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Abstract
Ametabolomics approach for prediction of bacteremic sepsis in patients in the emergency

room (ER) was investigated. In a prospective study, whole blood samples from 65 patients

with bacteremic sepsis and 49 ER controls were compared. The blood samples were ana-

lyzed using gas chromatography coupled to time-of-flight mass spectrometry. Multivariate

and logistic regression modeling using metabolites identified by chromatography or using

conventional laboratory parameters and clinical scores of infection were employed. A pre-

dictive model of bacteremic sepsis with 107 metabolites was developed and validated. The

number of metabolites was reduced stepwise until identifying a set of 6 predictive metabo-

lites. A 6-metabolite predictive logistic regression model showed a sensitivity of 0.91(95%

CI 0.69–0.99) and a specificity 0.84 (95% CI 0.58–0.94) with an AUC of 0.93 (95% CI 0.89–

1.01). Myristic acid was the single most predictive metabolite, with a sensitivity of 1.00 (95%

CI 0.85–1.00) and specificity of 0.95 (95% CI 0.74–0.99), and performed better than various

combinations of conventional laboratory and clinical parameters. We found that a metabolo-

mics approach for analysis of acute blood samples was useful for identification of patients

with bacteremic sepsis. Metabolomics should be further evaluated as a new tool for infec-

tion diagnostics.

Introduction
TheWorld Economic Forum has identified antibiotic resistance as one of the greatest risks of
human health [1]. As antibiotic resistance is emerging, antibiotic choices that were considered
to be reliable a decade ago for treating bacteremic sepsis may be uncertain treatment options
today. The number of excess deaths among patients with bacteremia in Europe, attributable to
antibiotic resistance exceeded 8,000 in year 2007 for Staphylococcus aureus and Escherichia coli
infections, and trajectories for 2015 suggest 17,000 fatalities [2]. Reduction of unnecessary anti-
biotic use has been identified as one of the most important issues in order to stop the emer-
gence of antibiotic resistance [3]. There is an urgent need for diagnostic tools that can support
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antibiotic decisions, so antibiotics can be given to patients who need them, but can be withheld
in patients who do not.

Metabolomics, the comprehensive analysis of metabolites is a rapidly developing diagnostic
tool for metabolic classification of individuals. The metabolome is smaller than the complex
proteome or transcriptome of the human body, and thus, more amenable to a comprehensive
analysis. Moreover, the metabolome is predictive of the phenotype and responds directly to
genetic changes, disease or external factors. [4, 5] It has been demonstrated that pneumococcal
pneumonia could be discriminated from other types of pneumonia [6] and that global metabo-
lomic profile in plasma broadly differs between survivors and non-survivors of community
acquired pneumonia and sepsis [7, 8]. In experimentally infected mice, metabolic profiling
could distinguish effective from ineffective antimicrobial treatments of antibiotic resistant S.
aureus [9].

In this study we analyzed blood samples from patients with suspected sepsis by
GC-TOF-MS. We found that the metabolites identified performed well in diagnosis of bacter-
emic sepsis.

