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Background and Objectives: Treatment with mesenchymal stem cells (MSC) in spinal cord injury (SCI) has been high-
lighted as therapeutic candidate for SCI. Although astrogliosis is a major phenomenon after SCI, the role of astrogliosis 
is still controversial. In this study, we determined whether acute transplantation of MSC improves the outcome of 
SCI through modulating astrogliosis.
Methods: Bone marrow derived rat MSCs were induced neural differentiation and transplanted after acute SCI rats. 
Matrix metalloproteinase (MMP) and neuro-inflammatory pathway were analyzed for acute astrogliosis at 1, 3 and 
7 d after SCI in RT-PCR- and western blot analysis. Functional outcome was assessed serially at postoperative 1 d 
and weekly for 4 weeks. Histopathologic analysis was undertaken at 7 and 28 d following injury in immuno-
histochemistry.
Results: Transplantation of MSCs decreased IL-1α, CXCL-2, CXCL-10, TNF-α and TGF-β in a rat model of con-
tusive SCI. Protein level of NF-κB p65 was slightly decreased while level of STAT-3 was increased. In im-
munohistochemistry, MSC transplantation increased acute astrogliosis whereas attenuated scar formation with increased 
sparing white matter of spinal cord lesions. In RT-PCR analysis, mRNA levels of MMP2 was significantly increased 
in MSC transplanted rats. In BBB locomotor scale, the rats of MSC treated group exhibited improvement of functional 
recovery.
Conclusions: Transplantation of MSC reduces the inflammatory reaction and modulates astrogliosis via MMP2/STAT3 
pathway leading to improve functional recovery after SCI in rats.
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Introduction 

  The global incidence of spinal cord injury (SCI) is esti-
mated from 23 per million inhabitants (1, 2). Patients with 
SCI suffer from permanent impairment, limitation of ac-
tivity, low quality of life, loss of job and increased medical 
cost (3). To overcome the permanent damage of SCI, 
many therapeutic approaches have been applied. Glial scar 
is known as the barrier to regenerated injured spinal cord, 
and it is formed from astrogliosis which is increased com-
plex molecular and cellular responses, mainly morpho-
logical change and proliferation of astrocytes (4). In as-
trogliosis, various pro-inflammatory cytokines and matrix 
metalloproteinases (MMPs) were involved. In the brain 
and spinal cord, MMPs are involved to both injury and 
repair cellular mechanisms (5). In the spinal cord, MMP2 
and MMP9 plays a pivotal role respectively to modulate 
astrocytes in the acute and chronic phases following SCI 
(6). Astrocytes in the spinal cord are most abundant cells 
and mainly contribute in glial scar formation. Reactive as-
trogliosis is initiated with stimulated astrocytes migration 
at the site of injury and characterized by increased ex-
pression of glial fibrillary acidic protein (GFAP). Mesen-
chymal stem cells (MSCs) or precursor cell had been high-
lighted as one of them from inhibition of astrogliosis. 
However, role of MSC on acute astrogliosis is not defined 
clearly because treatment with MSCs has been delayed 
due to avoiding an acute hostile environment (7, 8). In 
addition, several reports support the protective role of 
acute astrogliosis in SCI (9-12). Anderson et al. (9) re-
ported astrocyte and acute gliosis improve regeneration of 
injured cord through decreasing scar formation and in-
troducing axonal growth.
  Inhibition of astrogliosis had been believed the key 
mechanism to recover from SCI by survived transplanted 
cells. These studies suggest that MSC treatment on acute 
astrogliosis improves during initial stage of recovery, and 
those evidences supprot to overcome adversities of animal 
study and promising recovery of SCI in clinical study. 
Therefore, in this study, we investigated how acute as-
trogliosis is associated with MSC transplantation in SCI 
rats.

