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Stability theory of nano‑fluid 
over an exponentially stretching 
cylindrical surface containing 
microorganisms
M. Ferdows1,2,3*, Amran Hossan4, M. Z. I. Bangalee2, Shuyu Sun3 & Faris Alzahrani1

This research is emphasized to describe the stability analysis in the form of dual solution of the 
flow and heat analysis on nanofluid over an exponential stretching cylindrical surface containing 
microorganisms. The research is also implemented to manifest the dual profiles of velocity, 
temperature and nanoparticle concentration in the effect of velocity ratio parameter ( s = U

w

U∞

 ). Living 
microorganisms’ cell are mixed into the nanofluid to neglect the unstable condition of nano type 
particles. The governing equations are transformed to non-linear ordinary differential equations 
with respect to pertinent boundary conditions by using similarity transformation. The significant 
differential equations are solved using build in function bvp4c in MATLAB. It is seen that the solution 
is not unique for vertical stretching sheet. This research is reached to excellent argument when found 
results are compared with available result. It is noticed that dual results are obtained demanding on 
critical value ( s

c
 ), the meanings are indicated at these critical values both solutions are connected and 

behind these critical value boundary layer separates thus the solution are not stable.

The flow profile conveyed by viscous fluid between to coaxially rotated disk is surveyed in Majeed et al.1. Heat 
and mass transfer profile of second grad fluid over an inclined cylinder with diffusion heat flux described by Bilal 
et al.2. The features of Carreau flow and important aspect of thermal stratification are concluded by Bilal et al.3. 
The momentum and heat transfer of electro-magneto hydrodynamics boundary layer flow are incorporated in 
Bilal et al.4 over stretching sheet with slip. Analysis of Newtonian flow and the flow of power law fluid are mani-
fested by Mahmood et al.5 with the feature of shear thinning and shear thickening. The flow features of power 
law materials with channel driven cavity configuration investigated by Mahmood et al.6. The pseudo plastic and 
dilatant materials have extensive applications on metallurgical processes. Characteristics of power law fluid were 
addressed in Mahmood et al.7 with the attributes of pseudo plastic and dilatant materials in channel driven cavity.

The aspects of temperature dependent dynamic viscosity of Maxwell fluid are obtained over a variable thicken 
surface by Khan et al.8. Bio convection MHD Carreau Nano fluid flow and thermo physical aspects of MHD were 
focused respectively on Khan et al.9 and Hussain et al.10 and model have been constructed by Fourier’s and Fick’s 
laws. The features of MHD Prandtl-Eyring Nano fluid over stretching surface introduced by Rehman et al.11 with 
the effect of Navier slip and convective boundary condition. The Maxwell fluid flow of heat and mass transfer 
over stretching sheet were explicitly drawn with solar radiation and viscous desperation by Khan et al.12. The 
heat and mass diffusion of Maxwell Nano fluid over stretching surface near stagnation point incorporated in 
Khan et al.13 and are implied by Fourier’s and Fick’s laws.

The Bio-convection boundary layer flow and nanofluid model were introduced in Buongiorno14. Several simi-
lar works of nanofluid and heat rate were done on14–18. Advance analysis of applications of nanofluid have been 
reviewed in Refs.19–22 and many others have been analyzed to enhance nanofluid effect over heat transfer with the 
use of parameters. Buongiorno’s model14 and the Tiwari-Das model23 are two familiar method for the analysis 
of nanofluid which have been worked by researchers. In Buongiorno model, the total fluid velocity and the rela-
tive/slip velocity were counted as the nanofluid velocity. This model also scrutinized the effect of parameter as 
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Brownian diffusion and thermophoresis. In opposition of Buongiorno’s model, the solid volume fractions of the 
nanoparticles were introduced by Tiwari-Das model et al.23. By the characteristic of nanofluid flows Brownian 
diffusion and thermophoresis are the most important parameters implies by Ref.14. Present study of Refs.24–29 
add nanofluid in the convective boundary layer flow. Nano-polymer stretching flows with radioactive magneto 
hydrodynamics were investigated by Ferdows et al.30. Numerical studies of magnetic Nano-bio-polymerswere 
done by Uddin et al.31.

To create the bio convection process add microorganism with the base fluid. Bioconvection could cause an 
unstable density profile of the fluid, if the density of microorganism is seen to be greater than the free stream 
fluid which is followed by Raees et al.32. Microorganisms survive to base fluid if the base fluid is water and 
remain stable in the nanofluid suspension for a few of weeks by Anoop et al.33. Nanoparticles could multiply 
the nanofluid’s viscosity and tends to accelerate bio convection instability34. Nano-fluidon boundary layer flow, 
stretching cylinder, containing microorganism and bio-convection have been described respectively by Refs.35–38. 
The existence of dual solutions for conducting flow and mixed convection boundary layer flow with suction and 
injection are analyzed by Ishak et al.39. In study on Newtonian fluids boundary layer is contrasting to the free 
stream flow then multiple solutions would be found on Ishak et al.40. Najib et al.41 is analyzed the dual solutions 
exists over stretching cylinder along with mass suction. The researchers such as Refs.42–44 have scrutinized the 
stability theory into their research to ensure the flow is stable and have meaningful solution. The article is mainly 
cover on expending research work by Refs.42–48 to verify the existence of the dual (first solution and second solu-
tion) solutions with the consideration of different parameter. The stable solution will be noticed when we get 
the dual or multiple solutions and with the help of numerical analysis to verify which solution is stable or not.

