate Mondrian CP; see Methods for details). This second

model was trained and evaluated on subsets of the ternary
training and test sets that comprise only sensitizing
compounds. Within these subsets, 81% and 78% of the
compounds in the training and test set belong to the class of
weak to moderate sensitizers, respectively, while 19% and 22%
of the compounds belong to the class of strong to extreme
sensitizers, respectively. Unfortunately, the number of
compounds in the training set (344) and test set (85) was
relatively small and not sufficient to produce statistically solid
evidence. The exact numbers in the following section should
therefore not be considered reliable results. Rather, they
should be considered as a proof of concept and an indication
of a route that could be followed in the future with a larger
database when more data become available.

Binary Classifier Distinguishing Weak to Moderate
Sensitizers from Strong to Extreme Sensitizers. The binary
model differentiating between weak to moderate sensitizers
and strong to extreme sensitizers (for p-values see Table SI_4)
was overconservative at all significance levels investigated
(Table 7; validity = 0.94, 0.88, and 0.75 at significance levels of
0.10, 0.20, and 0.30; note that the significance level of 0.05 was
not investigated since the efficiency of the model on the test
set was 8%). As expected for an overconservative model, the
efficiency of the model was comparably low (0.45, 0.71, and
0.98). At the three significance levels investigated, reasonably
high values for SE (between 0.79 and 1.00) and SP (between
0.73 and 0.84) were found. The prediction that a compound is
a weak to moderate sensitizer was highly reliable (NPV
between 0.92 and 1.00) for all significance levels investigated,
while a compound predicted to be a strong or extreme
sensitizer could belong with almost equal probability to each of
the two classes (PPV between 0.47 and 0.58). This strongly
limits the model’s applicability in any use case, but the model
could be improved by a larger data set that includes a higher
number of strong to extreme sensitizers when such data
become available.
The observation of low PPV was also supported by the

confusion matrices shown in Figure 7. The confusion matrices

Table 5. Overall Performance of Corresponding Non-CP Model “Skin Doctor”, Differentiating Nonsensitizers from
Sensitizers, on the Test Set

AD cutoff1 coverage2 ACC MCC CCR SE SP NPV PPV

0 1.0 0.72 0.41 0.70 0.57 0.82 0.74 0.69
≥0.5 0.96 0.73 0.43 0.71 0.60 0.82 0.75 0.69
≥0.75 0.28 0.78 0.59 0.81 0.89 0.73 0.92 0.64

1Defined as the mean Tanimoto similarity to the five nearest neighbors. 2Coverage of the classical Skin Doctor is defined as the percentage of
compounds in the test set that lie within the AD (i.e., for which a reliable prediction can be made by the model). This can be considered
comparable to the definition of efficiency applied in this work, which is defined as the percentage of distinct predictions.

Table 6. Composition of Ternary Training and Test Data
Sets

training set1 test set2

nonsensitizer 510 124
weak to moderate sensitizer 279 66
strong to extreme sensitizer 65 19
total no. compounds 854 209

1Compared to the binary training set, 173 compounds have been
removed because of missing multiclass labels and one compound has
been rejected because of conflicting ternary class labels. 2Compared
to the binary test set, 47 compounds have been removed because of
missing multiclass labels and one compound has been rejected
because of conflicting ternary class labels.
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revealed that only 18% to 23% of the distinct predictions were
made on strong to extreme sensitizers, which is the minority
class.
The classifier is overall overconservative, which is also

reflected in the class-wise validities, all of which are higher than
1−ε (Table 8). Class-wise validities and efficiencies are almost
balanced between both classes, with a maximum difference of
0.09 and 0.10 in validity and efficiency, respectively.