Materials and Methods

Surgical procedures of spinal cord injury 
  All animal experiments were approved and followed the 
regulations of the Institutional Animal Care and Use 
Committee (IACUC) of Kangwon National University 
(IACUC NO. KW-180518-2). For the comparison of be-

havioral and pathological outcome, female SD rats were 
anesthetized and exposed to severe SCI using the clipping 
compression technique (13, 14). After shaving and dis-
infected with povidone and 70% alcohol, midline incision 
was performed from T8 to T12 area. With serial dissection 
of fascia and muscle, T10 and T11 lamina were totally 
removed. The spinal cord injury was performed by com-
pression of aneurysmal clips (occlusion pressure: 75 gm, 
Asculap, Oackville, ON, Canada). The clip was applied 
with full thickness of spinal cord, was left for 1 minute 
and then removed. For injection of NP-MSC or control, 
T10 and T12 vertebral bodies were fixed horizontally with 
forceps of fixation device. 

Preparation and transplantation of MSC at acute SCI 
of rats
  MSC were harvested from the tibia and fibula of 
two-week-old male Sprague–Dawley rat (Japan SLC, Inc. 
Hamamatsu, Japan). The MSC prepared on gelatin coated 
plate after removing RBCs as described previously (15). 
At passage 5 of MSCs, MSCs were cultured in neuronal 
induction media composed of DMEM＋10% FBS, 10 ug/L 
basic fibroblast growth factor (β-FGF, R&D Systems, 
Inc.), 10 ug/L human epidermal growth factor (hEGF, 
R&D Systems, Inc.), 1 mmol dibutyryl cyclicn AMP 
(dbcAMP, Sigma, St. Louis, MO) and 0.5 mmol iso-
butylmethylxanthine (IBMX, Sigma, St. Louis, MO) for 7 
days following by Jiang’s method (16). For MSC traffick-
ing, MSCs were tracked by CFDA tracker and then re-
suspended at a concentration of 10,000 cells/ul. MSC with 
CFDA tracker (20 ul, 200,000 cells/20 ul) were trans-
planted at 5 mm above epicenter of spinal cord after 1 
hour from injury through the automatic stereotactic mi-
croinfusor (Model KDS-310; Muromachi Kikai Co., 
Tokyo, Japan) with 5 ul/min over 4 minutes. The needle 
was left in place for 5 minutes after injection. 

Basso Beattie and Bresnahan (BBB) locomotor scale
  Functional outcome was analyzed serially with the 
Basso Beattie and Bresnahan scale (BBB) at postoperative 
one day and weekly for four weeks. Two independent 
blinded examiners observed and assessed BBB for 4 min. 
For the comparison of behavioral outcome, twenty-five fe-
male SD rats were anesthetized and exposed to severe SCI 
using the clipping compression technique. MSC infused 
at 5 mm above injured spinal cord in each eight rats. 
Culture media or stem cell derivatives were infused at 
eight spinal cord injured rats for control. Nine rats were 
performed SCI only.
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Table 1. Oligonucleotide primers and PCR cycling conditions

Genes GenBank number
Primer sequence

Size (bp) Temp (°C)
Sense (5’＞3’) Anti-sense (5’＞3’)

GAPDH NM_017008.4 ggacctcatggcctacatgg cccctcctgttgttatgggg 179 60
MMP1 NM_001134530 cttccccaaatcccatccagc ttgagctcagcttctggcatg 160 60
MMP2 BC074013 ggccgtacaatcttcactgca agcacctttctttgggcacaa 182 60
MMP3 NM_133523 tacggctgtgtgctcatccta gcttccctgtcatcttcagcc 197 60
MMP7 L24374 ttagttgggggactgcagaca tcctcaccatccgtccagtac 169 60
MMP8 NM_022221 tggaccttcagacaaccctgt tcaactgttctcagctgggga 159 60
MMP9 NM_031055 tcattcttcagtgccggaagc ggacacatagtgggaggagct 183 60
Il1α NM_017019.1 gacaagcctgtgttgctgaa Gaaagctgcggatgtgaagt 123 55
Tnfα NM_012675.3 tgcctcagcctcttctcatt cccatttgggaacttctcct 108 55
Tgfβ NM_021578.2 tgagtggctgtcttttgacg tgggactgatcccattgatt 146 55
Il10 NM_012854.2 cccagaaatcaaggagcatttg cagctgtatccagagggtcttca 100 55
Cxcl2 NM_053647.1 agtgagctgcgctgtcaatg gctctggatgttcttgaagtcaac 100 55
Cxcl10 NM_139089.1 gggatccctctcgcaagaa ctcagcgtctgttcatggaagt 100 55

Temp: Temperature.

