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Abstract.  High summer temperatures have deleterious effects on oocyte developmental competence. The 
antioxidant and autophagy-related properties of 5-aminolevulinic acid (5-ALA) gives the compound a broad range 
of biological activities. This study aimed to evaluate the effects of: 1) a high temperature-humidity index (THI) on 
the developmental competence of bovine oocytes, and 2) 5-ALA administration in combination with sodium ferrous 
citrate (SFC) during in vitro maturation (IVM) on bovine oocyte developmental competence evaluated at high THI. 
Bovine ovaries were collected from a local slaughterhouse at moderate environmental temperature (MT; THI of 56.2) 
and high environmental temperature (HT; THI of 76.7) periods; cumulus-oocyte complexes (COCs) were aspirated 
from medium-sized follicles, matured in vitro for 22 h, fertilized, and cultured for 10 days. For COCs collected 
during the HT period, 0 (control), 0.01, 0.1, 0.5, or 1 µM 5-ALA was added to the maturation medium in combination 
with SFC at a molar ratio of 1:0.125. The results showed that HT adversely affected blastocyst and hatching rates 
compared with MT. Adding 5-ALA/SFC (1 µM/0.125 µM) to the maturation medium of oocytes collected during 
the HT period improved cumulus cell expansion and blastocyst rates compared with the no-addition control. In 
conclusion, this study showed that high THI can disrupt bovine oocyte developmental competence. Adding 5-ALA to 
SFC ameliorates this negative effect of heat stress and improves subsequent embryo development.
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Heat stress has a detrimental effect on hormonal production, 
estrous expression, ovarian function, oocyte quality, and 

embryonic development in cattle [1, 2]. Beef cattle (Bos taurus) 
pregnancy rate decreases by 3.2% when the temperature-humidity 
index (THI) is above 70 [3]. In addition, beef cows exposed to THI 
77.4 showed increased oxidative stress and a prolonged estrous 
cycle [4]. Moreover, high environmental temperature affects their 
age at first calving, particularly if the animals are exposed to such 
temperatures for three days before and after insemination [5]. Oocyte 
maturation is a crucial developmental period for progression to 
subsequent embryonic stages [6]. Bidirectional crosstalk occurs 
between oocytes and their surrounding cumulus cells. Cumulus cells 
facilitate the transfer of metabolic substrates, elimination of toxic 
substances, and modulation of environmental influences to support 
oocyte growth and development [7]. Heat stress impairs the function 
of cumulus-oocyte complexes (COCs), specifically their nuclear and 
cytoplasmic maturation, through inducing mitochondrial dysfunction 
and accumulation of reactive oxygen species (ROS) [8–10]. High 
ROS levels have deleterious effects on both oocyte maturation 
and fertilization rate, limiting oocyte penetration and embryonic 
development through decreasing blastocyst rate and inducing embryo 

cell block [11]. Therefore, supplementation of maturation medium 
with antioxidants such as cysteine, cysteamine, melatonin, and 
resveratrol may be effective against oxidative stress [12].

Recently, 5-aminolevulinic acid (5-ALA; C5H12NO7P) has attracted 
considerable attention as a potential antioxidant. 5-ALA is a natural 
non-alpha amino acid found in vegetables, fruits, and fermented 
products. As a tetrapyrrole, 5-ALA is part of the same class as heme, 
vitamin B12, and chlorophyll [13]. It is formed from a combination 
of glycine and succinyl-CoA in the presence of 5-ALA synthetase 
(5-ALAS) [14]. 5-ALA exerts anti-inflammatory effects through 
inhibiting TNFα and iNOS expression [13]. Moreover, 5-ALA 
in combination with sodium ferrous citrate (SFC) induces heme 
oxygenase-1 (HO-1) expression, thus protecting cells both in vivo and 
in vitro against oxidative stress, as well as against other conditions 
such as hydrogen peroxide-induced cardiomyocyte hypertrophy, 
cisplatin-induced nephrotoxicity, and ischemia-reperfusion-induced 
renal injury [15–19]. Recent studies indicate that 5-ALA treatment 
rescues heat-and metabolic stress-exposed bovine mammary epithelial 
cells via inhibiting the expression of unfolded protein response 
components and thereby relieving strain on the endoplasmic reticulum 
[20, 21]. Notably, 5-ALA dietary supplementation improves milk 
protein composition, iron status, and immunity in pigs and dairy 
cattle [22, 23]. Supplementation also increases egg yolk quality and 
egg production in laying hens [24].

