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Effects of Therapeutic Hypothermia
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Therapeutic hypothermia has been used for treating brain injury after out-of-hospital

cardiac arrest. Its potential benefit on minimizing myocardial ischemic injury has been

explored, but clinical evidence has yet to confirm positive results in preclinical studies.

Importantly, therapeutic hypothermia for myocardial infarction is unique in that it can be

initiated prior to reperfusion, in contrast to its application for brain injury in resuscitated

cardiac arrest patients. Recent advance in cooling technology allows more rapid cooling

of the heart than ever and new clinical trials are designed to examine the efficacy of

rapid therapeutic hypothermia for myocardial infarction. In this review, we summarize

current knowledge regarding the effect of hypothermia on normal and ischemic hearts

and discuss issues to be solved in order to realize its clinical application for treating acute

myocardial infarction.

Keywords: hypothermia, myocardial infarction, infarct size, endovascular, physiology, cardiac function, clinical
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INTRODUCTION

The impact of temperature on human biology has been researched extensively and a number
of experimental studies have shown that lowering body temperature is capable of protecting
tissues from injury (1–7). To take advantage of this protective effect, the concept of therapeutic
hypothermia (TH) has been developed and tested in patients with various diseases. Different levels
of hypothermia including mild (32–35◦C), moderate (28–32◦C), severe (20–28◦C), and profound
(<20◦C) were proposed (8). Clinical application of TH for acute diseases is mainly limited to
mild and moderate hypothermia due to technical challenges and increased risks of arrhythmias
at lower temperature range. Meanwhile, deeper TH has been applied to protect organs during
circulatory arrest for cardiac and aortic surgeries (9). Successful demonstration of injury limitation
in experimental studies and early clinical trials (10, 11) prompted researchers to use TH also for
ST-elevation myocardial infarction (STEMI). However, much of the current clinical evidence of
TH in organ protection was derived from studies that focused on neurological injury, while those
focusing on the ischemic heart remain limited. Whereas reperfusion has already taken place in the
brains of patients after resuscitation for out-of-hospital cardiac arrest (OHCA), the circumstances
of STEMI are unique in that hypothermia can be applied prior to the reperfusion of ischemic
myocardium. It therefore offers targeting of reperfusion injury in addition to post-reperfusion
injury. The emergence of new devices and techniques that allow rapid cooling of the heart opens the
door for discussion on whether priority should be placed on the attainment of a target temperature
or on more rapid reperfusion. In this review, we summarize our current knowledge related to the
impact of TH on the heart and discuss its potential benefit for treating STEMI.
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ECG CHANGES AND ARRHYTHMIAS
ASSOCIATED WITH TH

A decrease in heart rate is the most consistently reported
electrophysiological change associated with TH in both normal
and ischemic hearts (12–15). In addition to a reduced sinus
rate, atrial and ventricular conduction velocities seem to
decrease under hypothermia as represented by prolongation
of PR, QRS, and QT intervals (16–18). Whether profound
bradycardia during TH for MI would require intervention
remains unclear, but bradycardia was apparently a favorable
marker for patients undergoing TH after resuscitation following
OHCA (14). Although it is unknown if lower heart rate in
this study actually contributed to the good outcome or it
was just reflecting less myocardial injury, bradycardia may
be treated conservatively unless there is an evidence of
organ hypo-perfusion.

The J wave is a characteristic ECG change found in some
hypothermic patients. Up to 30% of patients after OHCA
presented with J waves during TH and its prevalence was
found to be higher in patients with STEMI (19). In cases
of accidental hypothermia, the J wave was observed more
frequently in patients having lower body temperatures (20, 21),
suggesting a temperature dependent increase in its appearance.
Interestingly, there was also an inverse correlation between
temperature and the size of the J wave (21). These ECG changes
sometimes mimic those of STEMI. In fact, Rolfast et al. (19)
reported ST changes during TH in some OHCA patients who
lacked actual coronary occlusion, which was confirmed by
coronary angiograms.