Problem formulation.  Consider circular cylinder of radius a which is stretching exponentially along with 
velocity Uw . Tw , Cw , and mw are the constant temperature, constant nanoparticle concentration and constant 
density of microorganism respectively at the surface of the cylinder. The boundary layer flow contains with 
nanoparticles and microorganism is flowing over this cylinder. The uniform ambient temperature, ambient nan-
oparticle concentration and ambient density of microorganism are T∞ , C∞ , m∞ respectively. Tw − T∞ > 0 is 
the quantity for conducting flow, while Tw − T∞ < 0 is the quantity contrasting flow.

Consider velocity component along the (r, z) axes are (u,w) . The z coordinate system considered along the 
stretching cylinder and r coordinate normal to the cylindrical surface (see Fig. 1). The uniform velocity Uw is 
moving along z direction and u = 0 so there is no velocity along r direction so that u momentum equation 
omitted.

The continuity equation for the nanoparticles in the absence of chemical reactions is

where t  is time, jp is the diffusion mass flux. If external forces negligible jp can be sum of two diffusion terms i.e. 
Brownian diffusion and thermophoresis diffusion

∂φ

∂t
+ v · ∇φ = −

1

ρp
∇ · jp

Figure 1.   Physical Significant Model and fluid coordination.
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Equation states that the nanoparticles can move homogeneously with the fluid (second term of the left-hand 
side), but they also possess a slip velocity relatively to the fluid (right-hand side), which is due to Brownian dif-
fusion and thermophoresis.

The assumptions from the model, the governing equations are the conservation of total mass, momentum, 
thermal energy, nanoparticle concentration and density of microorganism which can be written as36:

From above u and w are the velocity with respect to r and z axes, where ϑ is the viscosity, p is the pressure, g 
is the gravitational acceleration along z direction,ρ is the density,β is the coefficient of thermal expansion, k0 is 
the permeability of porous space, Cp is the porosity of porous space, T is the temperature,α is the thermal dif-
fusivity , τ = (ρc)p

(ρc)f
 is a parameter with (ρc)p heat capacity of nanoparticle, (ρc)f  being heat capacity of fluid, DB 

is the Brownian diffusion coefficient, DT is the thermophoretic diffusion coefficient, C is the nanoparticle con-
centration function,Dn being the diffusivity of microorganisms, b being the constant and Wc is cell moving speed.

Boundary conditions for the above problem are:

Introduce the following similarity transformations (see Rehman et al.35)

where the temperature, nanoparticle concentration differences and density of microorganism differences are 
calculated from the relations Tw − T∞ = ce

z
a , Cw − C∞ = ce

z
a , mw −m∞ = ce

z
a.

Substituting (8) and (9) into Eqs. (2)–(5) we obtained

The transformed boundary condition become

jp = jp,B + jp,T = −ρpDB∇φ − ρpDT
∇T

T

∂φ

∂t
+ v · ∇φ = ∇ ·

[

DB∇φ + DT
∇T

T

]

(1)
∂u

∂r
+

u

r
+

∂w

∂z
= 0

(2)

u
∂w

∂r
+w

∂w

∂z
= −

1

ρ

∂p

∂z
+ϑ

(

∂2w

∂r2
+

1

r

∂w

∂r

)

+
[

1

ρ

(

ρ∗ − ρ
)

(ϕ − ϕ∞)+ (1− ϕ∞)β(T − T∞)

]

g−
ϑϕp

k0
w

(3)u
∂T

∂r
+ w

∂T

∂Z
= α

(

∂2T

∂r2
+

1

r

∂T

∂r

)

+ τ

[

DB
∂T

∂r

∂ϕ

∂r
+

DT

T∞

(

∂T

∂r

)2
]

(4)u
∂C

∂r
+ w

∂C

∂Z
= DB

(

∂2C

∂r2
+

1

r

∂C

∂r

)

+
DT

T∞

(

∂2T

∂r2
+

1

r

∂T

∂r

)

(5)u
∂m

∂r
+ w

∂m

∂Z
= Dn

(

∂2m

∂r2
+

1

r

∂m

∂r

)

−
bWϕ

Cw − C∞

[

∂

∂r

(

n
∂C

∂r

)]