Combining 5-ALA with SFC (5-ALA/SFC) has a greater positive 
effect than either 5-ALA or SFC alone because oxidative phos-
phorylation protein and gene levels are further increased and HO-1 
is upregulated [23]. Despite the beneficial effects of 5-ALA/SFC 
in various cell lines, to the best of our knowledge, no studies have 
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investigated the impact of 5-ALA/SFC on oocyte developmental 
competence in vitro. Therefore, this study aimed to elucidate in 
vitro developmental competence of oocytes derived from beef cattle 
exposed to moderate or high THI. Additionally, we aimed to clarify 
5-ALA/SFC effects on the maturation and subsequent development 
of heat-stressed oocytes.

Materials and Methods

Animal care and use
This study was approved by the Institutional Animal Care and 

Use Committee, University of Miyazaki (2021-015).

Meteorological data
All meteorological data were obtained from the Japan 

Meteorological Agency at the Miyakonojo City observation point 
(131°4.9' E, 31°43.8' N, 154 m above sea level). Daily average THI 
was calculated according to the following formula: THI = (0.8 × T) 
+ [(RH × 100) × (T − 14.4)] + 46.4 [25], where T is the daily average 
temperature (°C) and RH is the daily average relative humidity (%). 

Table 1 lists the parameters related to the environmental parameters.
Early antral follicles of approximately 0.5 to 1.0 mm in diameter 

are sensitive to heat stress [26]. A 0.5 mm follicle takes approximately 
15 days to reach a diameter of 6 mm [27]. Therefore, THI was 
calculated 15 days before each trial under the moderate conditions 
of spring (March to May) (characterized by mild temperature and 
humidity with a daily average THI = 56.2 [3]; moderate temperature 
or MT) and more extreme conditions of summer (June to August) 
(characterized by high temperature and humidity with a daily average 
THI = 76.7; high temperature or HT) (Figs. 1A and B). Table 1 lists 
THI values during MT and HT.

Experimental design
Experiment 1: In vitro oocyte developmental competence was 

evaluated in ovaries of Japanese Black cattle under MT and HT 
conditions (Fig. 2).

Experiment 2: Oocytes collected under high summer temperatures 
were treated with different 5-ALA/SFC concentrations; effects 
on oocyte maturation and subsequent embryo development were 
determined (Fig. 2).

Table 1. Comparison of metrological data during spring (March to May; moderate temperature) and summer (June to 
August; high temperature) at the study site (Miyakonojo City) where ovaries were collected

Daily maximum 
temperature (°C)

Daily minimum 
temperature (°C)

Daily average 
temperature (°C)

Daily average  
relative humidity

Daily average 
THI

Moderate temperature a 19.5 ± 3.2 7.7 ± 3.2 13.3 ± 2.4 69.5 ± 13.8 56.2 ± 3.5
High temperature b 30.9 ± 4 22.3 ± 2.5 26. ± 2.7 82.7 ± 8.2 76.7 ± 3.9

Results are shown as mean ± SD. a/b: all metrological data in each column are significantly different at P < 0.0001.

Fig. 1. THI 15 days before each batch of sample collection in moderate (MT; A) and high (HT; B) environmental temperatures. Values are expressed as 
mean ± SEM.
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Ovary and oocyte collection
Ovaries of Japanese Black cattle were collected from a local 

slaughterhouse in Miyakonojo City, Japan and transported within 2 h 
to the laboratory in 0.9% saline (Otsuka Pharmaceutical Factory, Inc., 
Tokyo, Japan), supplemented with a 100 µg/ml penicillin-100 U/ml 
streptomycin antibiotic mixture (Nacalai Tesque, Inc., Kyoto, Japan), 
at 37oC. Ringer’s solution supplemented with 5% heat-inactivated 
bovine serum (Life Technologies New Zealand Ltd., Auckland, New 
Zealand) and a 10-ml syringe attached to a 19-G needle (Terumo, 
Tokyo, Japan) were used for oocyte extraction from medium-sized 
follicles (3–6 mm in diameter). Oocytes were selected if they had 
homogeneous cytoplasm surrounded by three or more layers of 
intact cumulus cells [28].

