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P-values in genomics: Apparent precision masks high
uncertainty
LC Lazzeroni1, Y Lu2,3 and I Belitskaya-Lévy2,4,5

Scientists often interpret P-values as measures of the relative strength of statistical findings. This is common practice in large-scale
genomic studies where P-values are used to choose which of numerous hypothesis test results should be pursued in subsequent
research. In this study, we examine P-value variability to assess the degree of certainty P-values provide. We develop prediction
intervals for the P-value in a replication study given the P-value observed in an initial study. The intervals depend on the initial value
of P and the ratio of sample sizes between the initial and replication studies, but not on the underlying effect size or initial sample
size. The intervals are valid for most large-sample statistical tests in any context, and can be used in the presence of single or
multiple tests. While P-values are highly variable, future P-value variability can be explicitly predicted based on a P-value from an
initial study. The relative size of the replication and initial study is an important predictor of the P-value in a subsequent replication
study. We provide a handy calculator implementing these results and apply them to a study of Alzheimer’s disease and recent
findings of the Cross-Disorder Group of the Psychiatric Genomics Consortium. This study suggests that overinterpretation of very
significant, but highly variable, P-values is an important factor contributing to the unexpectedly high incidence of non-replication.
Formal prediction intervals can also provide realistic interpretations and comparisons of P-values associated with different
estimated effect sizes and sample sizes.
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INTRODUCTION
Genome-wide association studies (GWAS) and other studies that
use modern high-throughput technologies, include very large
numbers of hypothesis tests. Current genotyping arrays test up to
2.5M different single nucleotide polymorphisms (SNPs) on a single
chip. While few, or sometimes no, SNPs may reach strict genome-
wide statistical significance (e.g. Po10− 8), literally thousands of
SNPs may appear worthy of further investigation. In addition to
using P-values to make hypothesis test decisions, investigators
often rely on P-value size to decide which findings to pursue in
further research. Biological experiments, replication studies and
custom designed arrays can usually target only the most
promising SNPs from an initial study.1 Policies requiring the
reporting of P-values for all SNPs investigated in a given study,2

are further evidence that P-values are seen as an important metric.
By definition, a P-value is the probability of seeing results as

supportive of a genetic or other association as the observed
results if, in fact, no such association exists. However, P-values are
also data-dependent statistics that vary from sample to sample,
even when the underlying effects, population and sampling
strategy are the same.
A number of authors have shown that the sampling variability

of P-values is high and that they have little predictive value
for subsequent replication studies.3–6 Specifically, Goodman3

reported numerical examples based on a Bayesian posterior
distribution to show that power based on P-values or ‘replication

probabilities … are much lower than what most people would
expect’. Senn4 extended these calculations for ‘repetition prob-
abilities’ in unequal-sized samples, again focusing on power.
Cumming5 addressed the problem from a frequentist perspective,
for a same-sized replication study, concluding that ‘P-values
predict the future only vaguely’. However, Goodman, Senn and
Cumming all specifically limited their results to a single statistical
setting: a two-group comparison of Normal population data. In
contrast, Boos and Stefanski6 took an operational approach to
predicting P-values, applying a bootstrap prediction interval
procedure developed by Mojirsheibani and Tibshirani.7 The
flexibility of the bootstrap allows predictions in a variety of
settings beyond the simple two-group comparisons described by
Goodman, Senn and Cumming. As in the current project,
application of bootstrap intervals implicitly assumes that the
P-values are derived from test statistics with underlying large-
sample Normal distributions. However, the bootstrap approach,
which relies on a data-dependent operation, additionally requires
access to the complete data used in the original analysis for
implementation. Thus, bootstrap prediction intervals do not
generalize to other data sets or settings and this operational
strategy does not reveal general patterns.
In this paper, we show that P-values are not only highly variable,

but that the degree of variability is predictable and numerically
consistent across most types of statistical studies so that identical
prediction intervals apply without extensive computation or
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access to raw data. These intervals can be computed using only
the P-value and the relative sample size of the replication study to
the sample size used to generate the original finding. Relative
sample size, independent of absolute sample size, turns out to be
an important predictor of P-value variability when retesting the
same hypothesis. Our results reveal general patterns and can be
used to provide explicit interpretations and comparisons of P-
values in the literature without specific information about study
designs or statistical analyses. We illustrate the prediction intervals
using results from a recent genome-wide association study of
magnetic resonance imaging (MRI) atrophy measures in Alzhei-
mer’s disease8 and findings of the Cross-Disorder Group of the
Psychiatric Genomics Consortium (PGC).9 We conclude that P-
value variation may explain many failures to replicate apparently
strong initial findings of genetic association.

