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Abstract

from individual chromosome arms of this genotype.

Background: Chromosomal rearrangements are a major driving force in shaping genome during evolution.
Previous studies show that translocated genes could undergo elevated rates of evolution and recombination
frequencies around these genes can be altered. Based on the recently released genome sequences of Triticum
urartu, Aegilops tauschii, Brachypodium distachyon and bread wheat, an analysis of interchromosomal translocations
in the hexaploid wheat genotype ‘Chinese Spring’ (‘CS) was conducted based on chromosome shotgun sequences

Results: A total of 720 genes representing putative interchromosomal rearrangements was identified. They were
distributed across the 42 chromosome arms. About 59% of these translocated genes were those involved in the
well-characterized translocations involving chromosomes 4A, 5A and 7B. The other 41% of the genes represent a
large numbers of putative interchromosomal rearrangements which have not yet been described. The number of
the putative translocation events in the D subgenome was about half of those presented in either the A or B
subgenomes, which agreed well with that the times of interaction between the A and B subgenomes almost
doubled that between either of them and the D subgenome.

Conclusions: The possible existence of a large number of interchromosomal rearrangements detected in this study
provide further evidence that caution should be taken when using synteny in ordering sequence contigs or in cloning
genes in hexaploid wheat. The identification of these putative translocations in ‘CS’ also provide a base for a systematic
evaluation of their presence or absence in the full spectrum of bread wheat and its close relatives, which could have
significant implications in a wide array of fields ranging from studies of systematics and evolution to practical breeding.
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Background

Chromosomal translocations are frequently associated
with genomic disorders in human [1], animals [2] and mi-
crobes [3,4]. They are also a major driving force in shaping
genome during evolution [1-5] and translocated genes
could undergo elevated rates of evolution [2,6]. Results
from previous studies also indicate that chromosomal
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translocations can alter levels of recombination and the
chances of getting the desired recombinants will be dimin-
ished if the targeted gene is located near or at a transloca-
tion breakpoint [7].

The interchromosomal translocations involving chro-
mosomes 4A, 5A and 7B in hexaploid wheat have been
well documented [8-10]. The rearrangement between
chromosomes 4A and 5A also exists in the diploid A gen-
ome donor of Triticum urartu [11] as well as in the dip-
loid wheat T. monococcum [9], indicating that the 4/5
translocation predates the polyploidization event forming
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tetraploid wheat. Similarly, the translocation between
chromosome 7B and the rearranged chromosome 4A ap-
pears to also exist in the tetraploid wheat [9], indicating
that this translocation had occurred before the second
polyploidization event which formed hexaploid wheat.

Several additional interchromosomal rearrangements
have been described. One of these is a reciprocal trans-
location between chromosomes 5B and 7B which was
very prevalent in West European wheats in the 1960s
and 1970s [12] and is likely widespread in modern var-
ieties [7]. Another example is the interchromosomal
translocation between chromosomes 5B and 6B present
in landraces of tetraploid wheat from Ethiopia [13]. It is
of interest to note that both of these interchromosomal
translocations seem to be present only in genotypes
from specific geographical regions. Although it is not
clear whether any of them is associated with modified
morphological characteristics, their highly localized geo-
graphical distributions suggest that they could be associ-
ated with adaptability.

Previous studies on chromosomal translocation in wheat
have been based on either cytology [14,15] or molecular
markers [8,9]. These techniques have only limited resolu-
tions which allow only the detection of rearrangements in-
volving large chromosome segments. Recent progress in
genome sequencing and single-copy FISH [16] offers the
potential to drastically enhance the power of detecting
chromosomal rearrangements in polyploidy wheats and
their relatives. Based on the recently released genome se-
quences of T. urartu [17], Aegilops tauschii [18], B. dis-
tachyon [19] and bread wheat [20], genes bordering each
of the main translocation and inversion breakpoints on
chromosomes 4A, 5A and 7B of the modern bread wheat
genome were determined [21]. These genetic resources
have also been exploited to assess interchromosomal rear-
rangements in the bread wheat genome and results ob-
tained are reported here.

