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Identification of cuproptosis-
related patterns and
construction of a scoring
system for predicting prognosis,
tumor microenvironment-
infiltration characteristics,
and immunotherapy efficacy
in breast cancer

Wei Li1, Xingda Zhang1, Yanbo Chen1* and Da Pang1,2*

1Harbin Medical University Cancer Hospital, Harbin, China, 2Heilongjiang Academy of Medical
Sciences, Harbin, China
Background: Cuproptosis, a recently discovered refreshing form of cell death,

is distinct from other known mechanisms. As copper participates in cell death,

the induction of cancer cell death with copper ionophores may emerge as a

new avenue for cancer treatment. However, the role of cuproptosis in tumor

microenvironment (TME) cell infiltration remains unknown.

Methods: We systematically evaluated the cuproptosis patterns in The Cancer

Genome Atlas (TCGA) database in breast cancer (BRCA) samples based on 10

cuproptosis-related genes (CRGs), and correlated these patterns with the

prognosis and characteristics of TME cell infiltration. A principal component

analysis algorithm was used to construct a cuproptosis score to quantify the

cuproptosis pattern in individual tumors. Further, the relationships between the

cuproptosis score and transcription background, clinical features,

characteristics of TME cell infiltration, drug response, and efficacy of

immunotherapy were assessed.

Results: Two distinct cuproptosis patterns with distinct prognoses were

identified; their TME characteristics were found to be consistent with

the immune-excluded and immune-inflamed phenotypes, respectively. The

cuproptosis patterns in individual patients were evaluated using the

cuproptosis score based on the cuproptosis phenotype-related genes,

contributing to distinguishing biological processes, clinical outcome, immune

cell infiltration, genetic variation, and drug response. Univariate and

multivariate Cox regression analyses verified this score as an independent

prognostic predictor in BRCA. A high cuproptosis score, characterized by
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immune activation, suggests an inflamed tumor and immune-inflamed

phenotype with poor survival and a low cuproptosis score, characterized by

immune suppression, indicates a non-inflamed tumor and immune-excluded

phenotype with better survival. Significant differences were observed in the

IC50 between the high and low cuproptosis score groups receiving

chemotherapy and targeted therapy drugs. In the two immunotherapy

cohorts, patients with a higher cuproptosis score experienced considerable

therapeutic advantages and clinical benefits.

Conclusions: This study is the first to elucidate the prominent role of

cuproptosis in the clinical outcome and the formation of TME diversity and

complexity in BRCA. Estimating cuproptosis patterns in tumors could help

predict the prognosis and characteristics of TME cell infiltration and guidemore

effective chemotherapeutic and immunotherapeutic strategies.
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Introduction

Female breast cancer (BRCA) has the highest global cancer

incidence and is the leading cause of cancer related deaths

among women. According to the latest global cancer statistics,

an estimated 2.3 million new female BRCA cases were

diagnosed, while approximately 685,000 died from it in 2020

(1). Standardized treatment approaches for BRCA include

surgery, chemotherapy, hormonal therapy, radiotherapy, and

targeted therapy. Although considerable progress has been made

in these approaches and the associated mortality reduced, a

significant proportion of patients still experience recurrence or

metastasis, including those who had received comprehensive

treatment in the early stages (2). Clinically, the prognosis and

treatment strategy for BRCA are traditionally determined

according to the clinical tumor-node-metastasis (TNM) stage
, breast cancer; CNV,

e; DC, dendritic cell;
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RFS, distant relapse-
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and molecular subtype, which are limited by its high

heterogeneity and thus may not achieve good outcomes (3–5).

Therefore, unveiling the genomic characteristics underlying

BRCA is vital for the development of clinically applicable

models for predicting prognosis and assessing the therapeutic

response, which could further improve precise and

individualized treatment.

Cuproptosis is a newly discovered form of cell death that

depends on mitochondrial respiration and is distinct from

known cell death mechanisms such as apoptosis and

pyroptosis (6). Copper accumulates in the cells and directly

binds to lipoylated components of the tricarboxylic acid cycle.

This leads to abnormal aggregation of the lipoylated protein and

the subsequent loss of the iron-sulfur cluster protein, which

together result in proteotoxic stress and ultimately cell death.

Moreover, some copper ionophores have been demonstrated to

increase intracellular copper levels to induce tumor cell

death (7).

Immunotherapy, especially immune checkpoint blockade

(ICB), has revolutionized the treatment of cancer, particularly

advanced-stage cancers. Nevertheless, although a subset of

patients experiences dramatic and long-term disease

regression, the majority of patients do not benefit from these

treatments (8). The tumor microenvironment (TME), mainly

composed of tumor, immune, and stromal cells; fibroblasts;

endothelial cells; pericytes; extracellular matrix elements; and

diffusible cytokines and chemokines secreted from cancer and

stromal cells, has been demonstrated to play crucial roles in

tumor development and progression, immune escape, and the

response to both traditional treatment and immunotherapy (9).

BRCA has strong immunogenicity; it is infiltrated by a variety of
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immune cells, which affects its development (10–13). In BRCA,

the complexity and heterogeneity of the TME affect the response

to both chemotherapy and immunotherapy (14). Predicting ICB

responses based on TME cell-infiltrating characteristics is crucial

in improving the effectiveness of existing ICBs and developing

new immunotherapy strategies (15, 16). Hence, a deeper analysis

of the heterogeneity and complexity of TME landscapes has the

potential to provide more advanced prognostic biomarkers,

identify different tumor immune phenotypes, and improve the

ability to guide and predict immunotherapy responses.

Recently, the most investigated regulated cell death

mechanisms include apoptosis, necroptosis, pyroptosis,

ferroptosis, PANoptosis, and autophagy, all of which play

crucial roles in modulating the TME and determining the

clinical outcomes of cancer therapeutic approaches.