MATERIALS AND METHODS
We obtained prediction intervals for p2, the P-value in a replication study.
The prediction interval coverage rate, C%, is the percentage of replication
P-values covered by the interval in repeated sampling, when both initial
and replication studies are repeated many times.
We first considered prediction intervals for P-values obtained from one-

sided tests. Consider an initial study 1 of size n1 and an independent
replication study 2 of size n2, each testing the population parameter or
effect θ against the null hypothesis θ¼ 0. For example, θ might be the log
odds ratio (OR) in logistic regression. We adopt a frequentist framework
and assume that large-sample Normal theory applies as it does for most
statistical tests. That is, θ is fixed and unknown. Furthermore, the test
statistic can be written as a Z-statistic, Zi=

ffiffiffiffi
ni

p
θ̂i/σ, in large samples, where

ni is the sample size, θ̂i is an estimator of θ and σ is a constant.
Under standard large-sample theory, Z1 from the original study and Z2

from the replication study are independent Normal random variables with
variance 1 and means

ffiffiffiffi
ni

p
θ/σ. Let Z(p) be the inverse cumulative

distribution function (cdf) of the standard Normal distribution. Given an
observed initial P-value, p1, we compute the initial Z-statistic as Z1 = Z(p1).
(Without loss of generality, we use Zo0.) To obtain a prediction interval
for p2, we first construct a prediction interval for the difference
R= Z2−
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n2=n1

p
Z1. In large samples, R is Normal with expected valueffiffiffiffiffi

n2
p
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θ=σ = 0 and variance 1+n2/n1. An exact C% prediction

interval for R is given by
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where β=1− C/100 is the non-coverage probability. (For a 95% prediction
interval, β= 0.05 and Z(0.975) = 1.96.) We rearrange the interval for R to
obtain an equivalent prediction interval for Z2,

Z p1ð Þ
ffiffiffiffiffi
n2
n1

r
- Z 1 -

β

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

n2
n1

r
< Z2 < Z p1ð Þ

ffiffiffiffiffi
n2
n1

r
+ Z 1 -

β

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

n2
n1

r
:

The former interval covers R if and only if the latter interval covers Z2 and
their coverage rates must be the same. The C% prediction interval for p2 is
calculated by applying the standard Normal cdf to the endpoints of the
interval for Z2. The strategy used here to derive the prediction intervals is
the same strategy used to predict new observations under an estimated
linear regression model.10,11 An important consequence of this approach is
that the resulting intervals do not depend on the unknown effect size or
the absolute sample sizes, providing a general formula requiring only the
value of p1 observed in the initial study and the ratio of sample sizes
between the two studies.
See Supplementary Methods for an alternative Bayesian derivation

giving identical results and a user-friendly Excel calculator.

Two-sided P-values
If the P-values are two-sided, dividing the observed value of p1 by 2 yields
the more significant of the two, corresponding, one-sided P-values. The
prediction interval for this one-sided P-value is then calculated and
converted back to a two-sided P-value using the equation ptwo-sided =
min (1, 2 × pone-sided). Thus, the formula for one-sided P-values can be used
to derive intervals for two-sided P-values.