Potential increase in incidence of atrial and ventricular
arrhythmias has been a concern for applying TH in STEMI
patients. In the COOL AMI EU pilot trial, which used an
endovascular cooling method, the incidence of atrial fibrillation
was more common in the TH group (32%) compared to
the control group (8%, P = 0.07) (22). Using naïve pigs,
Manninger et al. (18) found that TH prolongs the effective
atrial refractory period at 33◦C, which was accompanied by
an increase in pacing-induced atrial fibrillation. However, the
serum potassium level was decreased during hypothermia in
this study, suggesting a potential influence of the dysregulated
electrolyte. In contrast, in the post hoc analysis of a Targeted
Temperature Management (TTM) trial, TH was not associated
with the incidence of atrial fibrillation in patients with new-
onset STEMI (23). Combined analysis of the RAPID MI-ICE
and the CHILL-MI trials also exhibited no difference in atrial
fibrillation incidence (24). Within the temperature range used
in STEMI cooling studies, no significant increase in ventricular
arrhythmias has been reported (22, 24), a finding consistent
with animal studies (25). Taken together, mild TH seems
not to significantly increase the occurrence of arrhythmia in
general STEMI patients, but there could be a subpopulation of
patients more prone to the development of arrhythmias, such
as those with electrolyte dysregulation. Because hypothermia
can dysregulate electrolyte balance through volume shift and by
influencing kidney excretion (26), careful electrolyte monitoring
is likely important.

IMPACT OF TH ON CARDIAC FUNCTION

In non-diseased hearts, several ex vivo studies reproducibly
showed that hypothermia increased cardiac contractility (27–
30). Despite increasing contractility, however, myocardial oxygen
consumption remained similar and hypothermia was thus
believed to improve myocardial energy efficiency (27, 31). The
contractility increase was accompanied by prolonged systolic
time (27, 32), resulting in a delay in achieving end-systole
during ventricular ejection. Because of the prolonged systole,
systolic functional parameters that include time component
(e.g., maximum dP/dt, tissue Doppler velocity) did not
necessary indicate improvement, whereas time-independent
contractility parameters such as Emax or slope of end-systolic
pressure-volume relationship generally showed an increase
(12, 27–30). Some conflicting results exist for in vivo studies
showing decreases in stroke volume or cardiac output (33,
34), but this was likely associated with complex biological
interactions such as neuromodulation (35) and altered vascular
resistance (36, 37).

As discussed above, heart rate slows by TH and helps to
compensate for reduced diastolic time associated with prolonged
systole. But even with lower heart rate, diastolic functional

parameters are usually impaired under hypothermic conditions
(37). Both active relaxation, as assessed by cardiac relaxation time

constant, tau, or minimum dP/dt, and left ventricular stiffness, as
assessed by left ventricular end-diastolic pressure or end-diastolic
pressure-volume relationships, can be impaired by cooling (12,
38, 39). Myocardial stiffening associated with lower myocardial
temperature might be responsible for increase in end-systolic
and end-diastolic elastance. Meanwhile, increasing the heart
rate by pacing has been shown to impair systolic function and
also to worsen diastolic dysfunction (40). These results suggest
mechanistic importance of prolonged systole for maintaining
systolic function.

There are also limited data on the impact of hypothermia
on cardiac function during myocardial ischemia, but available
data suggest that functional changes in response to hypothermia
are generally similar to those of the normal heart (41, 42).
Interestingly, some previous studies before the reperfusion
era showed that myocardial function (cardiac output and left
ventricular stroke work) was better in hypothermia-treated
animals after rewarming compared to the normothermic
animals, despite the absence of reperfusion (33, 43). Whether
hypothermia and rewarming also improves cardiac function
without coronary reperfusion as these authors suggested or it
was associated with rewarming induced vasodilation remains
unclear. In either case, more data on rewarming after reperfusion
is necessary to devise appropriate exit strategies for cardiac TH.

In summary, TH seems to have positive or at least
neutral effects on contractility, but negative effects on diastolic
function. Yet, studies that examined the impact of TH on
in vivo heart function are limited and data are not always
consistent with ex vivo findings. These are likely related to
the difference in experimental settings including method and
speed of cooling, animal species, anesthesia, and means of
functional assessment.
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MECHANISMS OF INFARCT REDUCTION

A large body of data on protective mechanisms associated with
hypothermia derives from studies in neurons or in the arrested
human heart at much lower temperatures. Limited studies
have investigated mild hypothermia mediated protection in
the myocardial ischemia setting (44–50). Nevertheless, available
studies report similar mechanisms in the ischemic myocardium
to those found in neuron studies in preventing post-reperfusion
injury (8). However, TH can be applied prior to reperfusion in
STEMI and it may offer an additive benefit by alleviating ischemia
before reperfusion and also by reducing reperfusion injury at the
early phase of reperfusion. Potential mechanisms of infarct size
reduction by TH are discussed here.