Combining their inducers and ICBs results in synergistically

enhanced antitumor effects (17, 18). The copper ionophore

disulfiram (DSF) has exhibited anticancer activity in BRCA

(19). The DSF-copper complex has demonstrated a powerful

ability to inhibit cancer cell growth and reverse drug resistance.

Furthermore, the combination of DSF and copper has a greater

anticancer effect than monotherapy alone. The DSF-copper

complex inhibited BRCA cell growth by targeting the reactive

oxygen species level, ubiquitin proteasome system, and NPL4

(19–21). Compared to traditional treatment modalities, this

complex demonstrated better selectivity. For example, it

inhibited the proteasomal activity and selectively induced

apoptosis in malignant MDA-MB-231 and MCF10DCIS.com

BRCA cells, but not in normal, immortalized MCF10A breast

cells (20). More importantly, the DSF-copper complex could

inhibit breast cancer stem cells (BCSCs) and enhance the

cytotoxicity of paclitaxel, which is involved in overcoming

resistance to traditional agents (22, 23). Therefore, we

questioned whether cuproptosis had a similar function in

regulating the TME. A comprehensive understanding of the

characteristics of TME cell infiltration mediated by cuproptosis

may provide important insights regarding the underlying

mechanisms of BRCA tumorigenesis and predict the response

to immunotherapy.

This study integrated the genomic information of BRCA

samples from seven public databases to comprehensively

evaluate cuproptosis patterns and investigated the relationship

of cuproptosis patterns with prognosis and TME cell-

infiltrating characteristics. We identified two cuproptosis

pat terns wi th dis t inct prognoses , and the ir TME

characteristics were consistent with the immune-excluded and

immune-inflamed phenotypes, respectively. This indicated that

cuproptosis plays an important role in mimicking the

characteristics of individual TME. Additionally, a scoring

system was established to quantify the cuproptosis pattern in

individual patients to accurately predict patient outcomes and

their response to immunotherapy.
Frontiers in Oncology 03
Materials and methods

BRCA data source and preprocessing

The training cohort from The Cancer Genome Atlas

(TCGA)-BRCA gene expression profiles in the fragments per

kilobase million (FPKM) format was downloaded from the

TCGA databases using the R package “TCGAbiolinks,” and

then log2 transformed for normalization. The simple

nucleotide variation (SNV) and copy number variation (CNV)

data were acquired from the TCGA database. The survival

information (DFI) and clinical data of patients, which were

adjusted by TCGA official, were obtained from the work of Liu

et al., and 907 tumor samples with both expression and survival

data were retained for subsequent analysis (24).

The gene expression profiles of the validation cohort data

were downloaded from the Gene-Expression Omnibus (GEO)

database, including GSE21653_GPL570, GSE7390_GPL96,

GSE42568_GPL570, GSE11121_GPL96, GSE12093_GPL96, and

GSE17705_GPL96. The probes were converted into gene symbols

according to the corresponding platform annotation file. If a

probe corresponded to multiple genes, the probe was excluded,

and if multiple probes corresponded to the same symbol, the

median value was calculated. The immunotherapy cohort treated

with anti-PD-1 therapy (PRJEB25780) was downloaded from the

Tumor Immune Dysfunction and Exclusion database. Another

immunotherapy cohort treated with bevacizumab (GSE53127)

was downloaded from the GEO database.
Unsupervised clustering for
cuproptosis-related genes

According to the expression profile data of 10 cuproptosis-

related genes (CRGs), unsupervised clustering analysis was used

to identify distinct cuproptosis patterns and classified patients

for further analysis. A consensus clustering algorithm was used

to determine the number of clusters and their stability. The R

package “ConsensusClusterPlus” was employed for the analysis

using optimal km clustering, distance metric Pearson, using

1,000 times-cycle computation to ensure the stability and

reliability of classification (“km” and “Pearson” are functions

in R). The optimal number of classifications was identified based

on the proportion of ambiguously clustered pairs metric (25).
Gene set variation analysis and
functional annotation

The differences in the biological processes of a number of

cuproptosis patterns were ascertained by GSVA using the

“GSVA” package in R. GSVA is a non-parametric and
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unsupervised method commonly used to estimate changes in

pathways and biological process activity in the samples of an

expression dataset. We downloaded the HALLMARK gene set

“msigdb.v7.4.symbols.gmt” from the MSigDB database (https://

www.gsea-msigdb.org/gsea/index.jsp) to run the GSVA analysis.

Differences were considered statistically significant at adjusted P

values< 0.05. The “clusterProfiler” R package was used to

perform functional annotation for CRGs, with the parameters:

pvalueCutoff = 0.05, and pAdjustMethod = “BH”.
Estimation of TME cell infiltration

We calculated the proportion of the immune cell infiltration

in the BRCA TME based on the following three methods and

compared the distribution of the immune cell infiltration in

different groups of samples using the Wilcoxon singed-rank test.

The relative abundance of each cell infiltration in the BRCA

TME was determined by a single-sample gene set enrichment

analysis (ssGSEA) algorithm. The gene sets of TME infiltration

for each immune cell type were selected from the work of

Charoentong et al., which included 28 human immune cell

types (26). We calculated enrichment scores using ssGSEA

analysis to represent the relative abundance of each TME-

infiltrating cell in each sample.

CIBERSORT algorithm was used in combination with

signature matrix LM22 to estimate the proportion of 22

immune cell phenotypes in each BRCA sample, with the sum

of the proportion of all estimated immune cell types in each

sample equal to 1.

The xCell algorithm was used to calculate the infiltration

proportion of 64 kinds of immune cells using “IOBR” package in R.
Evaluation of TME Scores

The immune scores, stromal scores, and tumor purity of

each BRCA sample were calculated by the “ESTIMATE” package

in R. Wilcoxon tests were then used to compare the differences

in the scores between groups.
Differentially expressed genes among
cuproptosis patterns

DEGs between distinct cuproptosis patterns were

determined by “limma” R package. The significance criteria for

determining DEGs was set as |log2FC|≧1 and FDR<0.01.
Construction of cuproptosis score

We constructed a scoring system to quantify the cuproptosis

patterns in individual tumors of BRCA patients. The procedures
Frontiers in Oncology 04
for establishment of cuproptosis score were as follows: univariate

Cox regression analysis was used to determine the hazard ratio

(HR) and prognostic significance of DEGs between cuproptosis

patterns and the prognostic genes were set to P value< 0.05.