Selection bias correction for the winner’s curse
If prediction interval(s) are constructed only for the most significant P-value
(s) in a large study comprised of many tests, selection bias or the ‘winner’s
curse’ will cause the above uncorrected intervals to be invalid. Previous
work on P-value variability has not accounted for selection bias. To account
for selection bias due to multiple testing in an initial study comprised of
H tests, we applied a Bonferroni-style bias correction. Specifically, we use a
corrected P-value, min(Hp1, 1), in place of p1. Bonferroni corrections are
known to be conservative.12 In this case, the conservatism applies to the
interval endpoints, both of which may be larger than necessary resulting in
possible over-coverage of larger values and, at the same time, under-
coverage of smaller values. For larger P-values, the selection bias correction
is very conservative, especially when p1⩾ 1/H and the corrected P-value
equals one. The correction is designed to avoid the effects of the winner’s
curse. However, random P-value variability will always result in both
‘winners’ (overly small estimated P-values) and ‘losers’ (overly large
estimated P-values). If K P-value prediction intervals are considered
simultaneously and family-wise coverage of the intervals is desired, the
non-coverage rate β should be replaced by β/K.

RESULTS
To illustrate the random nature of P-values, we simulated values of
− log p for 1000 independent realizations of a two-sided test of a
SNP with a true OR of 1.74 in a sample of 2000 individuals. (All logs
are base 10.) The P-values range from 0.015 to o10−20 with a
median of 10− 8. Ten percent of P-values are o10−11, while
another 10% are >10− 5. In other scenarios, the distribution’s
shape and spread would differ depending on the true effect size,
sample size and other factors. In a real study, we observe only one
P-value per SNP without knowing where the rest of the
distribution lies relative to it.
We applied our prediction interval formula to the simulated

data above. For each of the 1000 P-values in Figure 1, we
computed a separate 95% prediction interval (equal samples sizes,
no selection bias correction) and calculated how many of the
other 999 P-values it covered. The estimated coverage rate for our
prediction interval procedure was 94.9%, consistent with theore-
tical results. By definition, the coverage rate is an average across
the distribution of p1. Accordingly, the percentage of replication
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Figure 1. Sampling distribution of − log p. Simulated independent
values of − log p from 1000 identical studies of the same SNP in the
same population using a one-sided test. Within each study, sample
size=2000, OR=1.74, and risk to major homozygote=9.5%. Genotype
frequencies based on minor allele frequency of 30% under
Hardy–Weinberg equilibrium. Dashed vertical line corresponds to
P=0.05. Overlaid curve is the theoretical exponential density under
the null hypothesis that the OR=1. Upper range of the density,
which reaches 2.3 when − log P=0, is not shown. SNP, single
nucleotide polymorphism.
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P-values covered varied, ranging from 17.3% for P=0.015 to 99.6%
for P=10− 8 (i.e. at the median).
We next explored the properties of P-value variability in general,

as revealed by the proposed prediction intervals. In Figure 2a, the
initial and replication sample sizes are equal. Given an initial,
observed P-value on the x axis, the prediction interval is the
vertical line segment from the bottom to the top of the inner
funnel. For an initial P-value of 10− 5, the prediction interval
(10− 12, 0.05) barely excludes values of P>0.05. As the significance
of the observed P-value increases, the prediction interval for the
replication expands indicating increasing uncertainty on the log
scale. However, intervals for larger P-values are also wide. For a
P-value of 0.5, the prediction interval is (0.003, 0.997). The
prediction intervals reveal both a lack of precision with regard
to future P-values and a lack of resolution for comparing P-values
from different hypothesis tests. For example, intervals for p1=10

− 3

vs 10− 8 overlap substantially. This helps explain why genome-
wide nonsignificant SNPs sometimes represent a substantial
portion of potentially replicable, genuine associations.13

If the P-value is one of many, a selection bias correction should
be used to avoid the effects of the winner’s curse. The funnel on
the right incorporates a correction for selecting the best SNP from
1M tests in an initial GWAS. The corrected funnel is identical to the
one on the left, except that it has been shifted log(1M)=6 units to
the right. After correction for 1M tests, P must be o10− 6 for the
prediction interval to exclude P=1.
Figure 2b depicts replication studies with different sample sizes

than the original study. If the replication study is smaller, the
P-value distribution is shifted towards larger, less significant
values. If the replication study is larger, the P-value distribution is
shifted towards greater significance, even if the initial P-value was
not, itself, statistically significant. Specifically, when the replication
is one-fourth the size of the original study (bottom funnel), the
prediction interval for a P-value of 10− 14 is (10− 9, 0.050). When
the replication is four times the size of the original (top funnel), an
initial P-value of 10− 3 yields a prediction interval of (10− 25, 0.050)
which excludes values >0.05. When sample sizes differ, the initial
P-value may lie outside the replication prediction interval.
Suppose a replication study with sample size n2=1000 seeks