Combined Workflow for Ternary Classification of Skin
Sensitization Potential. Finally we combined, as a proof of
concept, the two binary models in one workflow for the
prediction of ternary skin sensitization potential and passed the
resulting boolean array (storing the class membership of each
compound to the three potency classes investigated) to our
evaluation workflow. Within our test set, there was no case
observed in which the first binary model predicted a
compound to be a sensitizer but the second binary model

predicted the compound to be neither a weak to moderate nor
a strong to extreme sensitizer. We therefore believe there is no
risk of artificially increasing the validity on this test set by
reporting the validity and efficiency of the combined workflow.

Overall Performance on the Test Set. The combined
workflow was valid overall, that is, in terms of the mean values
among the three potency classes (overall validity = 0.92 and
0.80), at the significance levels of 0.10 and 0.20. At the error
significance level of 0.30, the overall validity was only 0.66,
which is 0.04 below the expected validity of 0.70. Although this
value is still within the standard deviation observed for the
significance level of 0.30 during 10-fold CV, it is larger than the
deviations observed for other models and error significances
within this work. We therefore cannot be sure that this under-
predictiveness is only caused by statistical fluctuations and
consider the validity of the model at the significance level of
0.30 as questionable.
The efficiency of the combined workflow (values between

0.42 and 0.90) was lower than or equal to the efficiency of the
binary classifier differentiating between nonsensitizers and
sensitizers (values between 0.49 and 0.92) at the three
investigated significance levels (comparability of the two
models is limited since the combined workflow is evaluated
on only a subset of the data used for evaluation of the binary
classifier) and lower than the efficiency of the binary classifier
differentiating between weak to moderate and strong to
extreme sensitizers (values between 0.45 and 0.98).
Satisfactory ACC values (from 0.90 to 0.73 for the

significance levels investigated) and MCC values (from 0.78

Table 7. Overall Performance of Binary Model Distinguishing Weak to Moderate Sensitizers from Strong to Extreme
Sensitizers on the Test Set

ε validity efficiency ACC MCC CCR SE SP NPV PPV

0.10 0.94 0.45 0.87 0.70 0.92 1.00 0.84 1.00 0.58
0.20 0.88 0.71 0.83 0.63 0.87 0.92 0.81 0.97 0.57
0.30 0.75 0.98 0.75 0.45 0.76 0.79 0.73 0.92 0.47

Figure 7. Confusion matrix of the binary model distinguishing weak to moderate sensitizers from strong to extreme sensitizers on the test set.

Table 8. Class-Wise Performance of Binary Model
Distinguishing Weak to Moderate Sensitizers from Strong
to Extreme Sensitizers on the Test Set

ε class validity efficiency

0.10 weak to moderate sensitizers 0.92 0.47
strong to extreme sensitizers 1.00 0.37

0.20 weak to moderate sensitizers 0.86 0.71
strong to extreme sensitizers 0.95 0.68

0.30 weak to moderate sensitizers 0.74 0.97
strong to extreme sensitizers 0.79 1.00

Table 9. Overall Performance of Combined Workflow for Ternary Prediction of Skin Sensitization Potential on the Test Set1

ε validity efficiency ACC MCC CCR SE SP NPV PPV

0.10 0.92 0.42 0.90 0.78 0.91 0.91 0.93 0.92 0.84
0.20 0.80 0.71 0.80 0.63 0.79 0.79 0.89 0.87 0.71
0.30 0.66 0.90 0.73 0.54 0.70 0.70 0.86 0.84 0.64

1All performance measures are reported as the mean of the corresponding performance measure over all classes investigated.
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to 0.54 for the significance levels investigated) were achieved
on the ternary test set (Table 9).
Analysis of the confusion matrices of the combined

workflow on the test set (Figure 8) revealed that, at a
significance level of 0.10 and 0.20, only 7% (6 out of 88 and 10
out of 148, respectively) of the compounds with distinct
predictions were experimentally assigned as strong or extreme
sensitizers. Thus, we expect the model to have limited impact
on the prediction of strong to extreme sensitizers.
At a significance level of 0.30, which covers 90% of the test