Finally, we performed principal component analysis (PCA)

based on prognostic genes to construct cuproptosis-related

gene signature. Both principal components 1 and 2 were

selected to act as signature scores. The advantage of this

approach was to concentrate the score on the genes with the

largest block of well correlated (or anticorrelation) in the gene

set, while reducing contributions from genes that did not track

with other set members. The formula is as follow:

Score  =  o ðPC1i +  PC2iÞ
where i is the expression of cuproptosis phenotype-

related genes.

The samples were divided into high and low groups

according to the median value of cuproptosis score, and the

correlation between these two types of samples and disease-free

interval (DFI) was further analyzed.
Prediction of drug sensitivity

Based on the genomics of drug sensitivity in cancer (GDSC)

v2 (https://www.cancerrxgene.org/) database, using the

calcPhenotype algorithm in “oncoPredict” R package to

evaluate the drug IC50 value of each sample in the training set.
Gene set enrichment analysis and
functional annotation

Gene set enrichment analysis (GSEA) was performed

between high and low cuproptosis score groups by the

“clusterProfi ler” package in R (27). The R package

“enrichplot” was used for visualization of the GSEA results.
Statistical analysis

All data analyses were performed using R Version 4.1.2.

When conducting significance analysis among various values,

such as expression, infiltration proportion, various characteristic

values, Wilcoxon singed-rank and Kruskal-Wallis tests were

performed to compare differences between two and multiple

groups of samples, respectively. In the figures, the asterisks

indicate the statistical P value (ns, P ≥ 0.05, *P< 0.05, ** P<

0.01, *** P< 0.001, and **** P< 0.0001). The PAM50 genotypes

(Basal, Her2, LumA, LumB, and Normal) of BRCA patients were

determined by PAM50 function that provided by R package
frontiersin.org
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“genefu” (28). Survival curves for prognostic analysis were

generated using the Kaplan-Meier method, and the

significance of the differences was determined using log-rank

tests. The CNV landscape of 10 CRGs in the 23 pairs of

chromosomes was plotted using the R package “RCircos”. The

R package “maftools” was used to present the mutation

landscape of the CRGs (29).
Results

Genetic and transcriptional alterations of
the cuproptosis-related genes in BRCA

Latest research has identified 10 genes to be responsible for

copper-induced cell death through genome-wide CRISPR-Cas9

loss-of-function screens and individual gene knockout studies.

Seven genes (FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, and

PDHB) played a positive role in cuproptosis, whereas the other

three genes (MTF1, GLS, and CDKN2A) played a negative role.

Figure 1A summarizes the mechanism of cuproptosis. The

workflow of this study is shown in Figure S1A. We first

evaluated transcriptional alterations in the 10 CRGs between

normal and BRCA tissues. The expression of the seven CRGs

was lower in BRCA tissues than in normal breast tissues,

whereas only the expression of CDKN2A was significantly

higher in BRCA tissues (Figure 1B). Further analysis showed

that nine genes were also significantly differentially expressed in

different PAM50 genotypes, whereas only a small number of

genes were differentially expressed in other clinical characteristic

groups (age, stage, and menopause status) (Figure 1C and S1B-

D). To ascertain whether genomic variations were responsible

for these mRNA expression differences, we assessed the

incidence of CNVs and somatic mutations in tumor samples

from the TCGA dataset; we found none of the 10 CRGs to be

mutated, and no CNV was discovered (Figure S1E). The

locations of the 10 CRGs on the chromosomes are shown in

Figure S1F. The above analyses demonstrated that the expression

pattern of the CRGs was highly heterogeneous between normal

and tumor tissues and among different PAM50 phenotypes,

indicating that the expression imbalance of the CRGs may be

caused by abnormal transcription and may play a vital role in

BRCA initiation and progression.

This study aimed to explore the prognostic value of these

CRGs in BRCA. According to the expression median value of

each CRG, the samples were divided into high and low

expression groups, and the effect of CRG expression on

survival was evaluated using univariate Cox regression

analysis. Patients with low PDHA1 expression had longer

overall survival (OS) than those with high PDHA1 expression

(P< 0.05, Figure S2A, B). Further, we comprehensively explored

the functional roles of the CRGs in the TME. The ssGSEA

algorithm was run using the expression profile data of tumor
Frontiers in Oncology 05
samples in the TCGA-BRCA cohort, and the enrichment scores

of 28 types of immune cells were obtained. The Pearson

correlation analysis was performed to calculate the correlation

between the expression of the CRGs and the enrichment scores.

The expression of FDX1 and GLS was significantly positively

correlated with most of the enrichment scores, whereas the

expression of LIAS and PDHB was significantly negatively

correlated with most of the enrichment scores (Figure 1D and

Table S1). This indicated that the expression of the CRGs was

significantly correlated with the levels of immune cell infiltration

in the BRCA TME, which may play a crucial role in prognosis

and response to immunotherapy.
Identification of cuproptosis
patterns in BRCA

The Spearman correlation analysis was performed among

the 10 CRGs, and significant correlation was found among most

of them (Figure 2A and Table S2). This suggested that the 10

CRGs may have constructed complex networks to integrally

regulate cuproptosis; these networks may be involved in the

formation of distinct cuproptosis patterns and the TME-cell

infiltrating characteristics of individual tumors to influence

BRCA development.

Based on the expression of the 10 CRGs, two distinct

cuproptosis patterns were identified via an unsupervised

clustering algorithm of the R package “ConsensusClusterPlus”.