to replicate two previously published findings. One finding is
a P-value of 10− 13 from a study of size n1=4000. The other is
a P-value of 0.001 from a study of size n1=250. The prediction

intervals are (2.24 × 10− 9, 0.069) and (2.21 × 10− 27, 0.036),
respectively. Despite appearances, the larger P-value from the
smaller sample is a more promising target for replication. This
suggests a problem for large discovery studies with several
thousand subjects. Such studies are more likely to identify
genome-wide significant P-values, even when the underlying
effects have minimal clinical impact. What has previously been
unappreciated is the difficulty of replicating results from such
large studies, as subsequent replication studies are likely to have a
much smaller sample.
To illustrate the interpretation of the intervals, we considered a

recent GWAS on MRI atrophy measures and Alzheimer’s disease.8

Furney et al. reported two SNPs with associations reaching or
approaching genome-wide significance in analyses of 488 911
SNPs and 939 individuals with complete data passing quality
control. Specifically, they reported a disease-specific association of
rs1925690 (nearest gene ZNF292 on chromosome 6) with
entorhinal cortical volume (P=2.56 × 10− 8) and an association of
rs11129640 (nearest gene ARPP-21 on chromosome 3) with
entorhinal cortical thickness (P=5.57 × 10− 8). Two black arrows
denote these P-values in Figure 2a. The prediction intervals for
these two P-values are given by vertical lines crossing the upper
red funnel at these two points. For an equal-sized replication
study, the uncorrected intervals are (1.03 × 10− 16, 3.73 × 10− 3) and
(3.27 × 10− 16, 5.62 × 10− 3), respectively. Two blue arrows point to
the bias-corrected P-values for H=488 911 SNPs. The upper red
funnel is also used to determine the bias-corrected intervals,
which are (2.68 × 10− 7, 7.02 × 10− 1) and (1.33 × 10− 6, 8.02 × 10− 1),
respectively. The predicted medians are 0.013 and 0.027 after bias
correction. Note that shifting a P-value to the left by log(H)
achieves exactly the same bias correction as shifting the
prediction funnel by log(H) to the right. In Figure 2b, the matching
arrows point to the uncorrected and bias-corrected intervals for
two possible alternative replication sample sizes. Figure 3
addresses the replication sample size question more completely,
illustrating prediction intervals without and with selection bias
correction for the ZNF292 SNP for sample sizes from 100–3000.
We also examined recent findings of the PGC9 for attention

deficit-hyperactivity disorder (ADHD), autism spectrum disorder
(ASD), bipolar disorder (BPD), major depressive disorder (MDD)
and schizophrenia. Table 1 shows the reported two-sided P-values
and case-control counts for four SNPs with significant
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Figure 2. Ninety-five percent (95%) prediction intervals for replication P-values. A vertical line extending from the bottom to the top of the
appropriate funnel gives the prediction interval given the original − log p on the x axis. P-values based on one-sided tests. Dashed lines at
P=0.05. Black arrows correspond to the two most significant SNP P-values observed by Furney et al. in an analysis of 939 individuals. Blue
arrows correspond to the same P-values after applying a selection bias correction for the 488 911 SNPs tested in that study. (a) Prediction
intervals with equal study sizes. Left (red) funnel: prediction intervals for a single test. Right (partially hidden, yellow funnel): prediction
intervals with Bonferroni selection bias correction for picking the best of 1M tests in the initial study, Furney et al.8 (b) Prediction intervals with
unequal study sizes and no selection bias correction. Bottom funnel: prediction intervals when replication study size is one-fourth the size of
the original study. Top funnel: prediction intervals when replication study is four times the size of the original study. SNP, single nucleotide
polymorphism.
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cross-disorder effects in Figure 2 of the PGC paper. We used the
online calculator (Supplementary Information) to compute two
sets of prediction intervals. The first set is for an identical
replication of each study at its original sample size. For all SNPs,
the individual disorder intervals overlap suggesting that a second,