(6)u = 0,w = Uw = 2ake
z
a ,T = Tw ,C = Cw ,m = mw , atr = a

(7)w → 0,T → T∞,C → C∞,m → m∞, atr → ∞

(8)u = −ake
z
a
f (η)
√
η
,w = 2ake

z
a f ′(η)

(9)θ(η) =
T − T∞

Tw − T∞
,φ(η) =

C − C∞

Cw − C∞
,χ(η) =

m−m∞

mw −m∞
, η =

r2

a2

(10)
1

Re

(

ηf ′′′ + f ′′
)

+ ff ′′ − f
′2 + �(1− C∞)(θ + Nrφ)− kpf

′ = 0

(11)
1

Re · Pr
(

ηθ ′′ + θ ′
)

+ f θ ′ − f ′θ +
Nb

Re · Pr
· ηθ ′φ′ +

NT

Re · Pr
· ηθ

′2 = 0

(12)
1

Re · Sc
(

η · φ′′ + φ′)+ f φ′ − f ′φ +
1

Re · Sc
·
NT

Nb

(

ηθ ′′ + θ ′
)

= 0

(13)
1

Re · Sb
(

η · χ ′′ + χ ′)+ f χ ′ − f ′χ +
Pe

Re · Sb
·
(

ηχφ′′ +
χ

2
φ′ + ηχ ′φ′

)

= 0
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where
Re = aUw

4ϑ
= Reynolds number.

� = gβa(Tw−T∞)

U2
w

= Natural convection parameter.

kp =
ϑaCp

Uwk0
= Porosity parameter.

Nr = (ρ∗−ρ)(Cw−C∞)

βρ(1−C∞)(Tw−T∞)
= Buoyancy ratio.

Pr = ϑ
α
= Prandtl number.

Nb = τDB(Cw−C∞)
α

= Brownian motion parameter.
NT = τDT (Tw−T∞)

αT∞
= Thermophoresis parameter,

Sc = ϑ
DB

= Schmidt number.
Pe = bWC

Dn
= Peclet number.

Sb = ϑ
Dn

= Bioconvection Schmidt number.

Stability analysis.  This works, we showed that for the certain range of parameter s the multiple solutions 
are possible and we analyzed whether the solution is stable or not. For this reason we take new dimensionless 
variable δ , where δ cause to begin an initial value problem and consistent. The unsteady problem arises for stabil-
ity analysis from our considered steady formula:

Introducing similarity variables as

So the converted equation can be written as

(14)f (1) = 0 f ′(1) = s f ′(∞) = 0

(15)θ(1) = 1 θ(∞) = 0

(16)φ(1) = 1 φ(∞) = 0

(17)χ(1) = 1 χ(∞) → 0

(18)

∂w

∂t
+u

∂w

∂r
+w

∂w

∂z
= −

1

ρ

∂p

∂z
+ϑ

(

∂2w

∂r2
+

1

r

∂w

∂r

)

+
[

1

ρ

(

ρ∗ − ρ
)

(ϕ − ϕ∞)+ (1− ϕ∞)β(T − T∞)

]

g−
ϑϕp

k0
w

(19)
∂T

∂t
+ u

∂T

∂r
+ w

∂T

∂Z
= α

(

∂2T

∂r2
+

1

r

∂T

∂r

)

+ τ

[

DB
∂T

∂r

∂ϕ

∂r
+

DT

T∞

(

∂T

∂r

)2
]

(20)
∂C

∂t
+ u

∂C

∂r
+ w

∂C

∂Z
= DB

(

∂2C

∂r2
+

1

r

∂C

∂r

)

+
DT

T∞

(

∂2T

∂r2
+

1

r

∂T

∂r

)

(21)
∂m

∂t
+ u

∂m

∂r
+ w

∂m

∂Z
= Dn

(

∂2m

∂r2
+

1

r

∂m

∂r

)

−
bWϕ

Cw − C∞

[

∂

∂r

(

n
∂C

∂r

)]

(22)u = −ake
z
a
f (η, δ)
√
η

,w = 2ake
z
a f ′(η, δ)

(23)θ(η, δ) =
T − T∞

Tw − T∞
,φ(η, δ) =

C − C∞

Cw − C∞
,χ(η, δ) =

m−m∞

mw −m∞
, η =

r2

a2
, δ =

Uwt

a

(24)
1

Re

(

ηfηηη + fηη
)

+ ffηη − f 2η + �(1− C∞)(θ + Nrφ)− kpfη − fηδ = 0

(25)
1

Re · Pr
(

ηθηη + θη
)

+ f θη − fηθ +
Nb

Re · Pr
· ηθηφη +

NT

Re · Pr
· ηθ2η − θδ = 0

(26)
1

Re · Sc
(

ηφηη + φη
)

