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Infection with the human immunodeficiency virus (HIV) is characterized by progressive

depletion of CD4+ lymphocytes cells as a result of chronic immune activation. Next

to the decreases in the number of CD4+ cells which leads to opportunistic infections,

HIV-related immune activation is associated with several prevalent comorbidities in

the HIV-positive population such as cardiovascular and bone disease. Traditionally,

combination antiretroviral therapy (cART) consists of three drugs with activity against

HIV and is highly effective in diminishing the degree of immune activation. Over the

years, questions were raised whether virological suppression could also be achieved

with fewer antiretroviral drugs, i.e., dual- or even monotherapy. This is an intriguing

question considering the fact that antiretroviral drugs should be used lifelong and their use

could also induce cardiovascular and bone disease. Therefore, the equilibrium between

drug-induced toxicity and immune activation related comorbidity is delicate. Recently,

two large clinical trials evaluating two-drug cART showed non-inferiority with respect to

virological outcomes when compared to triple-drug regimens. This led to adoption of dual

antiretroviral therapy in current HIV treatment guidelines. However, it is largely unknown

whether dual therapy is also able to suppress immune activation to the same degree as

triple therapy. This poses a risk for an imbalance in the delicate equilibrium. This mini

review gives an overview of the current available evidence concerning immune activation

in the setting of cART with less than three antiretroviral drugs.
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INTRODUCTION

In 1983, a group of French virologists identified a T-lymphotropic retrovirus—now called the
human immunodeficiency virus (HIV)—as causative agent of the acquired immunodeficiency
syndrome (AIDS) (1). The clinical picture of AIDS is characterized by opportunistic infections such
as pneumocystis jirovecii pneumonia and candida esophagitis (2). These opportunistic infections
are the result of a severe depletion of CD4+ lymphocytes, which are central mediators of immune
response, coordinating both cellular and humoral responses against infections (3).

Although HIV uses the CD4 receptor to gain access to target cells, the depletion of CD4+
lymphocytes is only partly due to a direct cytolytic effect of HIV (4). The current leading hypothesis
states that chronic HIV infection is accompanied by a hyperactive inflammatory state in which
there is an increased turnover of activated naïve T-cells, eventually leading to T-cell depletion by
means of apoptosis (5, 6). Immune activation is driven by both the HIV viremia and bacterial
translocation from the gut (7, 8) and is associated with numerous comorbidities in HIV-positive
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patients (9–11). Therefore, immune activation is not only
considered to be a predictor for the risk for progression to AIDS
but also an important cause of HIV-related comorbidity (12, 13).

Till the end of 1995, the nucleoside reverse transcriptase
inhibitors (NRTIs) were the only available antiretroviral agents
– targeting reverse transcriptase, an enzyme essential for HIV
replication (14). Unfortunately, NRTI mono- or dual therapy
had only temporary effects due to rapid resistance development
and virological failure (15). However, the perspective for
people living with HIV changed dramatically as result of the
introduction of a new class of drugs: the protease inhibitors (PIs)
combined with a pharmacological booster (16). Combination
antiretroviral therapy (cART)—drug regimens consisting of
multiple antiretroviral classes—diminished the risk of resistance
development and led to an spectacular increase in life expectancy
(17). Over the years, the development of antiretroviral drugs took
off and several other third drug (“anchors”) classes—such as the
non-nucleoside reverse transcriptase inhibitors (NNRTIs) and
integrase strand transfer inhibitors (INSTIs) —were introduced
(18, 19). Nowadays, triple antiretroviral therapy is highly
successful with most patients reaching the main treatment goal
of an “undetectable” viral load—defined as <50 copies/ml of
HIV RNA when measured by polymerase chain reaction—and
with the mortality risk declining (20, 21). Current immunoassays
however, due to improvement of sensitivity, are able to detect
viral loads that are below 50 copies/ml but can still be quantified:
so-called “residual viremia.” A small group of patients—“elite
controllers”—are able to maintain an undetectable viral load
in absence of antiretroviral drugs (22). However, these patients
display significant immune activation when compared to HIV-
negative controls (23, 24) and this is linked to an increased
risk for cardiovascular disease in these patients (25). These
findings emphasize the importance of immune activation in
the pathophysiology of HIV-related comorbidity. In the modern
antiretroviral era, there is no role for in depth monitoring of
immune activation as these markers are generally considered to
reduce simultaneously with the viral load, albeit they do not show
complete normalization (26).