data, only 10% (18 out of 188) of the compounds were
experimentally labeled as strong or extreme sensitizers. At the
same time, 31 compounds were predicted to belong to this
potency class. The likelihood of a compound predicted as
being a strong or extreme sensitizer to belong to any of the
three potency classes under investigation is almost equal for all
three classes. A prediction with such a high false positive rate is
not generally useful.
Class-Wise Performance on the Test Set. Since the low

efficiency and the high false positive rate of strong to extreme
sensitizers was not reflected by the overall performance
measures, class-wise performance measures for each class of
compounds were evaluated and summarized in Table 10.
At the significance levels of 0.10 and 0.20, the model was

class-wise valid to over-predictive for nonsensitizers and strong
to extreme sensitizers. With validities of 0.88 and 0.74, the
model was slightly under-predictive for weak to moderate
sensitizers at the significance levels of 0.10 and 0.20,
respectively. We assume that the model can nevertheless be
considered valid within the expected fluctuations on such a
small data set. At a significance level of 0.30, the model was
under-predictive for all classes investigated except non-

sensitizers. With the validities for weak to moderate sensitizers
and strong to extreme sensitizers being 0.58 and 0.63, the
model must be considered invalid for these classes at the
significance level of 0.30.
At all three significance levels, we observed a decrease in the

PPV and an increase in the NPV from nonsensitizers to
extreme sensitizers. These trends are related to the number of
samples of each class in the training and test sets. The more
samples of one class are present in a training set, the more
reliable positive predictions and the less reliable negative
predictions for that particular class become. While the PPV
becomes unacceptably low (0.50 and 0.39) for strong to
extreme sensitizers at significance levels of 0.2 and 0.3,
respectively, the NPV stays reasonably high for all classes
investigated (0.83 to 1.00 at ε = 0.10; 0.73 to 0.98 at ε = 0.20;
0.72 to 0.96 at ε = 0.30). Thus, a compound predicted to be a
strong to extreme sensitizer most likely does not belong to that
class, while the prediction that a compound is not a strong to
extreme sensitizer can be considered reliable at all significance
levels. This finding is supported by the reasonably high SE of
strong to extreme sensitizers, indicating that 98%, 94%, and
89% of the strong and extreme sensitizers are correctly
identified at the significance level of 0.10, 0.20, and 0.30,
respectively. These tendencies also reflect the prevalence of the
potency classes within the test set.
Within CP, a compound is assigned to a certain potency

class if the corresponding p-value exceeds the selected
significance level. Therefore, compounds with p-values in
between the significance levels investigated will alter class
membership when the significance level is altered. A prediction
will be constant throughout all significance levels investigated,
as long as the corresponding p-values are smaller than 0.10

Figure 8. Confusion matrix obtained with the combined workflow for the ternary prediction of the skin sensitization potential of all compounds of
the ternary test set.

Table 10. Class-Wise Performance of Combined Workflow for Ternary Prediction of Skin Sensitization Potential on the Test
Set

ε class validity efficiency SE SP PPV NPV

0.10 nonsensitizer 0.93 0.49 0.92 0.89 0.95 0.83
weak to moderate sensitizer 0.88 0.32 0.81 0.94 0.81 0.94
strong to extreme sensitizer 1.00 0.32 1.00 0.98 0.75 1.00

0.20 nonsensitizer 0.81 0.77 0.83 0.83 0.90 0.73
weak to moderate sensitizer 0.74 0.64 0.74 0.89 0.72 0.90
strong to extreme sensitizer 0.89 0.53 0.80 0.94 0.50 0.98