+ f φη − fηφ +
1

Re · Sc
·
NT

Nb

(

ηθηη + θη
)

− φδ = 0

(27)
1

Re · Sb
(

η · χηη + χη
)

+ f χη − fηχ +
Pe

Re · Sb
·
(

ηχφηη +
χ

2
φη + ηχηφη

)

− χδ = 0
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And are subjected to the boundary conditions

To check the stability of the steadiness solution, we take f (η) = f0(η) , θ(η) = θ0(η) , φ(η) = φ0(η) , and 
χ(η) = χ0(η) which fulfilling the boundary value problem (1)–(7)

where l  is an eigenvalue, and F(η, δ) , G(η, δ) , H(η, δ) , I(η, δ) are small relative to f0(η) , θ0(η) , φ0(η) , χ0(η) . Sub-
stituting these in (24)–(29) we have

With respect to the boundary conditions

By setting δ = 0 , the solutions f (η) = f0(η) , θ(η) = θ0(η) , φ(η) = φ0(η) , χ(η) = χ0(η) of the steady 
Eqs. (1)–(7) are obtained.

Numerical method
In the context of bvp4c function described in MATLAB, we need to transform the higher order nonlinear ordi-
nary differential equations to first order ordinary differential equations. From this technique, with the diversity 
of initial guess of f ′, f ′′ , θ , θ ′ , φ , φ′ , χ , χ ′ we can able to find the first and second solution. So the Eqs. (10)–(13) 
become

Now we need to transform this above equation into first order differential equation. For this let η = x and

(28)f (1, δ) = 0, fη(1, δ) = s, θ(1, δ) = 1,φ(1, δ) = 1,χ(1, δ) = 1

(29)fη(η, δ) → 0, θ(η, δ) → 0,φ(η, δ) → 0,χ(η, δ) → 0 as η → ∞

f (η, δ) = f0(η)+ e−lδF(η, δ)

θ(η, δ) = θ0(η)+ e−lδG(η, δ)

φ(η, δ) = φ0(η)+ e−lδH(η, δ)

χ(η, δ) = χ0(η)+ e−lδI(η, δ)

(30)
1

Re

(

ηF ′′′ + F ′′
)

+ fF ′′ + Ff ′′ − 2f ′F ′ + �(1− C∞)(G + NrH)− kpF
′ + lF ′ = 0

(31)
1

Re · Pr
(

ηG′′ + G′)+ fG′ +Fθ ′ − f ′G−F ′θ+
Nb

Re · Pr
η(θ

′
H ′ +G′φ′)+2

NT

Re · Pr
ηθ ′G′ + lG = 0

(32)
1

Re · Sc
(

η ·H ′′ +H ′)+ fH ′ + Fφ′ − f ′H − F ′φ +
1

Re · Sc
·
NT

Nb

(

ηG′′ + G′)+ lH = 0

(33)

1

Re · Sb
(

ηI ′′ + I ′
)

+fI ′+Fχ ′−f ′I−F ′χ+
Pe

Re · Sb
·[η

(

χH ′′ + Iφ′′)+
1

2
(χH

′
+Iφ′)+η(I

′
φ′+χ ′H ′)] = 0

(34)F(0, δ) = 0, Fη(0, δ) = 0,G(0, δ) = 0,H(0, δ) = 0, I(0, δ) = 0

(35)Fη(∞, δ) → 0,G(∞, δ) → 0,H(∞, δ) → 0, I(∞, δ) → 0

f ′′′ =
1

η

[

Re
(

f
′2 − ff ′′ − �(1− C∞)(θ + Nrφ)+ kpf

′
)

− f ′′
]

θ ′′ =
1

η

[

RePr
(

f ′θ − f θ ′
)

− ηNbθ
′φ′ − ηNTθ

′2 − θ ′
]

φ′′ =
1

η

[

ReSc
(

f ′φ − f φ′)−
NT

Nb

(

RePr
(

f ′θ − f θ ′
)

− ηNbθ
′φ′ − ηNTθ

′2
)

− φ′
]

χ ′′ =
1

η

[

ReSb
(

f ′χ − f χ ′)+ Pe

(

χ

(

ReSc
(

f ′φ − f φ′)−
NT

Nb

(

RePr
(

f ′θ − f θ ′
)

− ηNbθ
′φ′ − ηNTθ

′
2

)

− φ′
)

+
1

2
χφ′ + ηχ ′φ′

)

− χ ′
]

y1 = f , y2 = f ′, y3 = f ′′
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The corresponding first order differential equations are

We need to transform the boundary conditions (14)-(17) and let ya be the left boundary, yb be the right 
boundary then

Results
We variety the skin friction coefficient f ′′(1) along s in Fig. 2 for several values of Re . This Figure shows that 
multiple solutions are possible For values of Re when s > 0 , the multiple solution exist. For example dual solution 
are obtained for Re = 6 , when s > −2.9 = sc , and for s < sc there are no solution or unique solution exist for 
Re = 6 . Similarly dual solution can be simulated for Re = 6.5 when s > −2.5 = sc and s < sc there is no solution 
or unique solution may exist. At these critical values of s

(

say sc
)

 thus the unique solution is possible and connect 
the both branches. The boundary layer separates beyond this critical value and also based solutions are not valid.