identical implementation of the original PGC design could have
resulted in a different ranking of results due to chance alone,
either for disorders within each SNP or for SNPs within each
disorder. However, ADHD and ASD would be unlikely to yield any
P-values o10− 8. In contrast, schizophrenia could reach such
values for all SNPs. The second set of intervals is calibrated to
remove effects of different sample sizes and case-control ratios. To
do this, we calculated the effective sample size (ESS), which is the
sample size needed to achieve equivalent power with a case:
control ratio of 1. We then calculated intervals for replications with
ESS=16 957, the same as for schizophrenia in the largest original
study. With sample size effects removed, the combined study is
predicted to perform worse than some disorders and better than
others. For example for rs2535629, the combined study is
predicted to do less well than BPD, MDD and schizophrenia, but
better than ADHD and ASD, suggesting that this SNP has greater
associations with later onset disorders. Increased sample size
makes it more likely that ADHD will achieve significant results, but
the intervals widen and nonsignificant values cannot be excluded.
Most notably for rs2799573, ADHD had only the third most
significant P-value, but has the highest prediction of replication
success for equal sample sizes. On the other hand, ASD is unlikely
to yield P-values o10− 8 for these SNPs even in a study as big as
the schizophrenia study.

DISCUSSION
This study has presented prediction intervals for replication
P-values, demonstrating the large scale of P-value variability.
The scale of P-value variability cannot be attributed to additional,
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Figure 3. Ninety-five percent (95%) prediction intervals for the most
significant P-value reported by Furney et al.8 as a function of
replication sample size. Above funnel in red outline shows intervals
without selection bias correction. Below funnel in yellow outline,
which is partly hidden by the upper funnel, shows intervals with
selection bias correction. Dashed line at P=0.05.

Table 1. Predictions based on recent results from the Psychiatric Genomics Consortium9

SNP Disorder Cases (C1) Controls (C2)
a Reported P-value Prediction of − log P

Original sample size
medianb (95% interval)

ESSc,d=16 957
median (95% interval)

rs2535629 ADHD 2787 2635 0.201 0.70 (0.00, 4.29) 1.63 (0.00, 9.37)
ASD 4949 5314 0.196 0.71 (0.00, 4.32) 1.02 (0.00, 5.92)
BPD 6990 4820 6.61E−06 5.18 (1.08, 12.47) 7.40 (1.79, 17.03)
MDD 9227 7383 0.000216 3.67 (0.45, 10.01) 3.77 (0.48, 10.26)
Schizophrenia 9379 7736 6.71E− 05 4.17 (0.65, 10.85) 4.17 (0.65, 10.85)
All 33 332 27 888 2.54E− 12 11.60 (4.63, 21.83) 3.67 (0.86, 8.48)

rs11191454 ADHD 2787 2635 0.355 0.45 (0.00, 3.66) 0.99 (0.00, 7.72)
ASD 4949 5314 0.143 0.84 (0.00, 4.64) 1.22 (0.00, 6.42)
BPD 6990 4820 0.0107 1.97 (0.00, 6.99) 2.73 (0.01, 9.25)
MDD 9227 7383 0.0156 1.81 (0.00, 6.68) 1.86 (0.00, 6.83)
Schizophrenia 9379 7736 3.48E− 06 5.46 (1.21, 12.91) 5.46 (1.21, 12.91)
All 33 332 27 888 1.39E− 08 7.86 (2.43, 16.52) 2.57 (0.36, 6.74)

rs1024582 ADHD 2787 2635 0.127 0.90 (0.00, 4.76) 2.16 (0.00, 10.63)
ASD 4949 5314 0.892 0.05 (0.00, 2.44) 0.06 (0.00, 3.12)
BPD 6990 4820 1.12E− 06 5.95 (1.44, 13.67) 8.53 (2.35, 18.75)
MDD 9227 7383 0.12 0.92 (0.00, 4.82) 0.94 (0.00, 4.92)
Schizophrenia 9379 7736 2.84E− 05 4.55 (0.80, 11.46) 4.55 (0.80, 11.46)
All 33 332 27 888 1.87E− 08 7.73 (2.36, 16.33) 2.53 (0.35, 6.67)