Methods

Data collection and analysis

Non-redundant orthologous gene sequences among CDSs
(coding sequences) of B. distachyon, T. urartu, Ae. tauschii
and wheat deletion bin-mapped ESTs (expressed-sequence
tags) were identified in a recent study [22]. These se-
quences were analysed against the ‘CS’ shotgun sequences
using the BLAST+ blastn algorithm with an E-value
threshold of 107° (this value was applied in all subsequent
BLAST analyses). The arm locations of genes on chromo-
some 3B were also identified previously [22]. For each of
the non-redundant genes, the three best hits across the
entire ‘CS’ genome were extracted. A gene was deemed to
represent a putative interchromosomal rearrangement if
any two of these three best hits were on different chromo-
somes from a given homoeologous group but the other
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one was on a chromosome belonging to a different homo-
eologous group [8,23]. For example, if the best three hits
for a given gene were on chromosome arms 1AL, 1BL,
and 2DS, the gene was considered to represent a putative
translocation from 1DL to 2DS. For these genes, an add-
itional 7 hits were then considered and the chromosomal
locations were visually inspected again. Additional hits
with different chromosomal locations from the first 3 hits
were kept only. Only single-copy genes (the best 3 hits
locating on the three chromosome arms belonging to a
single homoeologous group) and those with simple dupli-
cations (3 of the best hits representing a single-copy genes
and the other 3 hits representing a single homoeologous
group, e.g. Bradi2g55820.1: 1AL, 1BL, 3BL, 2AL, 2BL,
2DL) were used in this study. For easy description, they
were all classified as single-copy genes in this study. Gen-
etic map locations of wheat contigs were obtained from
http://www.wheatgenome.org/. [20]. A translocation was
arbitrarily defined as the presence of at least two neigh-
bouring genes with a maximum distance of 1.0 ¢cM on at
least one of the three wheat subgenomes.

Configuration of chromosome 4A

The arm ratio of chromosome 4A was reversed due to
translocations between chromosomes of 4A, 5A and 7B
[8-10,24,25]. As suggested previously [22], we used ‘ori-
ginal 4AS’and ‘original 4AL’ to refer to the arms of the
ancestral version of this chromosome and ‘modern 4AS’
and ‘modern 4AL’ to refer to the modern arm configur-
ation of this chromosome.

Validation of gene locations by PCR (polymerase chain
reaction) amplification

Chromosome locations of a small number of genes identi-
fied from the above analysis were arbitrarily selected and
validated using the euploid and nullisomic-tetrasomic
and ditelosomic lines of ‘CS’. Annealing temperatures
used ranges from 62 to 70°C depending on the primers
(Additional file 1: Table S1). PCR products were sepa-
rated on 1.5% agarose gels. If PCR products with simi-
lar sizes were generated from each of the wheat lines
assessed, they were digested with a suitable restriction
enzyme selected based on sequence alignments among
the three subgenomes and then separated on gels.

Results

A total of 720 single-copy genes representing interchromo-
somal rearrangements were detected. These genes were lo-
cated on each of the 42 chromosome arms (Table 1,
Figure 1). Map locations for about 64% of these genes on at
least one of the three subgenomes are known (Additional
file 2: Table S2). Seven of these genes were further assessed
by PCR amplification against the euploid and nullisomic-
tetrasomic lines of ‘CS’. Primers designed for two of these
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Table 1 Locations of the 720 single-copy genes representing interchromosomal rearrangements on each of the 42 chromosome arms*