Methods

Patient samples
In a prospective study from October 2007 to September 2008 we included 1,093 consecutive
adult patients, who were subjected to blood culturing in the Emergency room (ER) or within 4
hours after admission to the Department of Infectious Diseases, Örebro University Hospital,
Sweden [10]. Whole blood was collected in sterile EDTA tubes (BD Vacutainer™ K3E 15%, Bec-
ton, Dickinson and Company, Plymouth, UK) through the same venepuncture from which
blood samples for blood culture were taken. The whole blood was kept for a maximum of 4 h
at room temperature or up to 3 days at 4°C. The blood was aliquoted into Cryo tubes before
frozen at −80°C. For the present study patient samples with confirmed bacteremic sepsis posi-
tive for E. coli, S. aureus, Klebsiella pneumoniae, Streptococcus pneumoniae, or Streptococcus
pyogenes were included. Samples that had been freeze thaw cycled were excluded rendering
inclusion of 65 out of a total of 138 blood culture positive patients. Forty-nine ER control sam-
ples were included. The ER controls were patients with: 1) negative blood culture and a labora-
tory confirmed diagnosis explaining a clinical suspicion of bacteremic sepsis at admission
(viral infection, reactive arthritis, borrelia, or tuberculosis), and 2) similar age and sex distribu-
tion as for the bacteremic sepsis samples. All samples were thawed once at room temperature
and 100 μl of whole blood was aliquoted into Eppendorf tubes (Sarstedt) and frozen at −80°C
until extraction. A retrospective chart review was performed to evaluate the severity of illness
[11]. The patient's clinical condition was classified by using the criteria for systemic inflamma-
tory response syndrome (SIRS), sepsis and septic shock published by the American College of
Chest Physicians/Society of Critical Care Medicine [12]. The study subjects provided their
written informed consent and the regional ethics committee in Uppsala, Sweden approved the
study (Dnr. 2007/071).

Extraction, derivatization and GC-TOF-MS analysis
Samples were divided into batches and the order of samples was randomized within batches.
Each batch included similar variations in age, gender and infection types. Whole blood (100μl)
was thawed at ambient temperature for 15 min and thereafter kept on ice. In brief, extraction
was performed according to a published method [13] with the modification of using 900μl
MeOH/CHCl3/H2O (60:20:20 v/v) as extraction mixture. Samples were extracted in a bead mill
(MM400, Retsch GmbH, Haan, Germany) for 2 min at 30 Hz, followed by two hours
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incubation at 4°C before centrifugation at 14,000 rpm for 10 min at 4°C. 200 μl supernatant
was transferred to GC/MS vials and dried in a speedvac (miVac, Quattro concentrator, Barn-
stead Genevac, Ipswich, UK) until dryness (typically 2–3 hours) and thereafter stored at -80°C
until derivatization. Quality control samples consisting of pooled aliquots of whole blood sam-
ples for all patient and control material were included in every batch.

The samples were evaporated for 20 min to ensure complete dryness before derivatization.
Methoxymation was carried out at 75°C for one hour. The samples were trimethylsilylated
by addition of 40 μl N-methyl-N-trimethylsilyl-trifluoroacetamide +1% Trimethylchlorosi-
lane followed by 30 min incubation at 75°C. Just before analysis, 40 μl heptane including
methylstearate (15 ng/μl) was added. GC-TOF-MS analysis was performed in accordance
with a previously published method [14] with slight modifications. One microliter of the
derivatized sample was injected splitless by an CTC Combi Pal Xt Duo (CTC Analytics AG,
Switzerland) auto-sampler/robot into an Agilent 7890A gas chromatograph equipped with a
30 m×0.25 mm i.d. fused-silica capillary column with a chemically bonded 0.25-μmDB
5-MS UI stationary phase (J&W Scientific, Folsom, CA). The injector temperature was
260°C, the purge flow was 20 mL/min, and the purge was turned on after 75 s. The gas flow
rate through the column was 1 mL/min, and the column temperature was held at 70°C for
2 min, then increased by 20°C/min to 320°C, and held there for 4 minutes. Helium was used
as carrier gas with a flow rate of 1 ml/min. The column effluent was introduced into the ion
source of a Pegasus HT time-of-flight mass spectrometer, GC/TOFMS (Leco Corp., St
Joseph, MI). The transfer line and ion source temperatures were 250 and 200°C, respectively.
Ions were generated by a 70 eV electron beam at an ionization current of 2.0 mA, and 20
spectra/s were recorded in the mass range 50−800 m/z. The acceleration voltage was turned
on after a solvent delay of 290 s and the detector voltage was 1520 V. Samples with methyl
stearate in heptane (5ng/ml) were analyzed in addition to the study samples allowing contin-
uous check of instrumental sensitivity. Retention indices were calculated by use of in run
alkane series (C8-C40). Data from GC/MS analysis was exported in NetCDF (Network
Common Data Form) format and processed in MATLAB 8.1.0 R2013a (Mathworks, Natick,
MA, USA).