0.30 nonsensitizer 0.70 0.90 0.78 0.86 0.89 0.72
weak to moderate sensitizer 0.58 0.88 0.66 0.84 0.64 0.84
strong to extreme sensitizer 0.63 0.95 0.67 0.89 0.39 0.96
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(the lowest significance level investigated for the combined
workflow) or larger than 0.30 (the highest significance level
investigated in this work). The violin plots of the p-values
returned by the two binary classifiers (Figure 9) visualize the
distribution of p-values for each of the predicted classes within
the ternary test set. All four distributions of p-values
investigated show highest densities below 0.5. Compared
with the two p-value distributions returned by the classifier
that differentiates between nonsensitizers and sensitizers, the
two distributions returned by the classifier differentiating
between weak to moderate sensitizers and strong to extreme
sensitizers comprise a lower percentage of compounds with p-
values in extreme regions (below 0.05 or above 0.8). Thus,
predictions are more likely to change depending on the
significance level. The low-populated class of strong to extreme
sensitizers intensifies this tendency compared to the weak to
moderate sensitizing class.
Comparison of Ternary Classifier with Recently Published

Model by Di et al. The data set of Di et al.31 is one of the two
data resources employed for the testing and development of
Skin Doctor and Skin Doctor CP. Di et al. derived ternary in
silico models for the prediction of the skin sensitization
potential of compounds from their data. The model that they
selected as their best model uses MACCS keys just like ours,
but their modeling algorithm differs (CP+RF vs SVM), and
although similar, the data sets used for training and testing by
Di et al. and by us are not identical. This makes a direct
comparison of both models difficult. Indicators suggest that the
overall performance of both models is comparable. With a
coverage of 98% of the compounds of the test set, the model of
Di et al. was reported to obtain an ACC of 0.71, whereas our
model, at a significance level of 0.30, obtained an ACC of 0.73
on our test set (see Table 11 for details). At this significance
level, the efficiency of our model (90%) is lower than the
coverage of the Di et al. model (98%; recall that we consider
the efficiency of a CP classifier to represent a similar concept to
the coverage of a non-CP model). The efficiency of our model
decreases further at lower significance levels, to 42% and 71%
at the significance levels of 0.10 and 0.20, respectively.
However, at the significance levels of 0.10 and 0.20, our
combined workflow exhibits higher overall performance
(ACC = 0.90 and 0.80, respectively) than the Di et al. model
(ACC = 0.71).

From our investigations of the class-wise performance of our
own ternary classifier, we know that its capacity to discriminate
weak to moderate from strong to extreme sensitizers is
insufficient. Since this limitation is mainly caused by a lack of
LLNA data, we found it surprising that the ternary classifier of
Di et al. seems to not suffer from this problem. Therefore, we
reconstructed the ternary model published by Di et al. using
the identical training and testing data, the identical type of
descriptors (MACCS keys fingerprint) and the same modeling
algorithm (SVM, probability = True, gamma = 0.125). For this
reconstructed model, we found similar overall performances as
reported by Di et al., who did not publish any values pertaining
to the class-wise performance of their model. Like the original
model of Di et al., the reconstructed model achieved an ACC
of 0.80 on the external test set. On the test set, the
reconstructed model achieved an ACC of 0.70 (further
indicators: SE = 0.60, SP = 0.83, NPV = 0.83, and PPV =
0.67). Since we did not apply any AD, the reconstructed model
has a coverage of 100%. Di et al. report a coverage of 98% on
the test set and similar but slightly better performance
measures (see above). Differences in performance might
originate from our not applying any AD definition (in contrast
to Di et al.) and the usage of different modeling software with
perhaps different default values.
Of particular interest, however, is how the class-wise

performance of the reconstructed model compares to that of
our ternary classifier. This experiment reveals that the
reconstructed Di et al. model suffers from class-wise
unreliability just as our own ternary classifier does
(Tables 12 and 13). The SE of the reconstructed Di et al.
model is unsatisfyingly low for strong to extreme sensitizers

Figure 9. Violin plots of the distribution of p-values obtained for the ternary test set for the different classes of compounds as returned by the
binary classification models: (A) complete test set; (B) detailed view of the p-value distributions close to the investigated significance levels, only
considering p-values equal to or between 0.05 and 0.30. The median of the p-values for each potency class is indicated by a blue horizontal line.