Chr. arm

4AL

1AS
1AL
1BS
1BL
1DS
1DL
2AS
2AL
2BS
2BL
2DS
2DL
3AS
3AL
3BS
3BL
3DS
3DL
4AS
4AL
4BS
4BL
4DS
4DL
5AS
S5AL
5BS
5BL
5DS
5DL
6AS
6AL
6BS
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Table 1 Locations of the 720 single-copy genes representing interchromosomal rearrangements on each of the 42 chromosome arms* (Continued)

6BL 1 1 1 2

6DS 1 3 3 1 1 1
6DL

7AS 1 1

7AL 1 2 1 1 1

7BS 1 1 1 2 1 2 177

7BL 1 1 2 1 1 1

7DS

7DL

Chr. arm 4DS 4DL 5AS 5AL 5BS 5BL 5DS 5DL 6AS 6AL 6BS 6BL 6DS 6DL 7AS 7AL 7BS 7BL 7DS

7DL

2DS 1 1 1 1 1 1 1
2DL 2 2 1 2 1 1
3AS 1 1 1 2

3AL 3 1 1 1 1

3BS 1 1 1 1

3BL 1

3DS 1 2 1 1 1

3DL 1 1

4AS

4AL 71 1
4BS

4BL

4DS
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Table 1 Locations of the 720 single-copy genes representing interchromosomal rearrangements on each of the 42 chromosome arms* (Continued)

4DL

5AS 1

5AL 2 4 1 1 1 1 1 2 9
5BS 1

5BL

5DS

5DL

6AS

6AL

6BS 1 2 2 1

6DS 4

6DL

7AS 1 1 1 1 1

7AL 1 1 1

7BS 1 1 1 1 1 1 1

7BL 1 1

7DS 1
7DL

*Genes were transferred from chromosome arms in column to those in the row.
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among the 42 chromosome arms of bread wheat.

4BL
4DS
4DL
5AS
5AL
5BS
5BL
5DS
5DL
6AS
6AL
6BS
6BL
6DS
6DL
7AS
7AL
7BS
7BL
7DS
7DL

Chromsome arm

Figure 1 Distribution of the 720 single-copy genes and genes with simple duplication representing interchromosomal rearrangements

genes (AEGTA13263, TRIUR3_25897) failed to amplify.
PCR products were successfully obtained for the other five
genes and chromosome locations deduced from the
chromosome shotgun sequences from the International
Wheat Genome Sequencing Consortium (IWGSC) were
confirmed for all of them (Figure 2).

Based on the presence of at least two neighbouring
genes with a map distance of no more than 1.0 cM in at
least one of the three subgenomes, 21 groups of genes
representing interchromosomal rearrangement were de-
tected. The 42 events of interchromosomal rearrangement
represented by these 21 groups of genes were located on
18 of the 21 wheat chromosomes: 17 in the A subgenome,
17 in the B subgenome and the other 8 in the D subge-
nome (Figure 3). These 42 translocation events involved a
total of 443 genes. Map locations were known for 333
of them (or 75%) in the A subgenome, 213 (48%) in the
B subgenome, and 303 (68%) in the D subgenome
(Additional file 2: Table S2).

As expected, some of these translocations represent
chromosome segments highly conserved between Brachy-
podium and wheat. One of the examples is represented by
the two genes indicating a translocation from 1AL to 2BL
(with homoeologous arm locations on 1BL, 1DL and 2BL,
respectively). They are neighbouring genes in Brachypo-
dium (Bradi3g20170 and Bradi3g20190). They also have
the same map locations on both 1BL (83.82 cM) and 2BL
(82.72 cM), the only two chromosome arms on which their
locations are available. Another example is the segment
translocated from 1DL to 5BL (with homoeologous loca-
tions on 1AL, 1BL and 5BL, respectively) represented by
Bradi2gl4170 and Bradi2gl4240 (Additional file 2: Table
S2). However, some of the other groups representing inter-
chromosomal translocations consist of genes with similar
locations in wheat but apparently having originated from