In Figs. 3 and 4 illustrate the velocity profile f ′(η) against η for several values of Re when s = 1 and s = −1 
respectively. The velocity profiles provide the existence of the dual solution when s > sc with diversity of Re . It 
also obtained that first solution is stable as the velocity profile went into positive range and the second solution 
is unstable as the velocity profile went out negative. Figures 3 and 4 show the influence of Reynolds number Re 
over the dual solution. It is seen that increase in Reynolds number Re , the dual velocity profile decreases in Figs. 3 
and 4 velocity profile decreases for first solution, but in second solution velocity profile increases. Although, the 
second solutions have negative values and unconditional there is no physical significance.

We variety the local Nusselt numbers are shown in Fig. 5 with respect to s and variation of Prandtl number 
Pr . These Figure answer that it is possible to get dual solution of temperature profile when s > −1.1 = Sc and 
Pr = 6 . Thus sc is the critical value for Pr = 6 and at this point only unique solution can be found. Also for 

y4 = θ , y5 = θ ′, y6 = φ,

y7 = φ′, y8 = χ , y9 = χ ′

dy1

dx
= f ′ = y2

dy2

dx
= f ′′ = y3

dy3

dx
= f ′′′ =

1

x

[

Re
(

y22 − y1y3 − �(1− C∞)
(

y4 + Nry6
)

+ kpy2
)

− y3
]

dy4

dx
= θ ′ = y5

dy5

dx
= θ ′′ =

1

x

[

RePr
(

y2y4 − y1y5
)

− ηNby5y7 − ηNTy
2
5 − y5

]

dy6

dx
= φ′ = y7

dy7

dx
= φ′′ =

1

x

[

ReSc
(

y2y6 − y1y7
)

−
NT

Nb

(

RePr
(

y2y4 − y1y5
)

− ηNby5y7 − ηNTy
2
5

)

− y7

]

dy8

dx
= χ ′ = y9

dy9

dx
= χ ′′ =

1

x

[

ReSb
(

y2y8 − y1y9
)

+ Pe

(

y8

(

ReSc
(

y2y6 − y1y7
)

−
NT

Nb

(

RePr
(

y2y4 − y1y5
)

− ηNby5y7 − ηNTy
2

5

)

− y7

)

+
1

2
y8y7 + ηy9y7

)

− y9

]

ya(1) = 0, ya(2)− s = 0, yb(2) = 0

ya(4)− 1 = 0, yb(4) = 0

ya(6)− 1 = 0, yb(6) = 0

ya(8)− 1 = 0, yb(8) = 0
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Figure 2.   Local Skin friction coefficient f ′′(1) with s when Re = 6, 6.5, 7

Figure 3.   Velocity profile for different values of Re when s = 1.

Figure 4.   Velocity profile for different values of Re when s = −1.
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Figure 5.   Local Nusselt number −θ ′(1) with s when Pr = 6, 6.5, 7

Figure 6.   Heat profile for different values of Pr and when s = 1.

Figure 7.   Heat profile for different values of Pr and when s = 0.
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Pr = 6.5 andPr = 7 the critical values are sc = −1 and sc = −0.9 respectively. At this critical value both upper 
and lower branches are connected each other and at these point unique solutions exist. Behind from these criti-
cal values, boundary layer separates and the solution based on are not valid. It is found from heat transfer rate 
−θ ′(1) increases strongly with parameter s increases and relatively weakly with increasing Prandtl number Pr.

The temperature profiles θ(η) against η in Figs. 6 and 7 for different values of Pr when s = 1 and s = 0 
respectively. The temperature profiles that show the existence of the dual solution when s > sc with values of 
Pr = 6, 6.5, 7 . It can be noticed that first solution remains stable as the temperature profile are in positive values 
and second solution is unstable as the temperature profile are in negative values. Figures 6 and 7 show the influ-
ence of Pr over the dual velocity profile with Reynolds number Re = 1 , � = 1 , Nr = 1 , porosity parameter kp = 0.5

,Nb = 1 , NT = .5 , schimidt number Sc = 1 , bioconvection Schimidt number Sb = 1 , and Peclet number Pe = 1 . 
It is seen increase in Prandtl number Pr , the first solutions of temperature profiles decrease in Figs. 6 and 7, but 
temperature profiles increase for second solution. However, the second solutions of temperature have no impor-
tance if temperature profiles are in negative values and contradiction that T∞ is greater than boundary layer T.