Data processing and metabolite identification
An in-house script for MATLAB was used for pre-processing, followed by hierarchical multi-
variate curve resolution (H-MCR), as previously described [15]. Peak areas of internal stan-
dards were calculated with a raw data analysis in-house script (RDA), and used for
normalization. Metabolites were identified using resolved spectral window searches in NIST
MS Search 2.0 and an in-house spectral library established by Umeå Plant Science Centre and
the library at the Max Planck Institute (http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/msri/
gmd_msri.html). Positive identification was based on a combination of match values, confor-
mity with high mass peaks and good agreement with retention index. All putative metabolites
identified were recalculated with the RDA script using unique m/z features and the resulting
peak areas were used in statistical analyses.

Raw data cleaning and statistical analysis
Multivariate data analysis was carried out in the software SIMCA (SIMCA 13.0, Umetrics AB,
Umeå, Sweden). Pooled quality control samples were used for quality assurance. Prior to multi-
variate modeling, the data set was divided into a work set (n = 72) and a test set (n = 42) (Fig
1). Work set samples were used for modeling and test set samples for validation of the models.
The raw data were mean centered, unit variance scaled, and log-transformed. Principal
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component analysis (PCA) was used for obtaining an overview of the data and detecting outli-
ers. Biological replicates, technical replicates and quality control samples were used for analysis
of skewness and for determination of reproducibility. To clean the raw data, metabolite features
with high positive or negative skewness after unit variance scaling and log-transformation as
well as features identified with a relative standard deviation of>50% among quality control
samples were excluded. All remaining resolved spectral windows were used in orthogonal par-
tial least squares discriminant analysis (OPLS-DA) where metabolites with the strongest con-
tribution to class separation were identified. [16].

Significance testing of the OPLS-DA models was performed with cross validated ANOVA
(CV-ANOVA) and the predictive power was evaluated using the test set samples. Additional
cross validation including estimates of the number of components and P-values for group sepa-
rations was performed using CV-ANOVA.

Demographic, clinical and laboratory data were analyzed with the independent t-test,
Mann-Whitney or Fischer’s exact test. The raw peak areas of metabolites identified with multi-
variate data analysis were further analyzed with MANOVA, and the Mann-Whitney U test.
Binary logistic regression was used to model the response variable bacteremic sepsis (taking the
value 1) or ER control (taking the value 0) with the continuous peak areas of metabolites as
explanatory variables. Using work set sample data only, suitable regression models and combi-
nation of explanatory variables were determined by entering different metabolite combina-
tions. All the binary regression models selected were validated using test set samples resulting
in a probability of each sample to belong into the categories bacteremic sepsis (1) or ER control
(0). A probability of>0.5 was deduced as bacteremic sepsis and a probability of<0.5 as ER
control. An analogous binary regression modelling and validation procedure was performed

Fig 1. Overview of the study design. The workflow of the study began with the collection of blood samples and ended with the identification and evaluation
of 6 metabolite variables for prediction of bacteremic sepsis.

doi:10.1371/journal.pone.0147670.g001
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using the standard clinical measurements (clinical biochemistry and physiology values). The
predictive performance was further evaluated by entering the binary data in 2x2 tables for calcula-
tion of accuracy, sensitivity and specificity with 95% confidence interval (CI) using Fischer’s exact
test. Receiver operator characteristics (ROC) were also employed for evaluation of diagnostic per-
formance. The analyses were executed in SPSS 21.0 (IBM Statistics SPSS, New York, US) and
GraphPad Prism 6.00, (San Diego California US). Tests were considered significant at P< .05.