These were called Cluster1 and Cluster2 and included 745 and

162 cases, respectively (Figure 2B and Table S3). In addition,

principal component analysis (PCA) revealed remarkable

differences between the cuproptosis transcription profiles of

the two patterns, suggesting that the unsupervised clustering

was successful (Figure 2C). The Kaplan-Meier curves showed a

longer DFI in patients from Cluster1 than in those from Cluster2

(Figure 2D). Furthermore, the relationship between the two

patterns and the BRCA clinical characteristics was studied. As

shown in Figure 2E, patients with LumA and Basal subtypes

were characterized by Cluster1 and Cluster2, respectively. The

Basal subtype was significantly associated with the worst

prognosis in BRCA, whereas the LumA subtype was associated

with the best clinical outcomes. Moreover, the expression

pattern of the CRGs showed a difference between the distinct

cuproptosis patterns. Cluster1 was characterized by the

increased expression of most cuproptosis-promoting genes

(LIPT1, LIAS, PDHB, FDX1, DLAT, and DLD), whereas

Cluster2 was characterized by the increased expression of two

cuproptosis-inhibiting genes (CDKN2A and GLS) and a

cuproptosis-promoting gene (PDHA1) (Figure 2E). This

indirectly suggested that cuproptosis may inhibit BRCA

progression by inducing tumor cell death.

GSVA enrichment analysis was performed to identify

biological behavioral differences between the two cuproptosis
frontiersin.org
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A
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D

C

FIGURE 1

Transcriptional alterations of the CRGs and their relationships with TME cell infiltration in BRCA. (A) Summary of cuproptosis mechanism.
Elesclomol is a copper ionophore to bind Cu2+ and transport it into cells. FDX1 reduces Cu2+ to Cu+ and promotes the lipoylation of enzymes
(especially DLAT) involved in the regulation of mitochondrial TCA cycle. Cu+ promotes lipoylated protein aggregation and iron-sulfur cluster
protein loss, which triggered proteotoxic stress and cell death. Copper importers (e.g., SLC31A1) and exporters (e.g., ATP7B) affected cuproptosis
sensitivity by regulating intracellular copper levels. (B) Boxplot shows the expression of 10 CRGs between tumor and normal tissues in the
TCGA-BRCA cohort. Normal, blue; Tumor, red. (C) Boxplot shows the expression of 10 CRGs among different PAM50 phenotypes. (D) Heatmap
of correlation between CRGs expression and the enrichment scores of TME infiltrating cells. (ns,P ≥ 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, and
****P < 0.0001).
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FIGURE 2

Patterns of cuproptosis and clinical characteristics of each pattern. (A) Expression correlation of CRGs. Negative correlation: blue; positive
correlation: red. (B) Consensus clustering of the CRGs matrix for k = 2 of 907 patients in the TCGA-BRCA cohort. (C) Principal component
analysis for the transcriptome profiles of two cuproptosis patterns, indicating a remarkable difference on transcriptome between different
cuproptosis patterns. (D) Kaplan–Meier curves for DFI of TCGA-BRCA cohort with the cuproptosis patterns. (E) Unsupervised clustering of 10
CRGs in the TCGA-BRCA cohort. The cuproptosis patters, age, stage, PAM50 subtypes and menopause status were used as sample annotations.
Red represents high expression of CRGs, and blue represents low expression. (*P < 0.05, ** P < 0.01, ***P < 0.001, and ****P < 0.0001).
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patterns. Most of the 50 pathways in the HALLMARK data set

had significant differences in enrichment between the two

patterns. Cluster1 was significantly enriched in the estrogen

response early and late pathways and the stromal activation-

related TGF b pathways. However, Cluster2 was significantly

enriched in tumor immune escape- and carcinogenesis-related

pathways, such as the glycolysis, ROS, mTORC1, Hedgehog,

Wnt/b-catenin, Myc, and inflammatory response pathways

(Figure 3A and Table S4). These analyses suggest that the

cuproptosis pattern was closely related to the biological

behavior of tumors in BRCA.

To investigate the role of cuproptosis in the TME of BRCA,

we evaluated the enrichment scores of the 28 types of immune

cells in the two cuproptosis patterns using ssGSEA analysis.

Subsequently, we evaluated the tumor purity and TME score

(stromal, immune, and estimate scores) of the two patterns using

the “ESTIMATE” package. We observed significant differences

in the infiltration of most immune cells between the two groups.

Cluster1 was markedly abundant in innate immune cell

infiltration, such as CD56dim natural killer (NK) cells,

eosinophils, mast cells, NK cells, and neutrophils (Figure 3B

and Table S5). However, there were no significant differences in

tumor purity and ESTIMATE scores between the two patterns

(Figure 3D, G and Table S6). Cluster1 had a higher stromal

score, which indicates a higher relative content of stromal cells in

the TME, suggesting that Cluster1 could be considered non-

inflamed tumors (Figure 3E). According to previous studies,

non-inflamed tumors contain immune-excluded and immune-

desert phenotypes. The immune-excluded phenotype is

characterized by the presence of a large number of immune

cells. However, these immune cells cannot penetrate the tumor

parenchyma but remain in the stroma around the tumor cell

nests. After immunotherapy, stromal-associated T cells can

show activation and proliferation, but their infiltration is

blocked by the stroma and shows no response to

immunotherapy (30). Contrarily, inflamed tumors exhibit an

immune-inflamed phenotype, which is characterized by the

presence of both CD4- and CD8-expressing T cells in the

tumor parenchyma, usually accompanied by myeloid cells and

monocyte cells, and the immune cells are located near the tumor

cells. Importantly, the response to anti-PD-L1/PD1 therapy

most frequently occurs in patients with inflamed tumor (31–

33). Patients from Cluster2 exhibited higher immune scores and

a higher infiltration of most adaptive immune cells, especially

activated CD4 and CD8 T cells, and dendritic cells (DCs)