Variation of local nanoparticle mass transfer rates are shown in Fig. 8 with respect to s and natural convection 
parameter � . These Figure shows that it is possible to get dual solution of nanoparticle concentration profile when 
−2.8 < s < −.7 and also some points of s > 0 with � = 10 . Out of this critical range only unique solution can be 
found. At this critical value both upper and lower branches are connected each other and at these point unique 
solutions exist. Boundary layer separates behind the critical values and the solution based on it are not valid. It 
is found from that nanoparticle concentration rate −φ′(1) increases strongly as the parameter s increases and 
relatively weakly with increasing natural convection parameter �.

Nanoparticle concentration profile φ(η) against η in Fig. 9 for natural convection parameter � = 10 with 
changing velocity ratio parameter s . Nanoparticle concentration profile that shown the existence of the dual 
solution when s = −2, s = −1.5, s = 1.1 ands = 2.2 with values of � = 10 . It can be noticed that first solution 
is stable as the nanoparticle concentration profile are in positive range and the second solution is unstable as the 
nanoparticle concentration profile went out negative range. In Fig. 10 nanoparticle concentration profile that 

Figure 8.   Variation of local nanoparticle mass transfer rate −φ′(1) as a function of s , when � = 10.

Figure 9.   Nanoparticle concentration profile for different values of s and when � = 10.
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shown that dual solutions did not exist when s = −4, s = −3, s = 0, s = 4 ands = 5 with values of � = 10 
and unique stable solution can be found. Figures 9 and 10 show the influence of s over the dual and unique 
nanoparticle concentration profile when the nanoparticle concentration ratio 0.05% , Reynolds number Re = 1 , 
Prandtl number Pr = 1, � = 10 , buoyancy ratio Nr = 1 , porosity parameter kp = 0.5 , Nb = 1 , NT = 0.5 , schimidt 
number Sc = 1 , bioconvection Schimidt number Sb = 1 , and Peclet number Pe = 1 . It is seen that increase in 
velocity ratio parameter s the first solutions of nanoparticle concentration profiles decrease in Figs. 9 and 10, 
but nanoparticle concentration profiles increase for second solution in Fig. 9.

Variation of density number of microorganism are shown in Fig. 11 with respect to s and with variation of 
bioconvection Schimidt Sb . These figure shows that it is possible to get dual solution of density number of micro-
organism profile when s > −0.7 = sc with Sb = 0 . Thus sc is the critical value for Sb = 0 and at this point only 
unique solution can be found. Also for Sb = 0.5 and Sb = 1 the critical values are sc = −0.6 and sc = −0.3 
respectively. At this critical values both upper and lower branches are connected each other and at these point 
and unique solutions exist and behind at this critical value unique solution exist. Boundary layer separates 
behind the critical values and the solution based upon are not valid. It is found from that density number of 
microorganism −χ ′(1) increases strongly as the parameter s increases and relatively weakly with increasing 
bioconvection Schimidt number Sb.

The microorganism density profiles χ(η) against η in Figs. 12 and 13 for several values of Sb when s = −0.1 
and s = 1 respectively. The temperature profiles that shown the existence of the dual solution when s > sc with 
values of Sb = 0, 0.5, 1 . It can be noticed that first solution of microorganism density is stable as the velocity and 
temperature profiles are in positive range and the second solution of microorganism density profile is unstable 
as the velocity and temperature profile went out negative range. Figures 17 and 18 show the influence of bio-
convection Schimidt number Sb over the dual velocity profile when the nanoparticle concentration ratio 0.05% , 

Figure 10.   Nanoparticle concentration profile for different values of s and with � = 10.

Figure 11.   The density number of microorganism −χ ′(1) as a function of s when Sb = 0, 0.5, 1
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Figure 12.   Density of microorganism profile for different values of Sb with s = −.1

Figure 13.   Density of microorganism profile for different values of Sb when s = 1.

Figure 14.   Velocity profile for different values of � with s = 1.
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Reynolds number Re = 1 , Prandtl number Pr = 1 , � = 1 , Nr = 1 , porosity parameter kp = .5 , Nb = 1 , NT = .5 , 
Schimidt number Sc = 1 , and Peclet number Pe = 1 . It is obtained that increase in bioconvection Schimidt 
number Sb , the first solutions of microorganism density profiles decrease in Figs. 12 and 13, but microorganism 
density profiles increase for second solution.