0.85Kb (S

0.65Kb I - -

Figure 2 PCR profiles of the hexaploid wheat genotype
‘Chinese Spring’ (‘CS’) nullisomic-tetrasomic (NT) lines with
primers for 3 of the genes involved in putative interchromosomal
rearrangements. Locations of the genes detected from the
chromosome shotgun sequences are given in brackets. 1Kb plus
DNA ladder was used as the size marker (M). ND: non-digested
control of the PCR product from ‘CS'. Fragments missing from the
aneuploid lines of ‘CS’ are marked with open triangles.
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Figure 3 Distribution of the 42 interchromosomal translocation
events among chromosomes of the three bread wheat
subgenomes.

different Brachypodium chromosomes. One of these groups
is the one representing a translocation from 1AL to 5BL
(with chromosome arm locations on 1BL, 1DL and 5BL, re-
spectively), which consists of genes from two separate Bra-
chypodium chromosomes (Additional file 2: Table S2).

Not unexpectedly, the three dominating groups of
genes representing interchromosomal translocations
were those representing the well-known translocations
involving chromosomes 4A, 5A and 7B. They consisted
of 177, 167, 71 and 9 genes, respectively (Table 1), and
in total accounted for about 59% of the 720 genes de-
tected in this study. Apart from them, the group with
the largest number of genes was the one representing a
translocation from 1DL to 5BL (with homoeologous arm
locations on 1AL, 1BL and 5BL, respectively). This
group consists of 11 genes, which was even larger than
those representing the 5AL segment on the modern 7BS
(with chromosome arm locations on 5BL, 5DL and 7BS,
respectively) (9 genes) resulted from the 4A/5A/7B
translocations (Additional file 2: Table S2). Judged by
their map locations, the 11 genes transferred from 1DL
to the modern 5BL likely represent more than one trans-
location event. The terminal locations of Bradi2gi4170,
Bradi2g14240 and Bradi2g26795 infer a translocation
from the terminal end of 1DL to the terminal end of the
modern 5BL. However, the map locations of several
others genes (including Bradi2g26980, Bradi3g28810,
TRIUR3 00282, and TRIUR3-27958) indicate the exist-
ence of a second translocation involving an interstitially
located segment from 1DL to 5BL (Additional file 2:
Table S2). Each of the other groups representing inter-
chromosomal translocations contained 4 or less of the
single-copy genes used in this study. For those with
known map locations, genes in each of the groups were
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all closely linked, indicating that each of these gene
groups likely represented a single interchromosomal
translocation event.

Discussion

Taken advantage of the recently released chromosome
arm-based sequences of the bread wheat genome, we
conducted a systematic assessment of interchromosomal
translocation in this important crop species. Even with
the strict criteria used in this study, genes indicating the
presence of interchromosomal rearrangement were de-
tected on each of the 42 chromosome arms. About 59%
of these genes were due to the well-known transloca-
tions involving chromosomes 4A, 5A and 7B. The other
41% of the translocated genes represent a large number
of putative translocations scattered across chromosomes
belonging to each of the three wheat subgenomes. To-
gether with those putative intrachromosomal rearrange-
ments reported earlier [22], the presence of such a large
number of rearranged genes provides further evidence
that caution should be taken when exploiting synteny in
studying any of the three wheat genomes. As chromo-
somal translocations can alter levels of recombination
and the chances of getting desired recombinants will be
diminished if the gene conditioning the resistance is lo-
cated near or at the translocation breakpoints [7], effi-
cient breeding needs a clear understanding of how
widespread these rearrangements exist in different wheat
types and their close relatives.