In vitro maturation (IVM)
Selected oocytes were cultured in TCM-199 (Gibco, Grand Island, 

NY, USA) supplemented with 5% standard fetal bovine serum (FBS; 
Hyclone, Logan, UT, USA), 0.2 AU/ml follicle stimulating hormone 
(FSH; Kyoritsu Pharmaceutical Co., Ltd. Tokyo, Japan), and a 
combination of 100 µg/ml penicillin and 100 U/ml streptomycin. For 
IVM, selected COCs were randomly divided into five groups: control 
and four 5-ALA/SFC combinations in a molar ratio of 1:0.125 (0.01 
µM/0.00125 µM, 0.1 µM/0.0125 µM, 0.5 µM/0.0625 µM, and 1 
µM/0.125 µM). These concentrations were selected based on a patent 
study [29]. 5-ALA and SFC were provided by Neopharma Japan 
Co. Ltd. (Tokyo, Japan). Approximately 20 oocytes per group were 
placed in a four-well culture dish (Nunc, Nalge Nunc International, 
Roskilde, Denmark) containing 1mL of maturation medium and 
cultivated at 38.5oC and 5% CO2 for 22 h.

Assessment of cumulus expansion ratio
Cumulus expansion of COCs was assessed before and after IVM, 

as previously reported [30]. A digital image of each group was 
captured using the same magnification and parameters under a 
stereomicroscope (Meiji Techno Co., Ltd., Tokyo, Japan). The total 
area of each COC was measured and calculated in ImageJ (version 
1.47v; NIH, Bethesda, MD, USA). To calculate the cumulus expansion 
ratio, mean total area of post-IVM COCs was divided by the mean 
total area of pre-IVM COCs for each group.

In vitro fertilization (IVF)
After IVM, most expanded cumulus cells were removed to facilitate 

sperm penetration. Oocytes were placed in a 35 mm Petri dish (AS 
ONE Corporation, Osaka, Japan) containing 50 µl of IVF medium 
(IVF100, Research Institute for the Functional Peptides Co., Ltd., 
Yamagata, Japan) and covered with mineral oil (Fujifilm Irvine 
Scientific, Inc., Santa Ana, CA, USA). Fertilization was performed 
with frozen-thawed semen from a fertile Japanese Black bull; a 
0.5 ml straw from the same lot was thawed for 40 sec in a 38.5ºC 
water bath. Semen was placed in a falcon tube containing 4 ml of 
IVF100 medium and centrifuged at 624 × g for 5 min. The pellet 
was reconstituted with 4 ml of IVF100 medium and centrifuged 
again at 624 × g for 5 min. After removing the supernatant, sperm 
concentration and motility were assessed. The sperm suspension was 
diluted to 10 million spermatozoa/ml, and a 50 μl aliquot was added 
to a 50-μl fertilization drop, resulting in a final sperm concentration 
of five million spermatozoa/mL. IVF was performed at 38.5oC in a 
humidified atmosphere with 5% CO2 for 6 h. The day of fertilization 
was considered day 0.

Fig. 2. Schematic representation of Experiments 1 and 2. Experiment 1: COCs were aspirated from ovaries collected in moderate temperature (MT) during 
spring (March to May) and high temperature (HT) during summer (June to August); aspirated COCs were then subjected to in vitro maturation, 
fertilization, and culture (IVM, IVF, and IVC) at 38.5°C. Experiment 2: COCs were aspirated from ovaries collected under HT and treated with 
different 5-ALA/SFC concentrations during IVM. Oocytes were then subjected to IVM, IVF, and IVC. Images of COCs were recorded before and 
after maturation to calculate cumulus expansion ratios. Embryonic development was recorded on days 2 (cleavage rate, %), 8 (blastocyst rate, %), 
and 10 (hatching rate, %) post-IVF. IVM, in vitro maturation; IVF, in vitro fertilization; IVC, in vitro culture; 5-ALA, 5-aminolevulinic acid; SFC, 
sodium ferrous citrate. Experiments were conducted in the dark. a: 5-ALA/SFC (0 µM / 0 µM), b: 5-ALA/SFC (0.01 µM / 0.00125 µM), c: 5-ALA/
SFC (0.1 µM / 0.0125 µM), d: 5-ALA/SFC (0.5 µM / 0.0625 µM), e: 5-ALA/SFC (1 µM / 0.125 µM).
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In vitro culture (IVC)
After IVF, presumptive zygotes were washed several times in the 