Results

Patient and sample characteristics
An overview of patient demographics, laboratory measurements, clinical measurements, co-mor-
bidities, and the study workflow are shown in Table 1 and Fig 1. Sixty-five patients with bacter-
emic sepsis had significantly higher C-reactive protein, white blood cell counts, and longer
hospital stay than 49 ER controls. Eighty percent of patients with bacteremic sepsis and 45% of
ER controls fulfilled at least two SIRS criteria (P< .001). There was no statistically significant dif-
ference in gender distribution, age, or co-morbidities between patients with bacteremic sepsis
and ER controls (Table 1) or between work set and test set data as a whole (not shown). Frequen-
cies of the different bacterial causes of bacteremia among 42 patients in the work set was 0.36 for
E. coli (n = 15), 0.21 for S. pneumoniae (n = 9), 0.19 for S. pyogenes (n = 8), 0.19 for S. aureus
(n = 8), and 0.05 for Klebsiella pneumoniae (n = 2). Frequencies among 23 patients in the test set
was 0.43 for E. coli (n = 10), 0.13 for S. pneumoniae (n = 3), 0.13 for S. pyogenes (n = 3), 0.13 for
S. aureus (n = 3), and 0.17 for Klebsiella pneumoniae (n = 4).

Global metabolomic analysis of bacteremic sepsis
Via hierarchical multivariate curve resolution of GC-MS data obtained from each of the patient
samples 254 spectral windows were resolved, each representing a putative metabolite. After repro-
cessing of data with the RDA script and raw data cleaning (seeMaterials andMethods), 107 metab-
olites remained and were used for modeling (detailed in S1 Table). Separation of patients with
bacteremic sepsis from ER controls was obtained in the fifth score vector by PCA (R2 = 0.762;
Q2 = 0.448) (Fig 2A). No credible class discrimination among the five different bacterial species
causing bacteremic sepsis was obtained by PCA or OPLS-DA. A global OPLS-DAmodel
(R2Y = 0.792; Q2 = 0.621) using the 107metabolites however successfully discriminated bacteremic
sepsis and ER controls (Fig 2B). A validation of the OPLS-DAmodel using the test set metabolite
data that had not been used for creating the model verified good model performance (Fig 3).

Subsets of metabolites for prediction of bacteremic sepsis
After exclusion of variables with little contribution to discrimination, a new OPLS-DA model
for work set samples using 38 metabolites was fitted with good class separation (R2X = 0.766;
Q2 = 0.712) Fig 4A. Model validation using test set samples resulted in correct classification
(Fig 4B). Statistical testing by Mann-Whitney U and false discovery rate correction identified
24 metabolites to be significantly altered between the classes (Fig 5). By further analysis of the
variable importance plot and the loading plot alongside logistic regression, 6 metabolites with
the strongest contribution to class separation were identified. An OPLS-DA model with these 6
metabolites was fitted (R2X = 0.71; Q2 = 0.66), again with good class discrimination (Fig 4C)
and ability to predict bacteremic sepsis using test samples (Fig 4D).
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Metabolite based classification models versus conventional diagnostics
The 6 metabolites with the strongest ability to separate bacteremic sepsis from ER-controls
were annotated as myristic acid, citric acid, isoleucine, norleucine, pyruvic acid and a phospho-
choline like derivative. A binary logistic regression model using the 6 metabolite data of work
set samples for predicting bacteremic sepsis demonstrated a sensitivity of 0.95 (95% CI 0.84–
0.99) and a specificity of 0.90 (95% CI 0.82–0.99) with an AUC of 0.98 (95% CI 0.97–1.00). The
best binary logistic regression model that could be derived using infection laboratory variables

Table 1. Characteristics and clinical variables of patients.