In the recent years, questions were raised whether there is a
need to hold on to the mantra that cART should always consist
of three antiretroviral drugs (27). Indeed, the current available
agents have high genetic barriers for resistance and the life-long
use of multiple drugs could lead to long-term toxicity. Numerous
studies evaluated the efficacy of mono- or dual antiretroviral
therapy (28–36) and some of these two-drug regimens gained
ground in the current treatment guidelines (37, 38). However,
there are concerns as to whether the two-drug regimens suppress
the degree of HIV-related immune activation enough (39). A
rebound in immune activation which occurs beneath the surface
despite virological suppression could be harmful. In the end, the
development of comorbidity in HIV is the net result of potential
harmful effects of antiretroviral drugs vs. the degree in which
these drugs suppress the virus and the related immune activation
(Figure 1). Therefore, any change in the current standard of
care might lead to disruption of this equilibrium. In this mini
review, we will discuss the best current available data on immune
activation in non-traditional cART regimens.

FIGURE 1 | Three possible scenarios in the equilibrium between drug toxicity

and damage from HIV-related immune activation: (A) A perfect balance

between these factors with the smallest possible risk for comorbidity. (B) The

reduction in the number of antiretroviral drugs diminishes the risk for drug

toxicity but a flare in immune activation could lead to HIV-associated

comorbidity. (C) Multiple antiretroviral drugs are able to fully suppress the virus

but this poses a significant risk for cART-associated toxicity.

IMMUNOLOGICAL MARKERS IN
HIV-INFECTION

The test battery for HIV-related immune activation is extending
ever since the recognition of the hyperactive inflammatory status.
The available markers can be divided into soluble and cellular
markers for inflammation and immune activation, with some
being more readily available than others (40) (Table 1).

The soluble markers are easy to measure in a large
number of test facilities and can subdivided into markers of
inflammation, coagulation and microbial translocation. The
most commonly used inflammation markers include high-
sensitivity c-reactive protein (hs-CRP) and plasma interleukin-6
(IL-6), both considered to be extremely sensitive for systemic
inflammation (41, 42) and associated with HIV-related mortality
(43–46). Other soluble markers include tumor necrosis factor
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TABLE 1 | An overview of the most important soluble and cellular markers for HIV-associated immune activation that are reported in current literature.

Markers Biological and clinical characteristics Ref.

Soluble markers

Tumor necrosis factor α - Produced by macrophages and T-cells

- Used for cell signaling and cytokine stimulation

- Associated with disease progression

47

Interferon-γ (IFN-γ) - Produced by T-helper cells, CD8+ lymphocytes and NK cells

- Induction of several pro-inflammatory cytokines and anti-viral characteristics

- Especially active during acute HIV infection

52

Interleukin-6 - Released by monocytes and macrophages

- Elevated during chronic stage of infection

- Associated with disease progression, especially CVD

46

D-dimer - Fibrin degradation product

-Associated with disease progression, especially CVD

56

Soluble CD14 - Marker of monocyte activation and indirect marker of microbial translocation

- Associated with disease progression

58

LPS - Endotoxin, a marker for microbial translocation

- Associated with disease progression

50

Bacterial 16s DNA - Marker for microbial translocation

- Prognostic value in HIV is unknown

50

Soluble CD27 - Marker of T-cel activation

- Rapid increase in case of viral rebound

53

Soluble CD40 ligand - Marker for platelet activation

- Implicated to contribute to innate and adaptive immune dysfunction

- Prognostic value in HIV is unknown

54

Cellular markers

HLA-DR+ - MHC class II receptor on CD4+ and CD8+ lymphocytes

- Upregulated in response to signaling and being a marker for T-cell activation

60

CD38+ - Glycoprotein expressed on lymphocytes and macrophages

- Upregulation mediated by IFN- γ and LPS

- Considered as a T cell activation marker

61

Ki67+ - Nuclear antigen being a marker for cell proliferation. Present in all cells during mitosis,

including T lymphocytes

7

PD-1 co-stimulatory receptor - Regulating T-cell response

- High levels are considered to be result of T-cell exhaustion

63

Annexin-V+ - Marker for apoptosis 62

For parameters predictive of disease progression, it is not further specified whether this includes declining CD4+ cell counts or clinical AIDS-defining events. CVD, cardiovascular

disease; LPS, lipopolysaccharide; Ref, reference; PD-1, programmed death-1.

alpha (TNF-α), interferon-γ, neopterin, mitochondrial DNA
(mtDNA), β2-microglobulin, soluble CD27, and soluble CD40
ligand (47–54). The latter two are markers of T-cell activation.
The main example for coagulation markers is D-dimer, which
levels increase in several pro-inflammatory states and high
levels being associated with cardiovascular disease (55, 56).
The last group of soluble markers are surrogates of microbial
translocation. These include bacterial lipopolysaccharide (LPS)—
present in gram-negative bacteria—and bacterial DNA (16s
ribosomal RNA subunit) (57). In addition, plasma soluble CD14
(sCD14) and soluble CD163 (sCD163)—products of monocyte
activation—are also considered to be a markers for impaired
mucosal integrity (58). None of these markers are exclusively
found in the setting of HIV-infection (59).