Alleviating Ischemia
As discussed above, cardiac contractility is expected to be
preserved during mild TH whereas myocardial energy efficiency
is improved. TH also reduces heart rate. These are expected
to reduce myocardial oxygen consumption related to the
pump function (mechanical work) and alleviate ischemia
progression. TH can also affect cardiac metabolism. Whole body
metabolism and oxygen consumption decrease substantially
as the temperature decreases (51). The relationship between
temperature and oxygen consumption is likely non-linear, with a
greater reduction of oxygen consumption in the first few degrees
from normothermia (52, 53). It is expected that the ischemic
myocardium also follows this relationship, and thus oxygen
demand as well as tissue metabolism are likely suppressed early
after TH induction. In a rabbit heart, initiation of epicardial
cooling beforeMI preserved tissue adenosine triphosphate (ATP)
and glycogen in the ischemic myocardium 20min after MI (44).
Reduced metabolism would also alleviate cellular acidosis, which
can trigger cell death (54). However, it remains uncertain if and to
what extent reductions in metabolism and oxygen consumption
would offer benefit in the already ischemic myocardium, since
energy stores are likely depleted by the time TH is initiated,
unless started immediately after the onset of ischemia. Using a
dog isolated heart, Jones et al. (55) reported that despite a 50%
reduction in both ATP utilization and anaerobic glycolytic ATP
production, energy deprivation could not be prevented and all
hearts resulted in contracture-rigor, although with some delay
in the hypothermia treated hearts. Thus, it is convincing that
mechanisms other than mere reduction in energy consumption
play important roles in myocardial protection during ischemia
and reperfusion processes. That being said, slowing of energy
utilization might offer large benefits to patients who have
rich collateral supply to the ischemic myocardium, those with
partially recanalized coronary, or those who arrived hospital early
after the ischemia onset.

Reducing Reperfusion Injury
Reperfusion injury is estimated to cause around 50% of total
myocardial injury in MI (56). Various mechanisms contribute
to reperfusion injury and hypothermia seems to inhibit many
of these pathological processes at the cellular level (26, 57).
For example, TH has been shown to reduce cellular calcium

load after reperfusion (58), which causes cell necrosis via
the opening of mitochondrial permeability transition pores.
Hypothermia-mediated apoptosis inhibition has been shown in
many studies of neuron injury (59, 60), but data in myocardial
ischemia-reperfusion injury remain scarce. In vitro studies using
cardiomyocyte cell lines indicate that apoptosis of these cells at
reperfusion following oxygen/energy deprivation is suppressed
by TH (61, 62). Using an isolated rabbit heart, Ning et al.
(63) reported reduced apoptosis in hearts maintained at 30◦C
during ischemia compared to those maintained at 34◦C, but
unfortunately, this study did not include settings at higher
temperatures. Upon ischemia-reperfusion, rapid increases in
oxygen radicals induce tissue oxidative stress, which has been
shown to be inhibited by TH in both the heart (64) and neurons
(65). Additionally, maintenance of cellular membrane integrity
by hypothermia might prevent cellular edema. This is supported
by a study that reported reduced myocardial edema after TH
which was detected by magnetic resonance imaging in a pig
model of ischemia-reperfusion (66). Hypothermia has also been
reported to suppress post-ischemic inflammation via reduction
of pro-inflammatory cytokine release (67) and local immune cell
activation (66).

At the molecular level, Yang et al. (68) showed that
hypothermia (35◦C) increases extracellular signal-regulated
kinase (ERK) activity in isolated rabbit hearts, the inhibition
of which abolished the beneficial effects on infarct size. Using
rat isolated hearts, Mochizuki et al. (46) reported that nitric
oxide (NO) and phosphatidylinositol 3’-kinase (PI3K) are the
key molecules in hypothermia (34◦C) mediated infarct size
reduction. Other studies also reported that increased AKT
phosphorylation (47), reduced p53 expression, and increased
heme-oxygenase 1 (50) play major roles in hypothermia-
mediated reduction of reperfusion injury.