Work set Test set

Variable (no. analyzed)a 42 with
bacteremic sepsis

30 ER
controls

23 with
bacteremic sepsis

19 ER
controls

P Value for difference, all bacteremic
sepsis cases versus all ER controls

Patient characteristics

Age in y (114) 71 ± 17 68 ± 17 71 ± 14 67 ± 19 .850

Percent males (114) 52 50 57 53 .768

No. with diabetes (113) 8 4 3 5 .999

No. with cardiovascular
disease (114)

11 8 10 4 .409

No. with malignancy (111) 4 5 2 3 .255

No. with COPD (110) 3 4 4 6 .185

Clinical parameters

Temperature in °C (108) 39.0 ± 1.1 37.9 ± 0.7 38.6 ± 0.9 38 ± 1 < .001

Systolic blood pressure in
mmHg (104)

133 ± 29 142± 26 125 ± 29 143 ± 32 .051

Respiration rate per minute
(91)

23 ± 8 22 ± 7 26 ± 13 22 ± 6 .690

Percent with SIRS � 2 (102) 80 42 80 50 < .001

No. with severe sepsis
(107))

9 0 9 0 < .001

No. dead within 30 days
(112)

5 1 1 0 .398

MEDS scoreb (108) 3.2 ± 4.0 2.6 ± 2.2 4.7 ± 3.9 3.0 ± 2.9 .083

MEWS score (107) 2.5 ± 3.9 2.0 ± 2.0 3.6 ± 2.7 2.4 ± 2.3 < .001

CRB-65 score (107) 1.1 ± 0.9 0.8 ± 0.5 1.2 ± 0.9 0.7 ± 0.6 .064

Charlson score (112) 1.3 ± 1.3 1.5 ± 1.7 2.0 ± 1.9 1.5 ± 1.8 .641

Days in hospital (112) 12 ± 14 4 ± 4 7 ± 6 4 ± 2 .002

Days in Intensive Care (112) 4 1 2 0 .134

Clinical Chemistry

C-reactive protein in mg/L
(114)

175 ± 128 50. ± 54 157 ± 112 79 ± 74 < .001

Hemoglobin concentration in
g/L (114)

125 ± 16 132 ± 19 120 ± 14 130 ± 17 .027

White blood cell
concentration ×109/L (114)

14 ± 5 9 ± 4 16 ± 10 9 ± 3 < .001

Thrombocyte concentration
×109/L (114)

222 ± 90 274 ± 91 245 ± 106 260 ± 83 .023

Creatinine in μmol/L (114) 107 ± 45 78 ± 25 95 ± 49 93 ± 49 .022

a Data are presented as mean with standard deviations.
b MEDS, mortality in emergency department sepsis; MEWS, modified early warning score; CRB-65, pneumonia severity score.

doi:10.1371/journal.pone.0147670.t001
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available from the clinic (C-reactive protein, leukocyte and thrombocyte count) combined with
measurement of the body temperature displayed a sensitivity of 0.98 (95% CI 0.87–0.99) and a
specificity of 0.92 (95% CI 0.74–0.99) with an AUC of 0.97 (95% CI 0.93–1.01) using work set
samples (Fig 6A, Table 2). Evaluation of the regression models using test set data showed a
sensitivity of 0.91(95% CI 0.69–0.99) and a specificity 0.84 (95% CI 0.58–0.94) for 6

Fig 2. Multivariate data analysis with work set samples (n = 72) using 107metabolites. Panel A shows a PCA plot of the 4/5th principal component
separating bacteremic sepsis (black circles) from ER controls (white circles). Panel B shows an OPLS-DA plot of t1/t(o)1, discriminating bacteremic sepsis
(black circles) from ER controls (white circles), (P = 4.8×10−12).

doi:10.1371/journal.pone.0147670.g002

Fig 3. Scatter plot of class discrimination based on cross-validated scores in an OPLS-DAmodel
using 107metabolites. The samples of the work set with bacteremic sepsis (black circles) and the work set
of ER controls (open circles) were used for modeling. Validation using the samples of the test set with
bacteremic sepsis (black triangles) and the test set of ER control (open triangles) is shown. The Y-axis
represents the seven fold cross-validated predictive score vector 1. Error bars represent mean score values
with 95% confidence intervals.

doi:10.1371/journal.pone.0147670.g003
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metabolites, and sensitivity of 0.83 (95% CI 0.61–0.95) and specificity of 0.56 (95% CI 0.31–
0.78) for the 4 best infection variables available from the clinic. (Fig 6B, Table 2).