Although the soluble markers can be assessed relatively
easy, their reflection of inflammation and immune activation
is considered to be less specific than the cellular activation
markers in the setting of HIV (40). Assessing cellular markers

is more labor-intensive, requiring the isolation of peripheral
blood mononuclear cells and performing flow cytometry.
For the cellular activity, some well-defined markers are
available: CD38+/HLA-DR+ expression on lymphocytes for
T-cell activation (60, 61), Ki-67 positivity for proliferation
(7), annexin-V for apoptosis (62) and programmed-death-1
co-stimulatory receptor for T-cell exhaustion (63). The CD4+
lymphocyte counts and CD4/CD8 ratio aremore readily available
but these changes occur more slowly and are therefore kept out
of this review (64).

RESIDUAL IMMUNE ACTIVATION DURING
TRIPLE-DRUG THERAPY

The initiation of cART results in fast virological suppression
and significant reduction in immune activation in most patients,
subsequently leading to CD4+ cell recovery (65). However,
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antiretroviral therapy does not normalize the HIV-induced
inflammatory response with some residual immune activation
persisting (66). Studies describing the effect of cART on the
soluble markers report inconsistent outcomes (43, 67, 68), but
especially the degree of T-cell activation rarely normalizes (69).

The clinical impact of this residual immune activation is
largely unknown but, for example, the higher incidence of
cardiovascular disease among HIV-positive individuals despite
cART and the elite controllers implies clinical significance.
The reason for residual immune activation in the setting of
virological suppression has not been fully elucidated, but it is
suggested that low-grade HIV replication in certain anatomical
or cellular compartments is the main driver (70). These
“sanctuary sites” are compartments, such as the central nervous
system (CNS), gastrointestinal tract and lymph nodes, where
cART reaches insufficient drug levels to completely suppress
local viral replication and subsequent low-grade inflammation.
The variable—and often suboptimal—drug penetration in lymph
nodes (71), mucosal tissues (72) and the CNS (73) have been
demonstrated in several papers. Besides these sites, persisting
microbial translocation and the presence of viral coinfections
are associated with persistent immune activation (74, 75).
There is no consistent evidence that favors one anchor over
another with respect to the degree of immune activation
(76–78). Studies evaluating whether therapy intensification with
additional anchors results in further suppression of immune
activation, are conflicting (79–81).

IMMUNE ACTIVATION AND VIROLOGICAL
EFFICACY IN MONOTHERAPY

After the introduction of cART in themid-nineties, monotherapy
for HIV-infection was abandoned because of virological
inferiority. However, the idea of antiretroviral monotherapy
made a comeback after the introduction of agents with a high
antiviral potency and a high genetic barrier for resistance. Such
a mono-drug regimen have significant advantages, including less
side-effects and pill burden. The hypothesis that one powerful
antiretroviral drug would be sufficient to maintain virological
suppression, led to several trials comparing the virological
efficacy of PI or INSTI monotherapy to traditional three-drug
regimens (28, 30–33). Unfortunately, monotherapy with these
drugs seem to result in higher rates of virological rebound when
compared to cART. Therefore, current guidelines recommend
against monotherapy as maintenance therapy in treatment-
experienced patients with a undetectable viral load (37, 38).
However, from a pathophysiological viewpoint it is interesting
to have a closer look at the impact of monotherapy on immune
activation markers.

One study that provides an insight in the mechanisms of
immune activation rebound was published by BenMarzoek-
Hidalgo et al. (82). In their paper, the authors describe the
relationship between microbial translocation and viremia with
immune activation in 71 patients receiving boosted darunavir
monotherapy. In this cohort, only 26% of the patients maintained
a viral load below 20 copies/ml, while 16 patients displayed

virological failure (2 consecutive HIV-RNA levels exceeding 200
copies/mL). The remaining patients had (transitory) episodes
of a detectable viral load during follow-up yet without meeting
the criteria for virological failure. Although separate analysis
per outcome group found that only patients with virological
failure showed an increase in T-cell activation, it became clear
that time with viral suppression was inversely correlated with
T-cell activation (percentage HLA-DR+-CD38+ lymphocytes
in both CD8+ and CD4+ lymphocyte subsets) at a follow-
up of 24 months. In this study, there was a clear correlation
between the viral load and the percentage of activated CD4+
and CD8+ lymphocytes. In addition, another study showed
that intensification with INSTI (raltegravir) to PI monotherapy
(either darunavir/ritonavir or lopinavir/ritonavir), resulted in a
decline in the degree of residual viremia and a decrease in the
percentage of activated CD8+ lymphocytes (83).