For improving the likelihood that only genuine inter-
chromosomal rearrangements were detected, only single-
copy genes and those with simple duplications were
selected for this study. The number of genes representing
putative rearrangements could be significantly increased if
the selection criteria were relaxed. For example, when the
additional hits were tolerated, the number of genes repre-
senting the translocation from 6BS to 7DL would be in-
creased from the currently 2 to 16. These additional genes
with known map locations share a single location on ei-
ther of the two non-translocated chromosome arms, 6AS
or 6DS (Table 2), indicating that they likely represent a
single chromosome segment on each of these two chro-
mosomes. Thus it is not unreasonable to speculate that
these genes could also represent a single segment on the
third member of the homoeologous chromosome arm,
6BS, before the genes in concern were translocated to
chromosome arm 7DL.

The genes selected for this study were likely to be sig-
nificantly under-estimated for another three reasons:
Firstly, genes which detected sequences on one or two
of the three wheat subgenomes were not considered. As
the genome sequences used in this study is known to be
incomplete [20], additional genes meeting the selection
criteria used will likely become available with the
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Table 2 Genes representing a translocation from 6BS to 7DL
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Gene name Locations*

Details of the best 3 hits Best 3 hits  Additional hits

Contig_ID Linkage Contig_ID Linkage (cM) Contig_ID Linkage#

(cM) (cM)

Bradi1g35550.1 6AS_4384393 NA 6DS_2091402 8158 7DL_3388333 NA 6AS,6DS,7DL
Bradi3g06916.1  6AS_3107342 NA 6DS_2095270 8158 7DL_3331018 111.08 6AS,6DS,7DL
Bradi1g35592.1  6AS_4428500 60.96 6DS_2122226 8158 7DL_3332022 NA 6AS,6DS,7DL  2DL,5DL
Bradi3g05560.1  6AS_4392917 60.96 6DS_2080416  81.58 7DL_3328281 14297 6AS,6DS,7DL  1BS,3DLA4AL,7DS
Bradi3g05810.1  6AS_4403468 60.96 6DS_2098202 8158 7DL_3393819 152.76 6AS,6DS,7DL  4ALADS,7AL
Bradi3g05960.1  6AS_4357746  60.96 6DS_2125465 8158 7DL_3358080 160.68 6AS,6DS,7DL  5BL,5DL,7AL
Bradi3g07970.1  6AS_4351841 60.96 6DS_2058543  81.58 7DL_3349115 111.08 6AS,6DS,7DL  4AL4BS4DS,5BL,7BL
TRIUR3_05619  6AS_4354230 60.96 6DS_2082494 8158 7DL_3392566 191.24 6AS,6DS,7DL 1AL, 1BL,1DL,7DS
TRIUR3_15544  6AS_4357746  60.96 6DS_2125465 8158 7DL_3358080 160.68 6AS,6DS,7DL  5BL,5DL,7AL
AEGTA43678 6AS_4359749 NA 6DS_2056711 8158 7DL_3390442 NA 6AS,6DS,7DL  6DL,7DS
AEGTA43755 6AS_4365865 NA 6DS_2086887 81.58 7DL_3342428 12028 6AS,6DS,7DL  3B4ASADL,7BS,7DS
Bradi3g06670.1  6AS_4384393 NA 6DS_2091402 8158 7DL_3388333 NA 6AS,6DS,7DL  5BL,5BS,5DL,5DS,6AL6DL,7BS
Bradi3g16020.1 6AS_148467  NA 6DS_2077560 81.58 7DL_3361916 NA 6AS,6DS,7DL  4DL,5AL,5BL,7AL
Contig36859 6AS_4324849 NA 6DS_1084274 8158 7DL_3331672 NA 6AS,6DS,7DL 1AL, 1BL,2AL,2BL,5BL,5DL,6AL
Contig99362 6AS_148467  NA 6DS_2077560 8158 7DL_3361916 NA 6AS,6DS,7DL  4DL,5AL,5BL,5DL
TRIUR3_17134  6AS_3958480 NA 6DS_2065488 81.58 7DL_3396087 160.28 6AS,6DS,7DL 1AL TAS,1BS,2AL,2AS,7BL

*4AS and 4AL refer to the short and long arms, respectively, of the modern chromosome 4A.