RNA isolation, real-time reverse transcription 
polymerase chain reaction (RT-PCR)
  According to the manufacturer’s instructions, the 
RNeasy Mini Kit (Qiagen, Hilden, Germany) was used for 
extracting total mRNA from the cells and cDNA was syn-
thesized using the ReverTra Ace qPCR RT Master Mix 
with gDNA remover kit (Toyobo, Osaka, Japan). Then, the 
quantification of the specific gene expression of Matrix 
metalloproteinase (MMP)-1, 2, 3, 7, 8, 9 was confirmed us-
ing a THUNDERBIRD SYBR qPCR Mix (Toyobo) under 
the 7500 Real-time PCR system (Applied Biosystems), and 
melting curve date was analyzed for identifying PCR 
specificity. The mRNA level was presented as 2−ΔCt, where 
Ct=threshold cycle for target amplification, ΔCt=Ct target gene 
(specific genes for each sample) −Ct internal reference (GAPDH 
for each sample). Design of primer sequences by Primer3 
software (Whitehead Institute/MIT Center for Genome 
Research) was conducted with information of cDNA se-
quences obtained from GenBank for rat and Table 1 shows 
information and sequences of primers.

Enzyme linked immunosorbent assay (ELISA)
  Interleukin (IL)-1α, IL-10, C-X-C motif chemokine 
(CXCL)-2, CXCL-10, Tumor growth factor (TGF)-β, 
Tumor necrosis factor(TNF)-α, signal transducer and ac-
tivator of transcription 3 (STAT3) and nuclear factor 
(NF)-κB p65 were analyzed for evaluation of acute as-
trogliosis at 1, 3 and 7 d after SCI. Protein samples from 
rat spinal cord were prepared Protein samples from rat 
spinal cord were extracted and prepared with a protease 
inhibitor cocktail on ice. All ELISA kits (IL-1α, IL-10, 

CXCL-2, CXCL-10, TGF-β, TNF-α, STAT-3, NF-κB 
pathway) were purchased from FineTest (Wuhan Fine 
Biological Technology Co., Ltd., Wuhan, Hubei, China) 
and used as per manufacturer’s instructions. Microplates 
were read on an Epoch microplate reader (BioTek 
Instruments, Inc., Winooski, VT, USA). Cytokine levels 
were then extrapolated from a standard curve.

Western blot analysis
  Protein samples from spinal cord were prepared with 
RIPA lysis buffer with a protease inhibitor cocktail on ice, 
and equal amounts of isolated protein were separated on 
10% SDS-polyacrylamide gels. The separated proteins 
were electroblotted onto 0.45-μm nitrocellulose transfer 
membranes. The membranes were blocked with 5% skim 
milk in Tris-buffered saline supplemented with 0.1% 
Tween 20 (TBST) buffer for 1h and then probed with 1：
1000 diluted anti- NF-κB p65 and anti-p- NF-κB p65 
(Ser536) primary antibodies for 24 h at 4℃. After 3 times 
washes for 10min each, polyclonal anti-rabbit HRP-con-
jugated secondary antibody were incubated for 1 h at 
room temperature and developed with a Pierce ECL 
Western Blot substrate. Band densitometry was calculated 
using Image J software analysis.