The velocity profile f ′(η) against η for several values of � and kp in Figs. 14 and 15 respectively when s = 1 . 
The velocity profiles provide the existence of the dual solution with s = 1 with certain change of natural convec-
tion parameter � and porosity parameter kp . It can be obtained first solution is stable as the velocity profile went 
into positive range and the second solution is unstable as the velocity profile are in negative values. Figure 14 
shown the effect of � over the dual solution when the nanoparticle concentration ratio is 0.05% , Reynolds number 
Re = 6.5 , Prandtl number Pr = 1 , porosity parameter kp = 0.5 , Nr = 1 , Nb = 1 , NT = 0.5 , Schmidt number 
Sc = 1 , bioconvection Schmidt number Sb = 1 , and Peclet number Pe = 1 . It is observed increase in parameter 
� , the dual velocity profile increase. Figure 15 shown the effect of kp over the dual solution with Reynolds number 
Re = 3 , Prandtl number Pr = 1 , natural convection parameter � = 1Nr = 1 , Nb = 1 , NT = 0.5 , Schmidt number 
Sc = 1 , bioconvection Schmidt number Sb = 1 , and Peclet number Pe = 1 . It is concluded that increase in kp , 
the dual velocity profile decrease.

The velocity profile f ′(η) against η . for several values of Pr and Nb in Figs. 16 and 17 respectively when s = 1 . 
The velocity profiles declared the existence of the dual solution when s = 1 with certain change of Pr and Brown-
ian motion parameter Nb . It can be seen first solution is stable as the velocity profiles went into positive values 
and the second solution is unstable as the velocity profiles are negative values. Figure 16 shown the influence of 
Prandtl number Pr over the dual velocity profiles with Reynolds number Re = 1 , natural convection parameter 
� = 1 , porosity parameter kp = 0.5 , Nr = 1 , Nb = 1 , NT = 8 , Schmidt number Sc = 1 , bioconvection Schmidt 
number Sb = 1 , d Peclet number Pe = 1 . It is seen increase in Pr , the dual velocity profiles increase. Figure 17 

Figure 15.   Velocity profile for different values of kp with s = 1.

Figure 16.   Velocity profile for different values of Pr with s = 1.
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shown the influence of Brownian motion parameter Nb over the dual velocity profiles when Reynolds number 
Re = 1 , Prandtl number Pr = 1 , natural convection parameter � = 1 buoyancy ratio Nr = 1 , porosity parameter 
kp = .5 , thermophoresis parameter NT = 8 , Schmidt number Sc = 1 , bioconvection Schmidt number Sb = 1 , 
and Peclet number Pe = 1 . It is concluded that increase in Nb , the velocity profiles of first solutions increase and 
second solution decrease.

The temperature profile θ(η) against η for several values of � in Fig. 18 with s = 1 . The temperature profiles 
that show the existence of the dual solution when h^s = 1 with certain change of natural convection parameter 
� . It can be seen that first solution is stable as the temperature profiles went into positive values and the second 
solution is unstable as the temperature profiles are in negative values. Figure 18 shown the influence of � over 
the dual solution with Reynolds number Re = 1 , Pr = 6 , porosity parameter kp = 0.5 , Nr = 1 , Nb = 1 , NT = .5 , 
Schmidt number Sc = 1 , bioconvection Schmidt number Sb = 1 , and Peclet number Pe = 1 . It is seen increase 
in � , the first solution decreases and second solution increases.

Figure 19 shown the influence of Nb over the dual solutions of nanoparticle concentration with Reynolds 
number Re = 1 , Prandtl number Pr = 1 , porosity parameter kp = 0.5 , buoyancy ratio Nr = 1 , natural convec-
tion parameter � = 10 , thermophoresis parameter NT = .5 , Schmidt number Sc = 1 , bioconvection Schmidt 
number Sb = 1 , and Peclet number Pe = 1 . It is seen increase in Nb , the first solution decreases, but second 
solution increases.

Figure 20 shown the influence of Nt over the dual solutions of nanoparticle concentration with Reynolds 
number Re = 1 , Prandtl number Pr = 1 , natural convection parameter � = 1 , porosity parameter kp = 0.5 , 
buoyancy ratio Nr = 1 , Brownian motion parameter Nb = 1 , Schmidt number Sc = 1 , bioconvection Schmidt 
number Sb = 1 , and Peclet number Pe = 1 . It is seen increase in NT , the first solution decreases and second 
solution decreases.

Figure 21 shown the effect of Pr over the dual solutions of nanoparticle concentration with Reynolds num-
ber Re = 1 , natural convection parameter � = 10 porosity parameter kp = 0.5 , buoyancy ratio Nr = 1 , natural 

Figure 17.   Velocity profile for different values of Nb with s = 1.

Figure 18.   Temperature profile for different values of � with s = 1.
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Figure 19.   Nanoparticle concentration profile for different values of Nb with s = 1.

Figure 20.   Nanoparticle concentration profile for different values of NT with s = 1.

Figure 21.   Nanoparticle concentration profile for different values of Pr with s = 1.



15

Vol.:(0123456789)

Scientific Reports |        (2020) 10:17004  | https://doi.org/10.1038/s41598-020-72545-y

www.nature.com/scientificreports/

convection parameter � = 10 , thermophoresis parameter NT = .5 , Brownian motion parameter Nb = 1 , Schmidt 
number Sc = 1 , bioconvection Schmidt number Sb = 1 , and Peclet number Pe = 1 . It is seen increase in Nb , the 
first solution decreases, but second solution increases.