(Figure 3C, F). Therefore, patients from Cluster2 could be

recognized as having the immune-inflamed phenotype, which

is exhibited by inflamed tumors. DCs are responsible for antigen

presentation and the activation of naive T cells, which is a bridge

between innate and adaptive immunity, and the activation of

which depends on high expression levels of MHC molecules, co-

stimulators, and adhesion factors (34, 35). We estimated the

expression of ICB-related genes among the two patterns. We
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observed that the expression of PDCD (PD1), CD274 (PD-L1),

and MHC molecules (including HLA-A, HLA-B, HLA-C, HLA-

DMA, HLA-DOB, HLA-DQA1, HLA-DRB1, HLA-E, HLA-F,

and HLA-G) was higher in Cluster2 than in Cluster1

(Figure 3H). This suggested that patients from Cluster2 might

be more suitable for anti-PD-L1/PD1 therapy than those from

Cluster1. In addition, the proportion of infiltrating immune cells

was evaluated using the CIBERSORT and xCell algorithms,

which were highly consistent with previous results of ssGSEA

analysis (Figures S3A, B and Tables S7-8).
Construction of cuproptosis signatures
and functional annotation

To gain a further understanding of the potential biological

features of each cuproptosis pattern, we identified 601

cuproptosis phenotype-related differentially expressed genes

(DEGs) (Table S9). Gene Ontology (GO) enrichment analysis

of these DEGs showed that their functions were mainly enriched

in biological processes that are significantly related to epithelial

tube morphogenesis and extracellular matrix organization,

which have been demonstrated to shape the TME (Figure 4A

and Table S10) (36–38). Moreover, the molecular function and

cellular component enrich analysis showed that the DEGs were

also closely related to the collagen-containing extracellular

matrix and tubulin binding functions (Figures S3C, D). These

results further confirmed that the CRGs play a non-negligible

role in the TME of BRCA. To further verify this mechanism, we

performed unsupervised clustering analysis based on 601 DEGs

to divide the tumor samples into different genomic subtypes

(Figure 4B). The results were similar to the clustering grouping

of the cuproptosis patterns, i.e., two distinct genomic

phenotypes, designated geneCluster1 and geneCluster2

(Figure 4C). The survival analyses showed that the patients

with geneCluster1 had better DFI than those with

geneCluster2 (Figure 4D). Moreover, geneCluster2 was

associated with younger age. Similar to the cuproptosis

patterns, patients with LumA and Basal subtypes were

characterized by the geneCluster1 and geneCluster2,

respectively. Unsurprisingly, there were significant differences

in the expression of the nine CRGs between the two gene

clusters. (Figure 4E).
Construction of a scoring system for
quantifying the cuproptosis patterns of
individual patients with BRCA

In view of the heterogeneity and complexity of individual

cuproptosis patterns, we constructed a scoring system based on

cuproptosis phenotype-related DEGs to accurately predict

cuproptosis patterns in individual patients. Univariate Cox
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FIGURE 3

Biological and TME characteristics of cuproptosis patterns. (A) GSVA enrichment analysis demonstrates the activation states of HALLMARK
pathways between distinct cuproptosis patterns in TCGA-BRCA cohort and visualized by heatmap. Red and blue represent activated and
inhibited pathways, respectively. The cuproptosis patterns were used as sample annotations. (B, C) The infiltrating abundance of 28 immune cell
types in two cuproptosis patterns. (B) represents adaptive immunity; (C) represents innate immunity. (D-G) Boxplot shows the difference of
ESTIMATE score, immune score, stromal score, and tumor purity between cuproptosis patterns. (H) Expression of ICB-related genes in two
cuproptosis patterns. Green, activate; Red, inhibit; Orange, two-side. (ns,P ≥ 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001).
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analysis was performed on the cuproptosis phenotype-related

DEGs obtained from the previous analysis and 120 genes related

to prognosis were screened (Table S11). The cuproptosis score

was calculated using PCA. According to the median value of the

cuproptosis score (-0.04260481), the samples were divided into

high and low cuproptosis score groups. The results showed that

patients with a low cuproptosis score had better DFI than

patients with a high cuproptosis score, indicating that the
Frontiers in Oncology 10
cuproptosis score could characterize and predict the DFI of

patients with BRCA well (Figure 5A). Based on these 120

prognostic genes, the performance of the cuproptosis scoring

system was validated using the same method in six additional

validation cohorts. The results were consistent and showed that

patients in the low cuproptosis score group experienced better

disease-free survival (DFS), distant metastasis-free survival

(DMFS), distant relapse-free survival (DRFS), and recurrence-
A B
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C

FIGURE 4

Landscape of biological characteristics of cuproptosis genomic subtypes. (A) GO enrichment analysis for cuproptosis phenotype-related DEGs.
The x-axis indicates the rich factor within each GO term. (B) Consensus clustering of the 601 cuproptosis phenotype-related DEGs for k = 2 of
907 patients in the TCGA-BRCA cohort. (C) Unsupervised clustering of 601 cuproptosis phenotype-related DEGs to classify patients into
different genomic subtypes, termed as geneCluster1 and geneCluster2, respectively. The gene clusters, cuproptosis patterns, age, stage, PAM50
phenotypes, and menopause status were used as patient annotations. (D) The survival curves of different gene clusters in the TCGA-BRCA
cohorts were estimated by the Kaplan–Meier plotter. (E) Boxplot shows the expression of 10 CRGs between two gene clusters. geneCluster1,
blue; geneCluster2, red. (F) Alluvial diagram showing the changes of cuproptosis patterns, gene clusters and disease progression status.
(ns,P ≥ 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001).
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free survival (RFS) relative to that in the high cuproptosis score

group (Figures 5B-H). Finally, receiver operating characteristic

(ROC) curves were constructed based on the cuproptosis score

to summarize the predictive ability (Figure S4). Furthermore, we

performed univariate and multivariate Cox regression analyses

using patient clinical characteristics, including age, stage, grade,
Frontiers in Oncology 11
PAM50 genotypes, and menopause status. We demonstrated

that cuproptosis score was a robust and independent prognostic

biomarker for evaluating outcomes in patients of the TCGA-

BRCA training cohorts and the validation cohorts with clinical

characteristics (Figure 6). However, in the GSE11121 validation

cohort, the cuproptosis score was not an independent prognostic
A B
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C

FIGURE 5

Survival analyses for low and high cuproptosis score groups in the training cohort and validation cohorts. Distribution of patients in the training
cohort and validation cohorts based on the median risk score and recurrence status of each patient. (A) training cohort; B-H validation cohorts.
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biomarker, which may be explained by the large difference in the

data distribution of the sample grade in this dataset. An alluvial

diagram was used to better visualize the distribution of BRCA

samples among the different cuproptosis patterns, genomic

subtypes, PAM50 genotypes, and cuproptosis score

groups (Figure 4F).