Interestingly, several reports indicate that hypothermia
initiated after reperfusion does not reduce infarct size, whereas
its initiation before reperfusion does so even if it is delayed
from onset of the ischemia (69, 70). These results suggest
that hypothermia may precondition the heart to alleviate
injury associated with the very acute phase of reperfusion,
which is expected to be the major portion of total reperfusion
injury as shown in Figure 1. This might be the unique
feature of hypothermia that allows alteration of ischemic
myocardial wall property i.e., temperature, through endocardial
transmission in the absence of coronary recanalization,
which is not possible by pharmacological approaches. It
remains uncertain, however, what mechanisms underlie
in this protective preconditioning effect, since most of the
previous reports studied myocardial molecular changes after
the reperfusion.

IMPACT OF TH ON CORONARY FLOW –
MICROVASCULAR OBSTRUCTION

In addition to the reduction of infarct size, TH has been shown
to offer beneficial effects on post-reperfusion coronary flow. In a
series of experiments, Hale et al. (71, 72) reported that direct ice
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FIGURE 1 | Expected impact of therapeutic hypothermia on myocardial

ischemia and reperfusion injury. The pink line shows the time course of

myocardial injury associated with ischemia and reperfusion. X axis indicates

time after ischemia onset and Y axis indicates infarcted myocardium relative to

ischemia area-at-risk. Largest injury is expected just after the reperfusion. Blue

line shows the expected time course of myocardial injury with TH when

applied at the same time as the ischemia. Depending on when TH is started,

the line may diverge at that time point. Preclinical data suggest that TH started

at the time of reperfusion does not reduce myocardial injury. Therefore, TH

during ischemia likely has preconditioning effect that prepares the myocardium

for reperfusion. Expected strength of this preconditioning effect, ischemia

alleviation, and attenuation of reperfusion injury are shown in the top of the

Figure.

bag cooling of the rabbit heart initiated at the peri-reperfusion
period reduced the no-reflow phenomenon without a change in
acute infarct size. This result is supported by a study in pigs by
Gotberg et al. (73), which demonstrated significant reduction
of microvascular obstruction in the ischemic area as assessed
by single photon emission computed tomography. However,
clinical trials have yet to confirm these findings in humans and
one randomized trial failed to find differences in the size of
microvascular obstruction areas between patients treated with
hypothermia and controls (74). More recently, Testori et al. (75)
also reported that microvascular obstruction area assessed by
cardiac magnetic resonance imaging was not different between
the patients treated with and without TH 4 days after the onset
of STEMI.

TH FOR CARDIOGENIC SHOCK
ASSOCIATED WITH STEMI

As discussed above, mild TH increases cardiac contractility.
Vasoconstriction of the peripheral vasculature increases systemic
vascular resistance (36, 37) and raises arterial pressure. In
addition, systemic hypothermia reduces metabolic demand
of the whole body (76), which improves supply/demand of

the non-cardiac organs. Therefore, theoretically, hypothermia
would be an appropriate therapy for cardiogenic shock.
Clinical studies in cardiogenic shock patients after cardiac
surgery reported an increase in venous oxygen saturation
upon hypothermia, indicating improved whole body
oxygen supply/demand (12, 77, 78). Meanwhile, post-hoc
analysis of TTM trial found that patients that required
high dose of vasopressors were more common in the
33◦C group than 36◦C group (79). Whether this would
be the same for patients in cardiogenic shock remains
unclear. In a recent randomized trial involving 40 patients
with cardiogenic shock, hypothermia failed to improve
cardiac power as well as clinical outcome (80). Because
only around half of the patients were STEMI-associated
cardiogenic shock, more studies are needed to determine if
hypothermia is safe and efficacious in treating STEMI-associated
cardiogenic shock.

ANIMAL STUDIES OF TH FOR REDUCING
MYOCARDIAL INFARCT SIZE

Infarct size reduction by TH has been studied in various animal
species with variety of cooling methods, ischemia duration,
cooling duration, and timing of cooling initiation. While small
animal studies are useful in studying the mechanisms, large
differences in body size, morphology, and heart size that
allow much faster cooling may not fully represent cooling
conditions in a clinical setting. Large animal models offer a
simulation of hypothermia in clinically relevant conditions and
also allow endovascular or intracoronary cooling approaches,
which are not feasible in small animals. A summary of
representative preclinical experiments in large animals that
examined the impact of hypothermia on infarct size is provided
in Supplementary Table 1 (33, 42, 64, 66, 69–73, 81–97). In
general, studies that initiated cooling prior to reperfusion
have shown reduction of infarct size, whereas studies that
initiated cooling just prior or after reperfusion tended to show
no benefit, regardless of the cooling method. The majority
of these studies only looked at the acute impact of TH
and there are very few data on the impact of rewarming
on infarct size. Accordingly, whether acute benefits on the
infarct size can be maintained throughout the chronic phase
remain unclear.