culture medium (IVMD101, Research Institute for the Functional 
Peptides Co., Ltd.), placed in four-well culture dishes contain-
ing 600 µL of IVMD101 medium, and incubated in a humidified 
atmosphere with 5% CO2 for 24 h. Cumulus cells were completely 
removed through gentle pipetting, and embryos were washed in 
culture medium (IVD101, Research Institute for the Functional 
Peptides Co., Ltd.) before incubation in a collagen type 1-coated 
6-well plate (Research Institute for the Functional Peptides Co., Ltd.), 
with each well containing 200 µl of IVD101 supplemented with 5% 
FBS. Embryos were covered with mineral oil for 9 days (from day 
2 to day 10). Cleavage rate (number of cleaved embryos/number of 
inseminated oocytes) was recorded on day 2, blastocyst rate (number 
of blastocysts/number of cleaved embryos) on day 8, and hatching 
rate (number of hatched embryos/number of blastocysts) on day 10.

Statistical analyses
Statistical analyses were performed in SigmaStat (SPSS Inc., 

Chicago, IL, USA). Assumptions of normality (Kolmogorov-Smirnov 
test) and homogeneity of variance (F test) were tested in cumulus cell 
expansion ratio, cleavage rate, blastocyst rate, and hatching rate of 
MT and HT samples. T-tests were used to determine between-group 
differences in cleavage and blastocyst rates, while Mann-Whitney U 
tests were used for differences in hatching rate. Control and treatment 
groups were analyzed with one-way ANOVA, followed by the least 
significant Fisher’s test (LSD) to separate means. Data are presented 
as mean ± SEM. Significance was set at P < 0.05.

Results

Experiment 1
Cumulus expansion ratios did not differ significantly between the 

MT (n = 147; 3.29 ± 0.20) and HT (n = 113; 2.98 ± 0.11) groups 
(Fig. 3A). Cleavage rate also did not differ significantly between 
the MT (n = 119; 80.6 ± 2.2%) and HT (n = 92; 81.2% ± 2.3%) 
groups (Fig. 3B), whereas blastocyst rate was lower in the HT (n = 
19; 20.6% ± 1.6%) group than in the MT group (n = 43; 35.7% ± 
4.5%) (P < 0.05) (Fig. 3C). Moreover, the HT group (n = 4; 16.7 ± 
12.4%) had a lower hatching rate than the MT group (n = 27; 53.5 
± 12.1%) (P < 0.05; Fig. 3D).

Experiment 2
We determined the effect of different 5-ALA/SFC concentra-

tions on oocytes collected under HT (0.0 µM/0.0 µM, total COC 
number = 113; 0.01 µM/0.00125 µM, total COC number = 115; 
0.1 µM/0.0125 µM, total COC number = 105; 0.5 µM/0.0625 µM, 
total COC number = 112; and 1 µM/0.125 µM, total COC number 
= 104). The 1 µM/ 0.125 µM 5-ALA/SFC group (3.6 ± 0.3) had a 
significantly higher cumulus cell expansion ratio than control (2.9 ± 
0.1) and 0.01 µM/0.00125 µM (3 ± 0.2) groups (P < 0.05, Fig. 4A). 
The 1 µM/ 0.125 µM 5-ALA/SFC group had the highest cleavage 
rate (n = 93; 89.8 ± 2.3%), although the difference was not statistically 
significant from control (n = 92; 81.2 ± 2.3%) or the other 5-ALA/SFC 
groups (0.01 µM/0.00125 µM: n = 93, 80.6 ± 3.7%; 0.1 µM/0.0125 
µM: n = 91, 87.3 ± 2.9%; 0.5 µM/0.0625 µM: n = 92, 81.1 ± 4.4%; 
0.05 < P < 0.1, Fig. 4B). Similarly, the 1 µM/0.125 µM group had 
a significantly higher blastocyst rate (n = 30; 32.4 ± 2%) than the 
control (n = 19; 20.6 ± 1.6%, P < 0.05) and trended toward having 