Our analyses have revealed survival prognostic differences

between the high and low cuproptosis score groups.

Furthermore, we explored the latent mechanism behind these

results. We analyzed the relationship between the cuproptosis

score and clinical characteristics, cuproptosis patterns, and

genomic phenotypes in the TCGA-BRCA cohort. As shown in

Figures 7A-D, the cuproptosis score was higher in the groups

with younger ages and Basal subtype. Previous studies have

demonstrated that younger patients and those with basal

subtype BRCA have a poorer prognosis, which is consistent

with the results that patients with low cuproptosis scores had

better DFI (39). These results elucidated the fact that patients

with a high cuproptosis score had a worse survival prognosis.

More importantly, Cluster1 showed a lower cuproptosis score

compared to Cluster2, suggesting that patients with a higher

cuproptosis score may be related to inflamed tumors (Figure 7E).

In addition, geneCluster1 showed significantly decreased

cuproptosis score compared to geneCluster2, with these

patients having a better prognosis (Figure 7F). The above
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results suggested that the cuproptosis score could better

evaluate the cuproptosis pattern and TME cell-infiltration of

individual patients.
Molecular mechanism of
cuproptosis score

To further explore the relationship of the cuproptosis score

with biological functions and TME cell-infiltration, Spearman

correlation analysis between the cuproptosis score and

HALLMARK pathways activity was calculated. The results

showed that the cuproptosis score was significantly correlated

with most pathway activities (Table S12). The low cuproptosis

score was correlated with estrogen response pathways, which

were consistent with the Cluster1 cuproptosis pattern, whereas

the high cuproptosis score was associated with the Myc,

mTORC1, and glycolysis pathways, which were similar to

Cluster2 (Figure 8A). Furthermore, we sought to identify the

value of cuproptosis in evaluating TME cell-infiltration, while

the infiltration of 28 types of immune cells and TME score were

further studied in the high and low cuproptosis score groups.

Surprisingly, differences in the TME cell-infiltration and TME

score between groups with high and low cuproptosis scores were

consistent with the results of the two cuproptosis patterns

(Figures 8B-G). In the low cuproptosis score group, the

infiltration of innate immune cells and stromal score were

higher, suggesting that the low cuproptosis score group could

be considered as non-inflamed tumors. In contrast, the high

cuproptosis score group showed higher infiltration of most types

of immune cells and a higher immune score, indicating that the

high cuproptosis score group could be recognized as inflamed

tumors. Moreover, from the results of the expression of ICB-

related genes among the low and high cuproptosis score groups

it was noted that patients in the high cuproptosis score group

exhibited higher PDCD1, CD274, and MHC molecules. This

indicates that patients in the high cuproptosis score group might

be more sensitive to anti-PD-L1/PD1 therapy (Figure 8H). In

addition, the proportion of infiltrating immune cells was

evaluated using the CIBERSORT and xCell algorithms (Figures

S5A-B). GSEA results showed that the high cuproptosis score

group was significantly enriched in the antigen processing and

presentation pathway, whereas the low cuproptosis score group

was substantially enriched in the extracellular matrix (ECM)

receptor interaction pathway (Figures 8I, J, S6 and Table S13).

Hence, these results suggest that the cuproptosis score is closely

correlated with TME cell infiltration and the immune

therapy response.

Furthermore, we explored the genetic alterations between

the high- and low-cuproptosis score groups. In the TCGA-

BRCA training set, Fisher’s exact test was performed to

analyze the distribution differences of somatic mutation and

CNV between the low and high cuproptosis score groups to
FIGURE 6

Univariate and multivariate Cox regression model analysis of the
factors including cuproptosis score, age, stage, grade, PAM50
genotypes, and menopause status in the training and validation
cohorts.
frontiersin.org

https://doi.org/10.3389/fonc.2022.966511
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.966511
A B

D

E F

C

FIGURE 7

Distribution of cuproptosis score in different groups (A-D) Differences in cuproptosis score among distinct clinical features related subgroups in
the TCGA-BRCA cohort. (E) Differences in cuproptosis score among two cuproptosis patterns in TCGA-BRCA cohort (F) Differences in
cuproptosis score among two gene clusters in TCGA-BRCA cohort.
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FIGURE 8

Biological and TME characteristics of distinct cuproptosis score groups (A) Spearman correlation analysis between cuproptosis score and
HALLMARK pathway activity. (B, C) The infiltrating abundance of 28 immune cell types in two cuproptosis score groups. (B) represents adaptive
immunity; (C) represents innate immunity. (D-G) Boxplot shows the difference of ESTIMATE score, immune score, stromal score, and tumor purity
between cuproptosis score groups. (H) Expression of ICB-related genes in two cuproptosis score groups. Green, activate; Red, inhibit; Orange,
twoside. (I, J) The GSEA results for distinct cuproptosis score groups. (ns,P ≥ 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001).
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explore the genetic alterations between the two groups, and the

top 10 were displayed according to the ascending order of p-

value (Figures 9A, B). The mutation frequency of PIK3CA in the

high cuproptosis score group was significantly lower than that in

the low cuproptosis score group, while the mutation frequency

of the TP53 gene was significantly higher than that in the low

cuproptosis score group. Previous studies have shown that TP53

is the most frequently mutated gene in triple-negative breast
Frontiers in Oncology 15
cancer (TNBC), is more common in the Basal subtype, and has

emerged as a major contributor to the suppression of innate

immune signaling and promotion of immune escape (40–43).