Immunofluorescence staining and confocal microscopy
  Histopathologic analysis was undertaken at 7 and 28 d 
following injury. At 7 d after SCI, the extent of acute as-
trogliosis was checked by Glial fibrillary acidic protein 
(GFAP) staining at mid sagittal section of SCI. The cell 
population was checked with GFAP for glial cell, Neural/ 
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Fig. 1. Time course of behavioral recovery with acute treatment 
of MSC at severe SCI. For the comparison of behavioral outcome, 
twenty-five female SD rats were anesthetized and exposed to se-
vere SCI using the clipping compression technique. MSC were in-
fused at eight rats and MSC culture medium (CM) at eight rats for 
control. Nine rats were performed SCI. (A) Functional outcome was 
analyzed serially with the Basso Beattie and Bresnahan (BBB) scale 
at postoperative 1st day and weekly for four weeks (28th day). The 
statistical analysis was conducted by repeated measured analysis 
of variance followed by Turkey’s post-hoc test. *p＜0.05 and **p＜
0.01 vs. score of D＋1 at each groups. From 21 days after SCI, 
the rats with MSC treated group had better behavioral outcome 
with statistically significance than of SCI group. (B) The statistical 
analysis of box plots were accompanied by one-way analysis of 
variance followed by Bonferroni’s multiple comparison test for 
comparing all pairs of columns to box-and-whisker plots of BBB 
score at 28th day. Box plots display upper and lower quartiles and 
media values with each different color. This effects showed ob-
vious differences between groups at 28 d (p＜0.05). *p＜0.05 for 
MSC-CM-SCI or MSC-SCI vs. SCI. D; Day. Data are presented as 
the mean±SD.

glial antigen (NG) 2 for oligodendroglial precursor cell 
(OPC), ionized calcium-binding adapter molecule (IBa) 1 
for microglial cell at 7 d of SCI. At 4 weeks after SCI, 
histological outcome was determined by the relative mean 
percentage of spared white tissue by the Cavalieri method 
with Image J software analysis (17). For it, the axial slides 
were selected every 100 um from epicenter to rostral and 
caudal direction with Hematoxylin & Eosin and Neurofil-
ament staining. At 7 and 28 days after SCI, the survival 
and differentiation of MSC were checked with confocal 
microscope (Olympus FLUOVIEW - FV300).

Statistical analysis
  The statistical analysis was performed by SPSS. Paired 
t-test was used for comparison between MSC group and 
control. Results are shown as means±SD. Statistical anal-
ysis of significance was calculated by one-way ANOVA fol-
lowed by Bonferroni post hoc test for multigroup compar-
isons (StatView 5.0; SAS institute, Cary, NC). The varia-
tion trends of BBB scores was analyzed using ANOVA fol-
lowed by Turkey’s post-hoc test and their score at 28 days 
were represented using box-and-whisker plots with stat-
istical analysis of Bonferroni’s multiple comparison test.

Results 
MSC graft enhanced functional and physiological 
improvement after SCI 
  In order to evaluate the functional outcome of MSC 
grafted SCI rats, Basso Beattie and Bresnahan (BBB) loco-
motor scale was performed postoperatively. For 2 weeks, 
there was no difference of behavioral outcome between 
treated- and control group postoperatively. However, at 28 
d after SCI, the BBB score of the MSC treated rats after 
SCI was significantly higher than SCI rats. In addition, 
culture media of MSCs treated rats was not significant dif-
ferent from SCI rats in BBB scale (Fig. 1A and 1B). We 
next analyzed the histological changes of the GFAP pos-
itive astrogliosis by measuring in mid sagittal section of 
SCI. At Day 7 after SCI, extensive astrogliosis and scar 
formation was observed at the injury site in MSC treated 
SCI rats compared with SCI or MSC-CM treated SCI rats 
(Fig. 2B and 2C). On the contrary of increased acute as-
trogliosis, MSC transplanted rats exhibited widely spared 
white matter at Day 28 postoperatively compared with 
SCI or MSC-CM transplanted SCI rats (p＜0.05) (Fig. 
2A). Moreover, grafted MSCs were observed using 
CFDA-SE tracking under the confocal microscopy at both 
Day 7 and Day 28 after SCI compared to SCI alone 
(Supplementary Fig. S1).