There are several studies that evaluated the non-specific
soluble markers in highly selected populations (84–86), while
other studies evaluated the cellular markers. The smallest
study of Merlini et al. did not find a difference in T-cell
activation between baseline and after 96 weeks for both patients
receiving PI monotherapy with atazanavir (n = 18) and those
receiving atazanavir-based cART [n = 22 (87)]. However,
patients on monotherapy were more likely to display increased
T-cell apoptosis than patients receiving three drugs. Torres
et al. evaluated the markers for monocyte activation in 40
patients receiving PI monotherapy (either lopinavir/ritonavir or
darunavir/ritonavir) and 20 patients on PI-based cART for at
least 48 weeks and an undetectable viral load (88). This cross-
sectional analysis showed that patients on monotherapy display
higher levels of monocyte activation—CD14+CD16-CD163+
cells and sCD14 levels—when compared to those receiving
standard therapy. The last, most well-designed, study of Petrara
et al. described the dynamics of the HIV-1 viral reservoir and
T- and B-cell activation markers at 48 and 96 weeks of therapy
in patients switched to PI mono-therapy (n = 32) and patients
continuing PI-based triple therapy (n = 32) (89). It should
be noted that ten percent of the patients in the monotherapy
group experienced virological failure compared to zero patients
receiving cART. Furthermore, the authors observed a significant
increase of T- and B-cell activation in patients receiving one drug,
while these markers remained low in patients on cART.

So the best available evidence suggests that a switch
to monotherapy is associated with an increase of T-cell
activation and apoptosis markers, while soluble markers
data are more inconsistent. These observations seem to
be the result of (low-grade) viral rebound. The increased
risk for virological failure and the suggestion of a
rebound in immune activation, disqualify monotherapy as
maintenance therapy.

IMMUNE ACTIVATION IN DUAL THERAPY

Antiretroviral monotherapy is not likely to play a role in the
near future, so the current focus is on the effectiveness of
dual therapy. In fact, two-drug regimens have already gained a
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position in current HIV treatment guidelines; in 2018 a single-
tablet regimen (STR) consisting of dolutegravir (INSTI) and
rilpivirine (NNRTI) was introduced and in 2020 a STR with
dolutegravir and lamivudine (NRTI) was registered as a first-
line treatment option. Currently, there are several large trials
that support the use of these two STRs in clinical practice:
SWORD-1&2 (36), GEMINI-1&2 (35), and TANGO study (29).

The SWORD-1&2 studies evaluated the efficacy, safety and
tolerability of dolutegravir/rilpivirine as maintenance therapy
in patients with an undetectable viral load. Patients were
randomized to either dual therapy (n = 512) vs. continuing
triple-drug therapy (n = 516). After 148 weeks, the data showed
that dolutegravir/rilpivirine was non-inferior with respect to
virological outcomes to triple therapy (90). In the first paper
evaluating this regimen, there was a brief mention on the
dynamics of the inflammatory and cardiovascular markers
in both groups. The authors state there was no consistent
pattern of change from baseline to week 48 or differentiation
between both groups in the following markers: IL-6, CRP,
sCD14, sCD163, and D-dimer. Exact data were not shown
and specific T-cell markers were not evaluated. The use of
STR dolutegravir/lamivudine for treatment-experienced patients
is supported by the TANGO study (29). In this study, 743
patients with an undetectable viral load were enrolled and were
randomized to either dolutegravir/lamivudine or a triple drug
regimen (two NRTIs as backbone and an anchor from one of
major groups). In this study, dual therapy was also found to be
non-inferior in maintaining virological suppression compared
to triple therapy. In the study cohort, the authors describe a
significantly smaller decrease in serum IL-6 levels in patients on
dual therapy, but for sCD14 there was an exact opposite trend.
The dynamics of D-dimer, hs-CRP and sCD163 were comparable
for both groups. In the GEMINI-1&2 studies, it was shown
that dolutegravir/lamivudine was virologically non-inferior to
INSTI-based cART in treatment-naïve patients, but there were
no data on immune activation (35).