*NA indicates map locations not available.

improved genome coverage. Secondly, single chromo-
some arms are the smallest unit resolved for most of the
genes used in this study. Although more than one seg-
ment on a modern chromosome arm could having been
translocated from different parts of the wheat genome
[21], the limited numbers of single-copy genes used in
this study and the lack of map locations for many of them
(Additional file 2: Table S2) made it difficult to reliably
identify multiple rearrangement events within a single
chromosome arm. For the same reasons, reliable identifi-
cation of genes immediately flanking the breakpoints to
precisely characterize the majority of the putative rear-
rangements may have to wait. Thirdly, the lack of map lo-
cations for many of the selected genes (Additional file 2:
Table S2) also hampered the selection of neighbouring
genes used for declaring the presence of interchromo-
somal rearrangements. Thus, additional interchromo-
somal rearrangements are likely to be detected when map
locations for more genes become available. Clearly, al-
though synteny has been extensively and successfully used
in many applications [26-29], the possible existence of
such a high percentage of translocated genes suggest that
caution need to be taken when applying this approach at
the gene level.

Previous studies indicate that the D subgenome of
wheat has several unique features. For example, molecular
marker analysis has showed that the D subgenome is
much less polymorphic than either the A or B subgenome

[30,31]. Chromosome shotgun sequences of ‘CS’ showed
that, among the three bread wheat subgenomes, the class
I elements of transposons (retroelements) were the least
abundant but the class II elements (DNA transposons)
were the most abundant in the D subgenome [20]. The
significantly smaller number of the putative interchromo-
somal translocation events detected in the D subgenome
in this study seems to be another addition to the unique
features of this subgenome. However, considering the A
and B subgenomes joined together much earlier than the
D subgenome in the two polyploidization events leading
to the formation of the hexaploid wheat [20,32], the inter-
chromosomal rearrangements seem to have occurred at a
similar frequency among them.

Similar to those in other plant species, current system-
atics of wheat and its close relatives is based mainly on
morphological characteristics. It is known that the prin-
cipal differences between some of the species, such as
those among the various hexaploid forms of wheat, are
due to different alleles of one or two single genes [33].
Considering that translocations are often associated with
significant disorders in various species including mam-
mals, birds and bacteria [1-4], it is not unanticipated that
changes due to these chromosomal rearrangements could
be more drastic than those due to single genes in wheat as
well. The identification of the putative interchromosomal
translocations in this study and those intrachromosomal
rearrangements in earlier studies [22,25,34,35] in the
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hexaploid wheat genotype ‘CS’ paved the way for a sys-
tematic assessment of their presence or absence across the
full spectrum of bread wheat and its close relatives, which
would not only allow the classification of bread wheat and
its relatives on a more scientific basis but also facilitate the
exploitation of genes from the wild relatives in wheat
breeding programs.

Conclusions

A total of 720 genes representing putative interchromosomal
rearrangements in the bread wheat genotype ‘CS’ was
detected in this study and the number of the genes was likely
significantly underestimated. These genes were distributed
on each of the 42 chromosome arms and they suggested the
presence of a large number of putative interchromosomal
rearrangements in this genotype. Together with those intra-
chromosomal rearrangements reported in earlier studies,
these results provide further evidence showing that extensive
structural differences likely exist among the three sub-
genomes of ‘CS. An effort is urgently required to clarify
which of these rearrangements were induced during the
production of the aneuploids used for generating the shotgun
sequences and which were specific to the genotype ‘CS’. A clear
understanding of the presence or absence of these chromo-
somal rearrangements in the full spectrum of bread wheat and
its close relatives could dramatically improve our capacity in
wheat genome research as well as in new variety breeding.
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Additional file 1: Table S1. Primer sequences used for validating
chromosomal locations of selected genes.

Additional file 2: Table S2. Details of the 720 Single-copy genes
representing possible interchromosomal rearrangements in wheat.
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