MSC transplantation decreases release of pro- 
inflammatory cytokines and level of phosphorylation of 
NF-κB p65 after SCI
  In order to determine whether MSCs after SCI modu-
late inflammatory response, protein or mRNA levels of 
pro/anti-inflammatory cytokines were analyzed by ELISA 
or RT-PCR. As shown in Fig. 3 and Supplementary Fig. 
S2, protein levels of IL-1α, TNF-α, TGF-β, CXCL-2 or 
CXCL-10, were decreased in MSC transplanted SCI rats 
compared with SCI or MSC-CM transplanted SCI rats. 
We next determined the level of NF-κB p65 to elucidate 
anti-inflammatory pathway of MSC transplanted SCI rats 
using western blot analysis. As shown in Fig. 4A and 4B, 
the phosphorylation level of the inflammatory transcrip-
tional factor NF-κB p65 at Ser536 of spinal cord was 
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Fig. 2. Analysis of spared white mater and GFAP-positive astrogliosis with MSC treatment at acute or severe SCI. (A) At Day 28 after 
SCI, histological outcome was determined by represent 2 images of each groups (n=3) and their relative mean percentage of spared white 
tissue by the Cavalieri method. The axial slide was selected every 100 um from epicenter to rostral and caudal direction with Hematoxylin 
& eosin and neurofilament staining. The mean area of spared white mater in tissue was expressed as proportional area (percentage, %). 
MSC treated SCI rat had more spared white matter at the lesion epicenter compared with SCI or MSC-CM treated SCI rats. *p＜0.05 com-
pared with SCI group. (B) The astrogliosis was described using represent 2 images of each groups (n=3 for SCI or MSC-SCI rats and n=2 
for MSC-CM-SCI rats). The extent of astrogliosis was measured by bright-filed microscopy with Glial fibrillary acidic protein (GFAP)-positive 
staining in mid sagittal section of SCI at 7 d after SCI at ×600 magnification. (C) The dotted line for area occupied by GFAP-(＋) scar 
in (B) was shown as stereological quantification by image J. Data are presented as the mean±SD. The area of acute astrogliosis was increased 
by MSC treatment in SCI at 7 d compared with SCI or MSC-CM treatment in SCI. **p＜0.01 compared with SCI at each group. ###p＜0.001 
compared with at 7 d in MSC-SCI group.

Fig. 3. The effects of MSC transplantation on cytokines/chemokine related to astrogliosis in acute SCI. After SCI induction with or without 
MSC transplantation, the spine homogenates were isolated at day of first (D＋1), third (D＋3) and seventh (D＋7) after SCI (n=3). The 
expression of cytokine/chemokine including (A) IL-1α, (B) TNF-α, (C) TGF-β, (D) IL-10, (E) CXCL2 and (F) CXCL10 was evaluated for 
acute astrogliosis using ELISA analysis. Each value was calculated along with regression analysis of corresponding standard curve. MSC 
treatment decreased the level of cytokine/chemokine in SCI rat. *p＜0.05 for MSC-SCI compared with SCI at indicated time point.

slightly decreased at 1-, 3- and 7 d after injury. The tran-
scriptional level of NF-κB p65 was confirmed in spinal 
cord tissue of rats by NF-κB p65 ELISA (Fig. 4C).

Increased STAT3 and MMP2 levels in MSC treated rats 
after SCI
  In astrogliosis, it is generally accepted that MMPs play 
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Fig. 4. The effects of MSCs transplantation on NF-κB pathway in acute SCI. After SCI induction with MSC or MSC-CM transplantation, 
the spine homogenates were isolated at 1 to 7 d for western blot analysis and ELISA assay to detect neuron-inflammatory pathway through 
activation of NF-κB p65 (p-NF-κB, 65-kDa). (A) Western blot analysis determined the phosphorylation of NF-κB p65 at Serine 536 residue. 
Total NF-κB and β-actin were used for loading control. (B) The representative bands showed the ratio of p-NF-κB p65 to total NF- 
κB. (C) ELISA confirmed the activation of NF-κB according to manufacturer’s instruction. The value was calculated along with regression 
analysis of standard curve. MSC treatment decreased the activation of NF-κB in SCI rat. Data are presented as the mean±SD. *p＜0.05 
for MSC-CM or MSC-SCI compared with SCI at indicated time point.