Fig. 3. Effects of different environmental temperatures on cumulus cell expansion ratio (A), cleavage rate (B), blastocyst rate (C), and hatching rate (D). * 
P < 0.05. Moderate: moderate temperature, high: high temperature. Cumulus cell expansion ratio = mean of total COC area after maturation/mean 
of total COC area before maturation in each group. Ceavage rate: (number of cleaved embryos/ number of inseminated oocytes) × 100. Blastocyst 
rate: (number of blastocysts/number of cleaved embryos) × 100. Hatching rate: (number of hatched embryos/number of blastocysts) × 100.
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a higher rate than the 0.01 µM/0.00125 µM group (n = 22; 23 ± 
3.7%, P = 0.063; Fig. 4C). Hatching rates did not differ significantly 
between the control and 5-ALA/SFC treatment groups (Fig. 4D).

Discussion

As THI increases from winter to summer, reproductive performance 
of Japanese Black cattle tends to decrease [4, 5, 31, 32]. However, 
one study showed that hot (summer) or cool (autumn) conditions did 
not affect the developmental competence of oocytes collected via 
ovum pick-up from Japanese Black cattle [33]. In the context of this 
report, and recognizing that limited details are available regarding 
HT effects on Japanese Black oocytes, we aimed to clarify variation 
in oocyte developmental competence across HT and MT conditions. 
We also tested the ability of 5-ALA/SFC to mitigate heat stress 
effects and to restore oocyte developmental competence in vitro.

This study did not find a significant difference in cumulus cell 
expansion ratio between HT (THI: 76.7) and MT (THI: 56.2, a 
condition that does not exert heat stress on beef cows). Indeed, cumulus 
cells are somatic cells with high antioxidant activity and tolerance 
to stressful conditions [34, 35]. However, a previous study indicates 
that summer thermal stress increased the cumulus cell apoptotic 
index [10]. We also did not observe significant differences between 
HT and MT in cleavage rate, in agreement with previous studies 
showing that heat shock had no effect on cleavage rate in bovine 
oocytes [34]. This outcome is likely because early cleavage is linked 

to autophagy, a process that acts as a pro-survival response against 
heat stress [34]. Autophagy is upregulated after fertilization, peaks 
at the 2–4 cell stage, and then decreases gradually from the morula 
to blastocyst stage; research has shown that inducing autophagy 
improves preimplantation embryo development [36, 37]. We did note 
that blastocyst and hatching rates were significantly lower under HT 
than under MT. Heat-induced adverse effects on oocyte quality and 
embryo development may be mediated through retarding nuclear 
maturation by arresting oocytes at metaphase I [38], or hastening 
nuclear maturation (thus aging oocytes) by disrupting gap junctions 
and intracellular cAMP [6, 39]. Moreover, excessive heat disrupts 
oocyte cytoplasmic maturation via stressing the endoplasmic reticulum 
and impairing mitochondrial function. Additionally, heat stress 
altering oxidative phosphorylation complex-associated genes [9, 40, 
41] causes an imbalance between ROS production and elimination, 
consequently inducing intracellular ROS accumulation and GSH 
decline [9].

Here, we demonstrated that 5-ALA/SFC treatment improves 
the cumulus cell expansion ratio, corroborating previous studies 
using different antioxidants [42, 43]. A known biological activity 
of 5-ALA/SFC is activating MAPK subunits (ERK1/2) [44]. At 
the cumulus cell level, this activation upregulates the expression of 
cumulus-cell-expansion genes, including hyaluronic acid synthase 2 
(HAS2), prostaglandin-endoperoxide synthase 2 (PTGS2), pentraxin-3 
(PTX3), and TNF-stimulated gene-6 (TNFAIP6) [45]. However, 
additional experiments are required to corroborate this hypothesis.