The predictive capacity of SIRS scores were evaluated by a regression model using dichot-
omy SIRS values set at 0–2 or� 2 which resulted in a sensitivity of 0.80 (95% CI 0.64–0.91), a
specificity of 0.58 (95% CI 0.37–0.78) and an AUC of 0.69 (95% CI 0.55–0.83) using the work
set samples (Fig 6A, Table 2).

Fig 4. OPLS-DAmodels using subsets of metabolites and predictions of test set samples. Panel A shows an OPLS-DA plot using work set samples
and 38 metabolites discriminating bacteremic sepsis (black circles) from ER controls (open circles), (P = 2.0×10−17). Panel B shows a scatter plot of the class
discrimination using cross-validated scores (tPS[1]cv[7]p) of an OPLS-DAmodel with 38 metabolites. Work set bacteremic sepsis (black circles), work set
ER controls (open circles), test set bacteremic sepsis (black triangles) and tests set ER control (open triangles) are shown. Panel C shows an OPLS-DA plot
using work set samples and 6 metabolites discriminating bacteremic sepsis (black circles) from ER controls (open circles), (P = 4.1×10−11). Panel D shows a
scatter plot of the class discrimination using cross-validated scores (tPS[1]cv[7]p) of an OPLS-DAmodel with 6 metabolites. Work set bacteremic sepsis
(black circles), work set ER controls (open circles), test set bacteremic sepsis (black triangles) and tests set ER control (open triangles) are shown. Error bars
in panel B and D represent mean score values with 95% confidence intervals.

doi:10.1371/journal.pone.0147670.g004
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By logistic regression as well as multivariate modeling, myristic acid was identified as the
strongest contributor to class separation among the metabolites. A regression model on work
set data using myristic acid alone showed a sensitivity of 0.91(95% CI 0.77–0.97) and a specific-
ity of 0.70 (95% CI 0.50–0.85) with an AUC of 0.86 (95% CI 0.75–0.96) (Fig 6C). Regression
models on work set data using single variables available from the clinic showed a sensitivity of
0.86 (95% CI 0.71–0.95), and specificity of 0.63 (95% CI 0.44–0.80) for leucocytes and a sensitiv-
ity of 0.76 (95% CI 0.60–0.88) and a specificity of 0.77 (95% CI 0.58–0.90) for C-reactive protein
(Table 2). The three single markers showed similar ROC curves for the work set samples (Fig
6C) but with superior predictive power on test set samples for myristic acid (Table 2, Fig 6D).

Estimation of metabolite quantities
Analysis of mass spectrometry peak areas corresponding to myristic acid indicated elevated
levels in bacteremia (Fig 7). Similarly, elevated levels of pyruvic acid and two disaccharides

Fig 5. The regression coefficient plot for the OPLS-DAmodel with 38 metabolites using work set samples. Positive regression coefficients indicate a
positive correlation with bacteremic sepsis and negative coefficient a negative correlation.

doi:10.1371/journal.pone.0147670.g005
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were observed. The levels of norleucine, phosphocholine like molecule and citric acid were
lower for bacteremic sepsis cases compared to ER controls.