CLINICAL TRIALS OF TH FOR STEMI

Similar to preclinical studies, various approaches and devices
have been employed for the controlled and efficient cooling
of patients in clinical trials targeting STEMI (Table 1) (22, 74,
75, 98–109). The ideal cooling method for STEMI application
would be one that offers rapid cooling with the ability to control
body temperature throughout the temperature management
period, from initiation through the rewarming phase. The ideal
method would also be minimally invasive and implemented
easily, in an ambulance if necessary, and without significant side
effects. Shivering in response to cooling in awake patients is
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another factor that needs attention because it can significantly
increase body oxygen demand and slow cooling speed. Counter-
heating of the skin during TH seems to be effective in
reducing the shivering (110, 111), which is obviously not
available for surface cooling methods and necessitate anti-
shivering drug administrations. There is currently no single
method that meets all above ideal features, leaving each
with its own advantages and disadvantages (Table 2 and
Supplementary Table 2).

Ly et al. (101) used surface cooling and reported that target
temperature of 34.5◦C could be achieved in an average of 79min.
Although the trial did not find safety issues, no follow-up
studies have been conducted, likely due to advances in cooling
technology that offered much faster cooling. Peritoneal cooling
was tested in 54 STEMI patients who were randomized to
hypothermia (n = 28) and control (n = 26) (103). The study
demonstrated that peritoneal cooling offers rapid cool-down
of patients. However, there was no reduction of infarct size,

TABLE 1 | Summary list of clinical therapeutic hypothermia studies targeting myocardial infarction.

Author References Hypothermia method Patient no. Target temp (◦C) TH infarct

size (%LV)

Control infarct

size (%LV)

Significant

Dixon et al. (93) Endovascular cooling 42 33 2% 8% No

O’Neill et al. (101) Endovascular cooling 392 33 14.1% 13.8% No

Kandzari et al. (97) Endovascular cooling 18 33.5 4.0% (Day

30)

No control NA

Ly et al. (96) Surface (Arctic Sun) 11 32–34 23% No control NA

Knafelj et al. (105) Surface + IV saline 72 32–34 NA NA NA

Wolfrum et al. (103) Surface + IV saline 33 32–34 NA NA NA

Schefold et al. (104) Surface + IV saline 62 33 NA NA NA

Koreny et al. (100) Surface (TheraKool) 111 32–34 NA NA NA

Götberg et al. (95) Endovascular cooling 20 33 13.7% 20.5% No

Testori et al. (99) Surface + endovascular + IV saline 19 35 NA No control NA

Erlinge et al. (102) Endovascular + IV saline 120 33 40.5% 46.6% No

Nichol et al. (98) Peritonial cooling 54 32.5 16.1% 17.2% No

Otterspoor et al. (94) Intracoronary 10 −6◦C Body temp NA No control NA

Noc et al. (16) Endovascular cooling 50 32 16.7% 23.8% No

Testori et al. (75) Surface + endovascular + IV saline 101 34 22% (Day4) 22% (Day4) No

More detailed information of the studies are provided in Supplementary Table 2. CMR, cardiac magnetic resonance; IV, intravenous; LAD, left anterior descending artery; LV, left

ventricle; MACE, major advanced cardiac events; MI, myocardial infarction; NA, not available; OHCA, out of hospital cardiac arrest; SPECT, single-photon emission computerized

tomography; STEMI, ST elevation myocardial infarction; TH, therapeutic hypothermia.

TABLE 2 | Approaches to cool down the heart.