Fig. 5. The effects of MSCs transplantation on matrix metalloproteinase (MMP) and STAT3 pathway in acute SCI. After SCI induction with 
MSC-CM or MSC transplantation, the spine homogenates were isolated at 1 to 7 d in the SCI after MSC transplantation for real-time qRT-PCR. 
The mRNA level of (A) MMP1, (B) MMP2, (C) MMP3, (D) MMP7, (E) MMP8 and (F) MMP9 was detected in indicated time point after 
SCI. The relative expression was calculated with 2−ΔΔCT method and normalized with GADPH. Only MMP2 was increased in MSC-treated 
SCI rat with statically significance at 1 d after SCI (D＋1). Data are presented as the mean±SD of three animals for MSC-SCI or SCI, 
and two animals for MSC-CM-SCI. *p＜0.05 and **p＜0.01 compared with D＋1 in each groups. #p＜0.05 for MSC-CM-SCI or MSC-SCI 
compared with SCI at indicated time point.



Choonghyo Kim, et al: MSC Modulates Astrogliosis in SCI  337

Fig. 6. The effects of MSCs transplantation on STAT3 activation in 
acute SCI. After SCI induction with MSC-CM or MSC trans-
plantation, the spine homogenates were isolated at 1 to 7 d in the 
SCI after MSC transplantation for ELISA analysis of activation of 
STAT3. The value was calculated along with regression analysis of 
standard curve. MSC treatment induces MMP2 expression and 
STAT3 activation in SCI rat. Data are presented as the mean±SD
of three animals.

a key role to mobilize astrocytes and inflammatory cells 
by disrupting blood brain barrier (BBB) (5). Therefore, we 
next determined mRNA levels of MMPs in RT-PCR 
analysis. As shown in Fig. 5, MMP2 was significantly in-
creased at 1 d in MSC transplanted rats after SCI, but 
not MSC-CM transplantation. We analyzed protein level 
of STAT3, which is a major microglial and neuro-in-
flammatory factor by western blot analysis. MSC grafted 
SCI rats exhibited increased level of STAT3 at day 1 
whereas was not significantly different at 3- and 7 d com-
pared with SCI or MSC-CM engrafted SCI rats (Fig. 6). 
Furthermore, levels of MMPs were analyzed to determine 
the endogenous levels of MSCs by RT-PCR analysis. As 
shown in Supple 2, MMP2 was significantly increased of 
MSCs suggesting that MSC exhibiting MMP2 is asso-
ciated with its expression of MSC grafted SCI rats.

Discussion 
  In acute phase of central nervous system (CNS) injury, 
reactive astrogliosis immediately develops following mi-
croglial activation after injury (18). Sequentially, ne-
truophil and T lymphocyte were infiltrated leading to re-
cruiting large number of OPCs (18-20). In inflammatory 
responses at the site of injury, reactive astrocytes divide, 
migrate during the 2 to 7 day after injury, eventually fill 
the epicenter and make glial scar (12). These changes of 
shape, number and location of astrocytes was defined as 
astrogliosis which resulted in glial scar in according to the 
severity of injury CNS (4, 20, 21). Classically inhibition 
of astrogliosis had been believed the key mechanism of 
MSC to SCI. In contrary to classical belief, there were 