The proportion of copy number loss in CCR7, GIP, and HCRT

in the high cuproptosis score group was significantly higher than

that in the low cuproptosis score group (Figure 9C). All the

above results provide a new perspective for exploring the
A B
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FIGURE 9

Characteristics of cuproptosis in the mutation landscape and drug response. (A, B) The waterfall plot of tumor somatic mutation established by
those with low and high cuproptosis score. (C) CNV differences in high and low cuproptosis score. (D-I) Relationships between cuproptosis
score and chemotherapeutic sensitivity. (J, K) Cuproptosis score differences between non-response and response immunotherapy groups.
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mechanisms of cuproptosis in tumor progression, shaping of the

TME landscape, and roles in ICB therapy.
Predictive ability of the cuproptosis
scoring system in the sensitivity of
anti-tumor drugs

Most patients with BRCA require chemotherapy, hormone

therapy, or targeted therapy to reduce the risks of recurrence and

metastasis. However, not all patients are sensitive to these drugs.

Moreover, in recent years, many molecular-targeted drugs have

been developed for the treatment of BRCA and achieved good

results. The above analysis indicates that cuproptosis is closely

related to carcinogenesis-related pathways, TME cell infiltration,

and other functional pathways. Therefore, the cuproptosis score

has potential value for predicting the response to related drugs in

individual patients. To verify this ability, we compared the

distribution of drug IC50 in the high- and low-cuproptosis

score groups using the R package “oncoPredict” and drug

information in the GDSC database combined with the

expression profile of the training set. The results showed that

the IC50 values of docetaxel, paclitaxel, cisplatin, lapatinib,

olaparib, and gefitinib were significantly higher in the low

cytotoxicity group. These results imply that this model may

serve as a predictor of chemotherapy or targeted therapy

responsiveness (Figures 9D-I and Table S14).

Blocking the PD-L1/PD1 pathways is the most

representative immunotherapy method, which is undoubtedly

being considered as a revolutionary breakthrough in cancer

treatment. However, the benefits of ICB treatment remain

limited because of innate or acquired resistance to

immunotherapy. Considering that the cuproptosis scores were

closely related to TME, tumors can be distinguished into non-

inflamed and inflamed subtypes. We investigated the ability of

the cuproptosis score to predict patient’s response to ICB

therapy based on two immunotherapy cohorts. The

cuproptosis score was significantly higher in the responding

group than in the nonresponding group (Figures 9J, K). This

result is consistent with our findings, which demonstrated that

the high cuproptosis score group was recognized as an inflamed

tumor subtype. The above results indicate that patients with the

high cuproptosis score could gain greater benefit from ICB

treatment than those with low cuproptosis score.
Discussion

Cuproptosis, a recently proposed form of copper-dependent

regulated cell death that is mainly dependent on mitochondrial

respiration, has been strongly implicated in cancer (6). Distinct from

oxidative stress-induced cell death (e.g., apoptosis, ferroptosis, and

necroptosis), cuproptosis is a form of mitochondrial stress-related
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cell death caused by the aggregation of lipoylated mitochondrial

enzymes and loss of Fe–S cluster proteins. Previous studies have

found that monotherapy with copper ionophores or therapy in

combination with copper showed strong antitumor function in

BRCA and has the ability to overcome drug resistance (17–19, 22,

23). Furthermore, combination treatment exhibited better selectivity

(20). Other types of regulated cell death have shown the ability to

shape the TME and predict the response to anticancer drugs.

Enhanced efficacy is achieved by combining inducers and ICB-

related drugs for cancer treatment (17, 18). However, the

relationship between BRCA and cuproptosis has not been

defined. Therefore, the role of cuproptosis in BRCA phenotyping

and TME was thoroughly examined in this study, to achieve a

comprehensive understanding of the role of cuproptosis in

prognosis and TME infiltration characterization. Ascertaining the

role of distinct cuproptosis patterns in TME cell infiltration would

improve our understanding of TME antitumor immune responses,

as well as guide more effective immunotherapy strategies.

In the present study, we first analyzed the genetic and

transcriptional alterations in 10 CRGs in BRCA. Eight genes

were significantly downregulated in tumor samples, and only

CDKN2A was significantly overexpressed. CRGs were

differentially expressed in distinct clinical characteristic groups,

especially in different PAM50 genotypes. Furthermore, the

expression of CRGs significantly correlated with TME cell

infiltration. Next, we analyzed the correlation between the 10

CRGs and found that the expression of almost all of them was

significantly correlated. Although only the OS curve of PDHA1

in the high- and low-expression groups was significantly

different, these CRGs may interact with each other and play a

role in BRCA. These results preliminarily confirm that

cuproptosis plays an important role in the prognosis and TME

cell-infiltrating characteristics of patients with BRCA.

Based on the 10 CRGs, we revealed two distinct cuproptosis

patterns that were identified to have significant differences in

prognosis and TME cell infiltration characterization. There were

significant differences in prognosis between the two patterns,

with Cluster2 having a poorer DFI. On exploring the mechanism

causing the prognosis differences in the two cuproptosis

patterns, GSVA enrichment analysis found that Cluster1 was

enriched in the stomal activation related TGFb and estrogen

response signaling pathways. However, Cluster2 was enriched in

immune escape and carcinogenesis-related pathways. The TME

cell infiltration was further evaluated in distinct cuproptosis

patterns. This is consistent with the results of previous analyses

that Cluster1 experienced abundant infiltration of innate

immune cells and stroma, corresponding to non-inflammatory

tumors and immune-excluded phenotypes (44). Although the

immune-excluded phenotype is characterized by a high

infiltration of immune cells, these immune cells are unable to

recognize and eliminate cancer cells because of the abundant

stromal elements preventing their penetration into the tumor

parenchyma. In contrast, Cluster2 was characterized by the
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activation of adaptive immunity and abundant immune cell