rs2799573 ADHD 2787 2635 0.00691 2.16 (0.00, 7.35) 5.75 (0.37, 17.72)
ASD 4949 5314 0.238 0.62 (0.00, 4.11) 0.89 (0.00, 5.61)
BPD 6990 4820 0.0617 1.21 (0.00, 5.46) 1.64 (0.00, 7.10)
MDD 9227 7383 0.00108 2.97 (0.21, 8.81) 3.05 (0.22, 9.02)
Schizophrenia 9379 7736 0.00161 2.79 (0.15, 8.51) 2.79 (0.15, 8.51)
All 33 332 27 888 4.29E− 08 7.37 (2.17, 15.80) 2.42 (0.30, 6.50)

Abbreviations: ADHD, attention deficit-hyperactivity disorder; ASD, autism spectrum disorder; BPD, bipolar disorder; MDD, major depressive disorder. aControls
include family-based pseudo-controls. bThe observed value of − log p is identical to the median of the first prediction interval, based on the original
sample size. cESS=effective sample size is calculated as 4C1C2/(C1+C2).

dESS=16 957 corresponds to ESS in the original schizophrenia study. Accordingly, the
two schizophrenia intervals are identical.
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potentially addressable, factors that also decrease a study’s
reliability such as poor study design, bias and/or uncertainties in
the underlying assumptions, inadequate phenotype measure-
ments, inappropriate statistical models or methods, population
heterogeneity, variable penetrance, publication bias and the
‘winner’s curse’.14–20 Although the intervals require no assump-
tions about unknown effect sizes or the initial sample size, they
are strongly affected by the relative size of the replication and
initial studies. While large P-value variability has been previously
recognized, it is often disregarded in practice. GWAS and other
studies rely on a single sample of data, yielding only one observed
P-value per test out of a large range of possible P-values.
Furthermore, the more significant a P-value is, the less the
precision that can be attached to it. While uncertainty is high for a
P-value from a single test, P-values obtained from GWAS, or other
multiplexed studies requiring multiple testing corrections, provide
almost no information with which to make future predictions.
The degree of statistical uncertainty associated with P-values is

not specific to the P-value itself, which is just a convenient measure
of the evidence provided by the data against the null hypothesis.
Rather, uncertainty is an intrinsic property of statistical sampling.
Noting the low precision provided by P-values, Cumming
recommended relying more on effect size confidence intervals.5

We agree that confidence intervals give more information about
effect sizes than P-values and should always be reported when
possible. It should be noted, however, that whenever a 95%
confidence interval excludes the null value of a parameter, there is a
corresponding P-value less than 0.05. Thus, there is a one-to-one
correspondence between decision rules based on confidence
intervals and decision rules based on P-values. Additionally,
confidence intervals do not provide a one-dimensional summary
of a statistical result and, therefore, are more difficult to compare.
The present results may appear to contradict our previous

findings on the consequences of the extreme P-values needed for
genome-wide significance.21 That study showed that the
increased stringency of the significance level associated with
increasing the number of hypothesis tests requires relatively
modest increases in sample size or effect size. In contrast, the
present study shows that, after a study is complete, any observed
P-value, no matter how small, is a very imprecise predictor of
future performance. Thus, studies can have good power to reject
the null hypothesis of no association, while providing little
information with respect to the reproducibility or relative strength
of the true association.
The findings of this study support proposals by others to

combine multiple lines of biological evidence in deciding which
results to investigate further, rather than depending on associa-
tion P-values alone.22–27 Our findings may also lead to improved
multi-stage SNP/subject selection strategies potentially using
small, low-cost studies to screen large numbers of genetic
variants, followed by larger, targeted replication studies to reach
firmer conclusions. Similar strategies have been applied success-
fully in phase I-IV clinical trials for drug development.28 More
immediately, the proposed prediction intervals provide practical
information for designing replication studies about the relative
sample size needed to expect successful confirmation of a
previously reported P-value. Most importantly, the present
findings caution against unrealistic expectations for replication
based on P-value size, as the apparent numerical precision can be
misleading. These results may better enable scientific investigators
and consumers to evaluate P-values in their own studies and those
reported by others.
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