Table 11. Comparison of Overall Performance Measures of
Best Ternary Model Reported by Di et al. and Our
Combined CP Workflow for Ternary Classification Applied

ACC SE SP NPV PPV
coverage/
efficiency

Di et al. 0.71 0.61 0.83 0.84 0.68 98%

combined CP workflow
at significance level of
0.3

0.73 0.70 0.86 0.84 0.64 90%

our reconstruction of the
model reported by Di
et al. (without AD
applied)

0.70 0.60 0.83 0.83 0.67 100%
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(0.30 on the test set and 0.05 on the external test set). The
confusion matrices (Figure 10) show that the model only very
rarely predicts that a compound belongs to the class of strong
to extreme sensitizers. This is a similar finding to what we
observed with our own CP-based ternary classifier (see above;
Table 10). These results indicate that also our reconstructed
Di et al. model is unable to properly differentiate between the
two classes of skin sensitizers.

■ CONCLUSION
In this work, we explored the scope and limitations of
aggregated Mondrian CP in the development of approaches for
the binary and ternary classification of compounds with respect
to their skin sensitization potential. First, we developed and
evaluated a binary classifier to differentiate nonsensitizers from
sensitizers. The CP model was found to be valid for all classes
at nearly all significance levels investigated and revealed to be
favorable in terms of the portion of compounds for which a
distinct or reliable prediction could be made compared to our
previously published non-CP RF model that was trained and
tested on the identical descriptors and a similar but slightly
larger data set.
Second, we developed and tested a binary classifier that

differentiates weak to moderate sensitizers from strong to

extreme sensitizers based on a data set containing all
sensitizing compounds with ternary class information from
our ternary data set. Although the model was valid both overall
and class-wise, and resulted in reasonable efficiencies, the
model must be taken with caution due to the low quantity of
data available for development and testing. The model was
found to be not sufficiently reliable when being applied to
strong to extreme sensitizers.
Finally, we integrated both binary classifiers within a

combined workflow to result in a ternary prediction of the
skin sensitization potential. We showed that the combined
workflow, which was overall valid at the significance levels of
0.10 and 0.20, suffered from poor PPV for strong and extreme
sensitizers at the significance levels of 0.20 and 0.30. This limits
the ability of the model to correctly identify compounds
belonging to that class. Investigation of a recent ternary model
published by others31 indicated that a low class-wise
performance despite satisfying overall performance might
also be a problem elsewhere and should be further investigated
when publishing models developed using the currently
available LLNA data.
From our studies, we conclude that aggregated Mondrian

CP is a favorable approach for small and imbalanced data sets
such as the LLNA data used in this work. This CP approach
seems to be capable of improving the reliability and efficiency/
coverage of binary classifiers for skin sensitization potential
compared to non-CP approaches. In addition, CP offers the
advantage of defined error rates that differentiate reliable from
unreliable predictions without the need for a manually set
threshold for a possible AD cutoff.
The ternary prediction of sensitizing potential would be

highly relevant in a real-world setting. Our analysis has
indicated that aggregated Mondrian CP provides benefits in
efficiency and performance compared to the non-CP approach
in this case as well. However, the amount of data currently
available is unfortunately too small to properly distinguish
different classes of sensitizing compounds, which strongly
limits the applicability and reliability of the model. For better
modeling, as well as for a statistically more solid evaluation of
the model, more data (especially on strong and extreme
sensitizers) are urgently needed.
Skin Doctor CP is available via a public web service at

https://nerdd.zbh.uni-hamburg.de/skinDoctorII.