Discussion
Our study suggests that biomarkers identified by metabolomic analysis of blood taken in the
ER can be used for differentiation between patients with and without bacteremic sepsis. New
tests of infection to help clinicians in their decisions on early antibiotic treatment and an

Fig 6. ROC curves of metabolites and laboratory diagnostic variables available in the clinic for the prediction of bacteremic sepsis. Panel A shows
logistic regression modelling on work set samples using 6 metabolites (solid line), the combination of temperature, C-reactive protein, thrombocyte, and white
blood cell count (dotted line) and the combination score SIRS�2 (dashed line). Panel B shows prediction on test set samples using 6 metabolites (solid line),
the 4 best clinical variables (dotted line) and the combination variable SIRS�2 (dashed line). Panel C shows logistic regression modelling on single variables
of work set samples for myristic acid (solid line), white blood cell count (dotted line) and C-reactive protein (dashed line). Panel D shows prediction on test set
samples using myristic acid (solid line), white blood cell count (dotted line) and C-reactive protein (dashed line).

doi:10.1371/journal.pone.0147670.g006
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appropriate level of care are much needed. Early identification of patients with bacteremia is
important because these patients have worse outcomes and may need targeted treatment inter-
ventions [17, 18]. A negative biomarker test, in contrast, may help a clinician to refrain from
the use of unnecessary broad-spectrum antibiotics and direct the treatment and additional
diagnostics for other causes of disease.

The concept of using diagnostic patterns, i.e. using multiple characters as input, is largely
unexplored in clinical microbiology diagnostics despite that the use of patterns rather than
individual characters is well established in several clinical scoring systems for various medical
conditions, e.g., in SIRS scores, cancer stage scores, and heart failure scores. The pattern of 6
metabolites identified in this study showed specificity and sensitivity values for bacteremic sep-
sis that were comparable to a combination of C-reactive protein, leukocyte count, thrombocyte
count, and body temperature which was the best possible combination we found among clini-
cally available parameters. Both these patterns provided better predictions of bacteremic sepsis
than SIRS scores, which have been suggested to be helpful in deciding the need for performing
blood cultures [19, 20]. We believe that the interpretation of patterns is a feasible and helpful
future approach for diagnosis of infectious conditions that can be adapted in the clinic by for
example using apps in mobile devices. Similar functions using multiple characters are already
in clinical use for various clinical scores [21].

Among the 6 metabolites useful for discriminating bacteremia from ER controls especially
one of them, myristic acid, identified bacteremic sepsis with higher accuracy than the C-reac-
tive protein which is considered one of the better acute-phase markers available for clinical
management and decisions on the need for antibiotic therapy [22]. Our study does not reveal
the physiological role of myristic acid (one of several saturated short and medium chain fatty
acids present in the human metabolome). Such compounds, however, have been implicated to
play a role in the inflammatory cascade through cytokine release from monocytes and macro-
phages. An increased expression of cyclooxygenase-2 through activation of Toll-like receptors

Table 2. AUC andmodel performance for work set and test set.

Performance
variables

Six metabolites 4 clinical variables SIRS score White blood cell count C-reactive protein Myristic acid

Work set data
(n = 72)a

Accuracy (%) 93.1 95.5 71.9 76.4 76.4 81.8

Sensitivity 0.952 0.976 0.800 0.857 0.762 0.905

Specificity 0.900 0.920 0.583 0.633 0.767 0.700

PPV 0.930 0.953 0.762 0.766 0.821 0.809

NPV 0.931 0.958 0.636 0.760 0.697 0.840

AUC 0.979 0.967 0.692 0.820 0.842 0.855

Test set data
(n = 42)a

Accuracy (%) 88.1 70.7 65.8 69.0 64.3 97.6

Sensitivity 0.913 0.826 0.800 0.652 0.739 1.000

Specificity 0.842 0.556 0.500 0.737 0.526 0.947

PPV 0.875 0.704 0.640 0.750 0.654 0.958

NPV 0.889 0.714 0.692 0.636 0.625 1.000

AUC 0.931 0.817 0.650 0.731 0.737 0.977

a Model performances were calculated with Fischer’s exact test using 2x2 tables of predicted probabilities obtained via logistic regression.