filed up evidences of protective role of acute astrogliosis. 
Faulkner et al. (10), present astrocyte and acute gliosis im-
prove regeneration of injured cord through decreasing scar 
formation. Wanner et al. (12) focus on protective role of 
reactive astrocyte at 5 day which confine inflammatory 
and fibrodic cell from heathy tissue through STAT3 
pathway. Okada et al. (11) reported acute and subacute 
astrogliosis seclude the lesion area from healthy tissue by 
limiting disruption of the blood-spinal cord barrier, the 
amplification of an overwhelming inflammatory response 
and massive cellular degeneration.
  Although it is widely recoginized MSC and MSC-based 
treatment are emering as a promising therapy in SCI, it 
is still controversial to make a decision an optimal timing 
of treatment. Regarding cellular survial, acute SCI pro-
vides a hostile environment on transplanted stem cells. 
Most studies have reported that the timing of treatment 
with MSCs was subacute phase of SCI (7, 22, 23). In this 
study, we injected MSCs at early time point whether 
MSCs modulate astrogliosis at acute phase of SCI. It is 
known that gelatinase MMP2 and MMP9 are derived from 
astrocytes and microglia in astrogliosis (24). MMP9 is a 
remarkable acute marker within 24 hours (5), whereas 
MMP 2 is gradually increased during healing phase after 
SCI (5). Sassoli et al. (24) reported that MSC trans-
plantation increased MMP2 and MMP9 expression of my-
oblast by paracrine effect resulting in substantially re-
ducing muscle atrophy. Moreover, Lozito et al. (25) re-
ported that MSCs express MMP2 at cell surface and pro-
tein secretion. In agreement with previous observation, 
our findings exhibited that increased level of MMP2 from 
isolated MSCs of rats suggesting that upregulated MMP2 
of transplanted MSCs increase level of MMP2 in injured 
spinal cord at day 1 after SCI (Supplementary Fig. S3).
  We have seen that astrogliosis increased with MSC 
transplantation at 7 d after SCI. The area of lesion core 
and number of astrocyte were increased in MSC treatment 
group compared with SCI group. Moreover, infiltration of 
astrocytes and microglial cells were observed exhibiting 
increased astrogliosis. The rats of MSC group improved 
motor behavioral function with BBB score and white mat-
ter sparing in rats with SCI. Veeravalli et al. (26) reported 
umbilical cord derived MSCs reduce the glial scar through 
the stimulation of MMP2 production. Renault-Mihara et 
al. (27) reported that MMP2 was related to STAT pathway 
of astrogliosis in SCI. Okada et al. (11) reported that re-
active astrocytes play a pivotal role in repair of BBB and 
protecting neuron and oligodendroglial cells. Moreover, 
Anderson et al. (9) reported that inhibition of STAT3 in-
creased area of glial scar and disturbed recovery of SCI. 
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Our findings have shown the increased protein levels of 
STAT3 and decreased NF-κB p65 in SCI rats. In as-
trogliosis, protective pathway of STAT3 and detrimental 
pathway of NF-κB has been discussed (28). In STATs 
pathway, STAT3 plays a key role for modulating mi-
gratory function of reactive astrocytes to recover SCI (11, 
19). In this study, MMP2 was significantly increased at 
1 d and protein level of STAT3, not NF-κB p65, ex-
hibited similar tendency to MMP2. These results indicate 
that MSC-derived MMP2- STAT3 axis is associated tran-
siently increased astrogliosis in SCI rats. In GFAP IκBa 
KO mice, the injury was dramatically improved at day 1 
after SCI (21). Brambilla et al. (21) supports our findings 
to inhibit recovery of SCI through inhibition of NF-κB 
p65 pathway. 
  In clinical trials, it is still remained to address MSC 
transplantation in SCI including quality of control in 
MSC as transplant, safety problem such as developing leu-
kemia (29). Moreover, establishment of optimized animal 
model of SCI should be considered the clinical situation 
(30, 31). Severity of SCI is one of critical factor to outcome 
of stem cell therapy. Parr et al. (8) reported that neuronal 
stem cell produced significant functional improvement on-
ly for 27 g clip compression, not for 35 g. Clinical sit-
uation, the patients with incomplete SCI regained 75% of 
normal function without treatment. However, preclinical 
study usually used a model with less consistent moderate 
injury model. In addition, stem cell therapy should be ad-
vanced to acute CNS injury which is critical to clinical 
outcome (32, 33). As previous mention, stem cell was usu-
ally transplanted at day 7 after SCI in animal study which 
is beyond critical period of human SCI (7). In addition, 
our previous studies have shown the method for more ho-
mogenous neuronal differentiated MSC and increased 
neuronal differentiation (15, 34, 35). We transplanted 
MSC at acute severe SCI model to modulate astrogliosis. 
Acute transplanted MSC improved functional and histo-
logical outcome through increasing acute astrogliosis. For 
improving survival of MSC, further combined treatment 
needed to transplantation of acute SCI. Taken together, 
our findings suggest that early increased MMP2 derived 
from transplanted MSCs caused acute astrogliosis of in-
jured spinal cord eventually leading to improve neuro-
logical and histrological outcine via MMP2-STAT3 axis. 
These data might contribute to unerstand the effect of 
acute treatment of MSC in SCI and its related diseases.
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