As mentioned above, the registration trials briefly addressed
the concerns regarding HIV-related immune activation in dual
therapy. In general, the results were inconsistent and focused on
soluble markers. Fortunately, a few other studies described this
issue more extensively although not for the registered treatment
regimens. In the study of Concepción Romero-Sánchez et al.
58 patients, having an undetectable viral load for at least 6
months, were switched to a two-drug regimen consisting of a
boosted PI and Maraviroc, a HIV entry inhibitor; there was
no control group in this study (91). The authors observed no
change in β2-microglobuline, sCD40L, sCD14, hsCRP, D-dimer,
and mtDNA at 24 (±12) weeks of follow-up when compared
to baseline. However, for patients with high baseline levels
of β2-microglobuline, sCD40L and hsCRP there was marked
decrease at final follow-up. Two other papers evaluated the
differences between patients on dual antiretroviral therapy vs.
those on triple therapy. Belmonti et al. describe the dynamics
of IL-6, CRP, sCD14 and D-dimer from baseline to 48 weeks
(92). A switch to dual therapy (n = 70 boosted atazanavir
plus lamivudine) did not result in a significant changes in
the markers mentioned above and did not differ from the

markers in patients continuing triple therapy (n = 69). In
addition, Vallejo et al. published a cross-sectional pilot study
evaluating a broad spectrum of inflammation and immune
activation biomarkers (interferon-gamma-induced protein 10,
hs-CRP, sCD14, D-dimer, interferon-γ, TNF-α and IL-4) in
patients on dual therapy vs. those continuing triple therapy
(93). The dual therapy group consisted of 13 patients that
were evaluated at 24 weeks after switch and 36 patients at 48
weeks, the control group included 26 patients. The authors
found the lowest IL-6 and sCD14 levels in the patients on dual
therapy for 48 weeks; the other markers were not different
from the triple-therapy groups. Other studies worth to mention
were performed by Quiros-Roldan et al. and Mussini et al.
but these papers reported less commonly used parameters such
as CD4/CD8 ratio, platelet-to-lymphocyte and neutrophil-to-
lymphocyte ratio (94, 95).

In the studies presented above, the switch from triple to
dual therapy is not accompanied with a consistent increase
in the soluble inflammatory markers. However, in contrast to
the monotherapy studies none of the papers assessed T-cell
activation, proliferation or apoptosis markers. At this moment,
there is sufficient evidence to support certain two drug regimens
as treatment options for HIV in terms of virological efficacy but
robust data on effects on immune activation are lacking.

CONCLUSIONS

In this review we presented the current best available evidence
on the dynamics in immune activation in non-traditional
antiretroviral therapy. We found that the most well-designed
studies show that monotherapy is associated with insufficient
suppression of T-cell activation when compared to traditional
triple therapy; there might be an association with a detectable
viral load. Furthermore, we observed that the dynamics of
T-cell activation, proliferation and apoptosis do not necessarily
follow the trends observed in the soluble markers, confirming
earlier observations.

Especially the last finding is of great importance when
we have a look at the data presented for the two-drug
regimens, which now have become a reasonable option in
modern antiretroviral therapy. The fact that the large registration
trials for treatment-experienced patients included inflammatory
makers as secondary outcomes is laudable; it emphasizes the
recognition of the importance of this outcome. In contrast,
the founders of these studies missed an excellent opportunity
for a thorough assessment of the immune activation markers
in dual therapy. In SWORD-1&2 and TANGO, the soluble
markers are only briefly mentioned or the authors stay away
from firm statements. Furthermore, the studies only included
soluble markers but there are no data on T-cell activation. As
we learned from the monotherapy data, especially those markers
might display abnormalities. The fact that T-cell activation is
correlated with a detectable viremia and that the two-drug
regimens show virological non-inferiority with the 50 copies/ml
threshold, is reassuring. However, as we are not aware of
the degree of residual viremia in the two-drug regimens, a
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negative impact of dual drug therapy cannot be excluded at
this moment.

Based on the presented studies, we believe there is insufficient
evidence that mono- and dual therapy are non-inferior to triple
therapy when it comes to the suppression of HIV-related immune
activation. Although dual therapy is an attractive option as it
diminishes the life-time exposure to antiretroviral drugs with
potential toxicity, the impact of a rebound in immune activation
are currently unknown. We need to keep the potential negative
impact of cART in an equilibrium with the degree of immune
activation, as a misbalance could lead to HIV or cART-related

comorbidity. There is a need for well-designed, longitudinal
studies with a proper, unbiased patients selection evaluating both
the soluble and the cellular immune activation markers. Only
such studies can tell us whether everything is quiet beneath the
surface in dual therapy.
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