doi:10.1371/journal.pone.0147670.t002
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via nuclear factor kappaB has been proposed as the mechanism [23]. An infection response
involving fatty acids was also recently described in experimental sepsis of humans. In that
experimental model, increased levels of tetradecanedionate, stearate and eicosenoate and other
fatty acids were observed with transcriptomic changes pointing at a shift in energy production
towards glycolysis and depletion of a number of amino acids; findings which are parallel to the
metabolite patterns observed in the current study [24]. Our observations of decreased levels of
isoleucine and norleucine as components of the 6 metabolite pattern in bacteremic sepsis are in
line with observations made by others of decreased levels of amino acids in sepsis [25, 26].
Importantly, several additional amino acids were found to be down regulated in bacteremic
sepsis in the current study, again in accordance with recent studies by others [25, 26]. Further-
more, we noted increased levels of various disaccharides and tri saccharides, possibly resulting
from amino acid catabolism during sepsis [27].

Unlike in other metabolomics studies of sepsis, we have used whole blood as the sample
matrix. Other studies have used serum or plasma and although our sample choice was mainly
based on availability, it has recently been shown that in metabolomics analyses using proton
nuclear magnetic resonance spectroscopy whole blood provided more information as

Fig 7. Tukey’s box-and-whisker plots for work set samples using the 6 most important metabolites. Values are corresponding to chromatogram peak
areas. Outliers are represented by dots outside the 1.5 interquartile range of the 25 respective 75 percentile. Mean values are indicated by a plus sign. The P
values were derived fromMannWhitneyU tests *P < .05, **P < .01, ***P < .005, ****P < .001.

doi:10.1371/journal.pone.0147670.g007
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compared with serum or plasma [28]. In that study it was suggested that the use of whole
blood may be particularly important for studies in diseases such as sepsis in which red blood
metabolism is altered. In line with this reasoning it is possible that some of the metabolite pat-
terns described here were released from red blood cells [28–30]. Another difference from previ-
ous metabolomics studies of sepsis was that we used a blood sampling protocol that is close to
a clinical situation with some variation in handling and storage times, and possibly with ongo-
ing metabolic changes after sampling. We think that to be useful in the clinic, the diagnostic
metabolites should be stable to such variations but we acknowledge that we might have missed
some information of transient nature.

The design of this study included multiple bacterial causes of bacteremic sepsis because we
aimed at finding agent-specific metabolite patterns. In contrast to a previous study on S. aureus
and E. coli sepsis in the intensive care unit [9], we could not verify such patterns in the current
study. The presented results are in agreement with a recent much larger clinical trial identifying
no major differences among patients infected with S. pneumoniae, S. aureus, or E. coli [7].

An obvious limitation with the current study is the use of an idealized study design with
only two patient categories receiving an unambiguous final medical diagnoses, i.e. cases with
laboratory verified bacteremic sepsis and ER controls without bacteremia. In clinical settings
there is typically a large group of patients that stays without laboratory confirmation at dis-
charge from hospital and this group was not taken into account in the current study design. It
was also evident from the analysis of clinical characteristics of the patients with and without
bacteremic sepsis that the group with a subsequent bacteremia diagnosis generally had a more
severe disease with higher body temperature and clinical disease severity scores. This group dif-
ference in disease severity may be an important explanation to the metabolite patterns
observed. There were also some age category differences between groups, which may have had
effect on the results. It also remains unclear if the metabolite patterns detected primarily mir-
rored host responses, was derived from infecting bacteria, or was a combination of these two
disease processes.

In conclusion, this study showed that measurement of a small set of metabolites in whole
blood collected at admission to hospital could predict bacteremic sepsis. In particular, elevated
levels of myristic acid were associated with subsequent positive blood culture. The results are
encouraging because they suggest that a metabolomic approach for evaluation of patients sus-
pected with infection can provide new diagnostic tools.

Supporting Information
S1 Table. Features of 107 metabolites in 114 whole blood samples.
(XLSX)
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