Speed Access Earliest starting Temperature control Technical feasibility Other

Systemic

IV cold fluid ++ Periferal vein Ambulance Low High Potential lung congestion

Evidence suggests negative

impact on clinical outcome

Surface cooling + Percutaneous Ambulance Low High Speed depends on the cooling

device

Endovascular +++ Central vein ER High Medium

Peritoneal +++ Peritoneal ER Medium Low Increased adverse events

Inhalation ++ Intubation ER Low Medium Limited experience

ECMO ++++ Central artery and vein ER High Low Increased risk of bleeding

Local

Intracoronary ++++ Artery Cathlab Low Low Myocardial temperature may be

different from coronary

temperature

Direct cooling ++++ Open chest Surgical room Low Low

ECMO, extracorporeal membrane oxygenation; ER, emergency room; IV, intravenous.
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whereas some concerns regarding increased safety issues were
noted. Intracoronary hypothermia is another invasive approach
that has been shown to be effective in rapidly and locally
lowering the myocardial temperature (112). In a recent trial
conducted in Europe, 10 patients were treated with intracoronary
hypothermia by injecting room temperature saline through the
coronary balloon catheter wire lumen, which was followed by
4◦C saline injection after reperfusion (99). The authors reported
arrhythmic events in patients with inferior MI, but not in the
anterior MI, concluding that it was safe and feasible in patients
with anterior MI. Follow up randomized studies are currently
recruiting patients in Europe with an expected enrollment of
200 patients [Clinicaltrials.gov identifier NCT03447834 (113)
accessed on Jan 15th, 2021]. Endovascular cooling has been the
most popular method in the past STEMI trials likely owing
to its relatively fast cooling, feasible application, and without
requiring substantial amount of fluid loading. Some of these
trials examined feasibility and safety (100, 102, 104), which
were successfully confirmed, but none of the subsequent efficacy
trials were able to meet the primary efficacy endpoints (22,
74, 75, 98, 106). More recently, Dae et al. (90) combined
the data of 6 previous randomized clinical trials that used
endovascular cooling method and analyzed the infarct size at
1 month after MI on a patient basis. Overall, 629 patients
were included in the analysis and the study identified that
anterior MI patients who were cooled to below 35◦C at the
time or reperfusion did show reduced infarct size over the
control group, whereas other patient populations failed to
show infarct size reduction. These results strongly suggest
that rapid cooling to below 35◦C is necessary, and patients
with larger MI benefit most from TH. As we illustrated in
Figure 1, we expect that the inhibition of reperfusion injury offers
major benefit in TH. If 35◦C is the threshold temperature to
inhibit reperfusion injury, some patients may require additional
time to reach this point before reperfusion. Existing data is
insufficient to determine if delaying reperfusion for a short
period to achieve target temperature below 35◦C offers more
benefit than immediate reperfusion. Currently, a clinical trial
that aims to test the safety of new powerful endovascular
cooling device is planned in the US [Clinicaltrials.gov identifier
NCT03361995 (114) accessed on Jan 15th, 2021] and might
provide more information on the temperature threshold at the
time of reperfusion.

POTENTIAL REASONS FOR LACK OF
EFFICACY IN CLINICAL TRIALS

Although blood temperature is expected to correlate with
cardiac temperature, direct monitoring of ischemic myocardial
temperature in STEMI setting is challenging. Moreover, cooling
speed of the heart and other organs varies depending on
the employed method (115). Therefore, inconclusive results in
above discussed studies might be associated with insufficient
lowering of the ischemic myocardium in contrast to the
reported measured temperature. Unlike animal experiments,
infarct size measurement in humans relies on imaging modalities

and these indirect measures of infarct size assessment could
be the source of measurement errors that can obscure the
results (75). Additionally, some of the patients presenting
STEMI might already have reperfusion at the time of the first
coronary angiogram (116). Based on preclinical studies and
the recent report by Dae et al. (90), these patients may not
benefit from TH since reperfusion has already taken place.
The efficacy of some drugs is known to be impaired at low
temperature and these drug interactions need careful attention
(26). There is a possibility that TH might have synergistic
effects when combined with other therapies directed at reducing
myocardial infarction (117), and this area remains largely
unexplored yet.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Available evidence suggests that TH has the potential to
reduce myocardial ischemic injury in humans. However,
randomized clinical trials have yet to prove promising results
in preclinical studies. Compared to the large number of
studies focusing on TH for post-resuscitation brain injury
or myocardial protection for surgery, that of alleviating
myocardial reperfusion injury remains much less. Accordingly,
there remain many questions that are only vaguely answered.
These include: (1) Optimal target temperature for STEMI
application; (2) Optimal TH method; (3) Whether target
temperature needs to be achieved prior to reperfusion; (4)
Optimal duration of hypothermia; (5)Mechanisms of myocardial
protection; (6) Optimal target patient population; and (7)
Optimal protocol for rewarming. Emergence of new devices
that allow faster cooling may help to better define some of
these questions and lead to positive results in forthcoming
clinical trials.
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