Table 12. Class-Wise Performance of Reconstructed Non-
CP SVM MACCS Model on the Di et al. Test Set

class SE SP PPV NPV
number of
compounds

nonsensitizer 0.79 0.71 0.65 0.83 33
weak to moderate
sensitizer

0.72 0.79 0.76 0.76 39

strong to extreme
sensitizer

0.30 0.97 0.60 0.91 10

Table 13. Class-Wise Performance of Reconstructed Non-
CP SVM MACCS Model on the Di et al. External Test Set

class SE SP PPV NPV
number of
compounds

nonsensitizer 0.88 0.6 0.88 0.60 461
weak to moderate
sensitizer

0.59 0.88 0.54 0.90 115

strong to extreme
sensitizer

0.05 0.98 0.10 0.96 22

Figure 10. Confusion matrices of the reconstructed model of Di et al.
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(14) Wilm, A., Kühnl, J., and Kirchmair, J. (2018) Computational
Approaches for Skin Sensitization Prediction. Crit. Rev. Toxicol. 48,
738−760.
(15) ECHA (European Chemicals Agency). (2017) The use of
alternatives to testing on animals for the REACH regulation, third report
under article 117(3) of the REACH regulation, ECHA. https://echa.
europa.eu/documents/10162/13639/alternatives_test_animals_
2017_en.pdf (accessed Jul 10, 2019).
(16) Jowsey, I. R., Basketter, D. A., Westmoreland, C., and Kimber,
I. (2006) A Future Approach to Measuring Relative Skin Sensitising
Potency: A Proposal. J. Appl. Toxicol. 26, 341−350.
(17) Safford, R. J., Api, A. M., Roberts, D. W., and Lalko, J. F. (2015)
Extension of the Dermal Sensitisation Threshold (DST) Approach to
Incorporate Chemicals Classified as Reactive. Regul. Toxicol.
Pharmacol. 72, 694−701.
(18) OECD. (2004) OECD Principles for the Validation, for
Regulatory Purposes, of (Quantitative) Structure-Activity Relationship
Models, OECD. https://www.oecd.org/chemicalsafety/risk-
assessment/37849783.pdf.
(19) Netzeva, T. I., Worth, A., Aldenberg, T., Benigni, R., Cronin, M.
T. D., Gramatica, P., Jaworska, J. S., Kahn, S., Klopman, G., Marchant,
C. A., Myatt, G., Nikolova-Jeliazkova, N., Patlewicz, G. Y., Perkins, R.,
Roberts, D., Schultz, T., Stanton, D. W., van de Sandt, J. J. M., Tong,
W., Veith, G., and Yang, C. (2005) Current Status of Methods for
Defining the Applicability Domain of (quantitative) Structure-Activity
Relationships. The Report and Recommendations of ECVAM
Workshop 52. ATLA, Altern. Lab. Anim. 33, 155−173.
(20) Carrio,́ P., Pinto, M., Ecker, G., Sanz, F., and Pastor, M. (2014)
Applicability Domain ANalysis (ADAN): A Robust Method for
Assessing the Reliability of Drug Property Predictions. J. Chem. Inf.
Model. 54, 1500−1511.
(21) Klingspohn, W., Mathea, M., Ter Laak, A., Heinrich, N., and
Baumann, K. (2017) Efficiency of Different Measures for Defining the
Applicability Domain of Classification Models. J. Cheminf. 9, 44−61.
(22) Vovk, V., Gammerman, A., and Shafer, G. (2005) Algorithmic
Learning in a Random World, Springer Science & Business Media.
(23) Norinder, U., Carlsson, L., Boyer, S., and Eklund, M. (2015)
Introducing Conformal Prediction in Predictive Modeling for
Regulatory Purposes. A Transparent and Flexible Alternative to
Applicability Domain Determination. Regul. Toxicol. Pharmacol. 71,
279−284.
(24) Norinder, U., Rybacka, A., and Andersson, P. L. (2016)
Conformal Prediction to Define Applicability Domain − A Case
Study on Predicting ER and AR Binding. SAR and QSAR in
Environmental Research 27, 303−316.
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