Fig. 4. Effects of different 5-ALA/ SFC concentrations on cumulus cell expansion ratio (A), cleavage rate (B), blastocyst rate (C), and hatching rate (D). 
* P < 0.05. Cumulus cell expansion ratio = mean of total COC area after maturation/mean of total COC area before maturation in each group. 
Cleavage rate: (number of cleaved embryos/ number of inseminated oocytes) × 100. Blastocyst rate: (number of blastocysts/numbers of cleaved 
embryos) × 100. Hatching rate: (number of hatched embryos/number of blastocysts) × 100.
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Similarly, we observed that 5-ALA/SFC restored the developmental 
competence of heat-stressed bovine oocytes through improving 
blastocyst rates. This result is in line with a previous study showing that 
5-ALA protects against heat stress in bovine mammary epithelial cells, 
specifically exerting antioxidant effects and relieving endoplasmic 
reticulum stress [21]. 5-ALA/SFC acts via the activation of MAPK 
subunits that in turn stimulates the nuclear translocation of a redox-
sensitive transcription factor called nuclear factor (erythroid-derived 
2)-like 2 (Nrf-2). The binding of Nrf-2 to antioxidant response 
elements (ARE) then activates ROS scavengers [44]. Nrf-2 and its 
downstream antioxidants are important to bovine granulosa cell and 
preimplantation bovine embryo survival in vitro under oxidative stress 
[46, 47]. Moreover, Nrf-2 translocation to the nucleus upregulates 
HO-1 expression [17, 44]. HO-1 is critical for iron homeostasis, 
apoptosis prevention, autophagy, and antioxidant defense systems 
[48, 49]. Furthermore, 5-ALA with SFC upregulates aerobic energy 
metabolism through enhancing cytochrome c, cytochrome P450, 
and oxidative phosphorylation complex III/IV/V expression, thus 
elevating ATP production and improving mitochondrial function 
[50]. ATP is needed for oocyte maturation and reorganization of 
cytoplasmic organelles, so its increase improves oocyte developmental 
competence [51].

Although 5-ALA/SFC significantly enhanced blastocyst rate in 
a dose-dependent manner, HR was not significantly higher than 
control levels. This result is in line with other studies that used 
different antioxidants [52, 53]. Therefore, 5-ALA/SFC appears to 
rescue embryos that would otherwise have failed to develop, rather 
than stimulating embryo developmental kinetics. The lower 5-ALA/
SFC concentrations used in this study may be another reason why 
we did not observe a significant difference in hatching blastocysts 
on day 10. Further studies are needed to determine whether higher 
5-ALA/SFC doses will improve HR.

To the best of our knowledge, this is the first study to show the 
impact of 5-ALA/SFC on bovine oocyte maturation and progression 
to subsequent embryonic stages under heat stress, as well as the 
first to analyze the combination treatment’s mitigation capacity on 
HT-associated decrease in oocyte developmental competence. We 
hypothesized that 5-ALA/SFC supports the autophagic response to 
heat stress and the antioxidant function of oocytes via the MAPK-
Nrf-2-HO-1 signaling pathway. However, we still do not know the 
exact mechanism underlying 5-ALA/SFC restoration of oocyte quality.

Further research is needed to clarify whether higher doses of 5-ALA 
will be useful or toxic. Moreover, experiments should be conducted 
to elucidate 5-ALA/SFC’s cellular and molecular mechanism of 
action on oocytes and their surrounding cells after IVM. Research 
investigating nuclear maturation, ROS, and antioxidant-related gene 
expression should provide a better understanding of how 5-ALA/
SFC improves oocyte quality. Another limitation of our study was 
that we collected the ovaries from a slaughterhouse. Therefore, we 
did not have data on nutrition, health, transportation, and follicular 
wave stages in subject animals. We attempted to address potential 
confounding effects by dividing collected oocytes randomly into 
experimental groups. We recommend that future studies aim to use 
oocytes with characteristics known to the greatest extent possible.

In conclusion, a high temperature-humidity index of 76.7 disrupted 
bovine oocyte developmental competence through reducing blastocyst 
and hatching rates. Moreover, 5-ALA/SFC improved the quality 
of heat-stressed oocytes via increasing cumulus cell expansion 
and blastocyst rate, thereby spurring progression to subsequent 
embryonic stages.
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