Figure 22 shown the influence of Peclet number Pe over the dual solutions of density of microorganism when 
Reynolds number Re = 1 , Prandtl number Pr = 1 , porosity parameter kp = 0.5 , buoyancy ratio Nr = 1 , natural 
convection parameter � = 10 , Brownian motion parameter Nb = 1 thermophoresis parameter NT = .5 , Schmidt 
number Sc = 1 , bioconvection Schmidt number Sb = 1 . It is observed that increase in Peclet number Pe , the first 
solution decreases, and second solution decreases.

Figure 23 shown the influence of Reynolds number Re over the dual solutions of density of microorgan-
ism when Prandtl number Pr = 1 , natural convection parameter � = 1 , porosity parameter kp = 0.5 , Nr = 1 , 
Nb = 1 , Nt = 0.5 , Schmidt number Sc = 1 , bioconvection Schmidt number Sb = 1 , and Peclet number Pe = 1 . 
It is observed that increase in Reynolds number Re , the first solution decreases and second solution increases.

Figure 24 shown the effect of � over the dual solutions of density of microorganism whenReynolds number 
Re = 1 , Prandtl number Pr = 1 , porosity parameter kp = 0.5 , buoyancy ratio Nr = 1 , thermophoresis parameter 
NT = .5 , Brownian motion parameter Nb = 1 , Schmidt number Sc = 1 , bioconvection Schmidt number Sb = 1 , 
and Peclet number Pe = 1 . It is seen increase in � , the first solution decreases, but second solution increases.

Validation of results by comparison.  Validation of the solutions via comparison related to previous 
simpler models is included in Table 1 and Table 2. To verify the fluency of the present study, we compared the 
result with reported by Rehman et al.35 and Faisal et al.36, and show good rapport.

Figure 22.   Density of microorganism profile for different values of Pe with s = 1.

Figure 23.   Density of microorganism profile for different values of Re with s = 1.
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Conclusions
In this works, we are numerically investigated the problem of boundary layer flow, heat transfer, nanoparticle 
concentration and density of microorganism over vertical stretching cylinder addressing the effect of velocity 
ratio, natural convection and porosity medium. The transforming boundary layer equations were solved by build 
in function bvp4c in MATLAB. Results indicate that multiple solutions exist. Critical point separated upper 
branch and lower branch solutions. Stable solutions were indicated by upper branch and unstable solutions were 
also indicated by lower branch. Effects of velocity ratio parameter, Reynolds number Prandtl number, natural 
convection parameter, Schmidt number, buoyancy ratio, Peclet number, local skin friction coefficient, local 
Nusselt number, local nanoparticle mass transfer rate and local density number of microorganisms have been 
examined. The key finding briefing as bellow:

•	 From the variation of skin friction coefficient the dual velocity profiles existed some critical values when 
s > −2.9 = sc , s > −2.5 = sc and s > −2.2 = sc respectively for Re = 7, 6.5, 6.

•	 The variation of local Nusselt number shows that it is possible to get the dual solutions of temperature profile 
when the critical value s > −1.1 = sc , sc = −1 and sc = −0.9 respectively for Pr = 6, 6.5, 7.

Figure 24.   Density of microorganism profile for various values of � when s = 1.

Table 1.   Comparison of local skin friction coefficient −f ′′(1) at the cylindrical surface for several values of 
Reynolds number when Pr = 5,Nr = 1, � = 0.5,Nt = 0.5,Nb = 1, Sc = 1 and C∞ = 0.01.

Reynolds number,Re Rehman et al.37
Present study (first 
solution)

0.5 0.4579 0.442586

1 0.8392 0.807715

3 1.6903 1.660243

5 2.2383 2.213786

7 2.6729 2.652396

Table 2.   Comparison of local Nusselt number −θ ′(1) at the cylindrical surface for several values of Prandtl 
number when Re = 3, Nr = 1, � = 1, Nt = 0.5, Nb = 0.5, Sc = 1 and C∞ = 0.01.

Prandtl number,Pr Rehman et al.37
Present study (first 
solution)

0.71 1.1647 1.223106

1 1.4482 1.504346

3 2.8423 2.923257

5 3.8627 3.947500

7 4.7102 4.794861
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•	 The variation of local nanoparticle mass transfer rate shows the dual solutions of nanoparticle concentration 
profile arise when −2.8 < s < −0.7 and some points of s > 0 with � = 10.

•	 Variation of density number of microorganism provides the dual solutions of microorganism density profile 
initiate when s > −0.7 = sc , sc = −0.6 andsc = −0.3 respectively for Sb = 0, 0.5 and 1.
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