infiltration, corresponding to inflamed tumors and immune-

inflamed phenotypes (30). However, patients from Cluster2 did

not have a matching survival advantage compared with those

from Cluster1. Given the significant upregulation of ICB-related

genes in Cluster2, this cuproptosis pattern may be more

influenced by ICB pathways. Therefore, we hypothesized that

ICB-mediated immune escape in Cluster2 inhibits the antitumor

effect of immune cells. We found that Cluster2 and Cluster1

were characterized by patients with LumA and Basal subtypes,

respectively. The Basal subtype was significantly associated with

the worst survival outcomes in BRCA, whereas the LumA

subtype was associated with better clinical outcomes. Patients

with TNBC are more likely to benefit from anti-PD-L1/PD1

therapy than those with other BRCA subtypes because of higher

immunogenicity, increased enrichment of tumor-infiltrating

lymphocytes (TILs), and higher levels of PD-L1 expression

(10, 45–47). Importantly, atezolizumab (a monoclonal

antibody targeting PD-L1) was approved by the US Food and

Drug Administration in combination with nab-paclitaxel for

patients with TNBC whose tumors express PD-L1 (48). Based on

the prognosis difference and TME cell-infiltrating characteristics

of each cluster, the robust ability to predict prognosis and

differentiate immune phenotypes by distinct cuproptosis

patterns was confirmed.

Furthermore, we demonstrated that transcriptome

differences between the distinct cuproptosis patterns were

significantly correlated with immune-related biological

pathways. We identified DEGs among the cuproptosis patterns

that were recognized as cuproptosis-related signature genes.

Based on these genes, two genomic subtypes were identified

that were mainly enriched in epithelial tube morphogenesis and

ECM organization biological processes and have been

demonstrated to shape the TME. The patients with

geneCluster1 had better DFI than those with geneCluster2.

Similar to the cuproptosis patterns, patients with the LumA

and Basal subtypes were characterized by the geneCluster1 and

geneCluster2, respectively. This further proves that cuproptosis

plays an important role in BRCA progression and regulation

of TME.

Thus, a comprehensive and accurate assessment of

cuproptosis patterns would help predict the prognosis and

enhance our understanding of the characteristics of TME cell

infiltration. There is an urgent need to quantify cuproptosis

patterns in individual patients, owing to the individual

heterogeneity of cuproptosis. We constructed a cuproptosis

scoring system to quantify the cuproptosis patterns in

individual patients with BRCA. First, we tested the ability of

the cuproptosis score to predict the prognosis of patients with

BRCA. Patients with a low cuproptosis score had better survival

than those with a high score in the training cohort, which was

further validated in six additional validation cohorts. Univariate

and multivariate Cox regression analyses showed that the
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cuproptosis score was an independent prognostic factor of

BRCA. Moreover, the basal subtype showed the highest

cuproptosis score, whereas LumA exhibited the lowest score

among the PAM50 genotypes. Further research revealed that the

cuproptosis score was significantly correlated with the most

pathway activities. Cluster1 showed a lower cuproptosis score

compared to Cluster2, and geneCluster1 also showed a

significantly decreased cuproptosis score compared to

geneCluster2. The cuproptosis pattern (Cluster1) characterized

by an immune-excluded phenotype, showed a lower cuproptosis

score, whereas the cuproptosis pattern (Cluster2) characterized

by an immune-inflammatory phenotype, exhibited a higher

cuproptosis score. We concluded that the cuproptosis score is

a reliable and robust measure for the comprehensive evaluation

of individual cuproptosis pattern and can be used to further

determine the prognosis and tumor immune phenotypes.

Patients from the high cuproptosis score group exhibited

higher levels of PDCD1, CD274, and MHC molecules, which

indicated higher sensitivity to anti-PD-L1/PD1 therapy. This

was further confirmed by GSEA analysis, which showed that the

high cuproptosis score group was significantly enriched in

antigen processing and presentation pathways. Somatic

mutations and CNV between the two groups were explored.

The mutation frequency of the TP53 gene was significantly

higher in the high cuproptosis score group than that in the

low cuproptosis score group. Previous studies have shown that

TP53 is the most frequently mutated gene in Basal subtype

BRCA and has been associated with the suppression of innate

immune signaling and the promotion of immune escape

(40–43).

To determine whether the cuproptosis score could predict the

drug response of individual patients, we analyzed the relationship

between the IC50 values and cuproptosis score. The high

cuproptosis score was correlated with lower IC50 of docetaxel,

paclitaxel, cisplatin, lapatinib, olaparib, and gefitinib, suggesting

higher sensitivity. This analysis indicated that the cuproptosis

score had a significant value in predicting drug response in

patients. More importantly, we explored the correlation of the

cuproptosis score with immunotherapy response in two

immunotherapy cohorts. The cuproptosis score in the

responding group was significantly higher than that in the non-

responding group. The above results imply that patients with the

high cuproptosis score could benefit substantially from

immunotherapy. The cuproptosis scoring system was

demonstrated to improve the selection of anticancer drugs and

predict the response to immunotherapy.

In summary, the cuproptosis score can be used for the

comprehensive assessment of cuproptosis patterns, corresponding

prognosis, and TME cell-infiltrating characteristics of individual

patients to further verify the immune phenotypes of tumors and

direct more effective therapeutic schedules. The cuproptosis score

may also be used to evaluate patients’ clinicopathological features,

including age and PAM50 genotypes. The cuproptosis score can
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also predict the efficacy of hormone therapy, chemotherapy, and

clinical response of patients to anti-PD-L1/PD1 immunotherapy.

More importantly, cuproptosis is a newly discovered pattern of cell

death, and we demonstrated, for the first time to our knowledge,

that it has an important impact on the prognosis and TME of

BRCA. We propose that we may be able to change the cuproptosis

pattern by targeting CRGs or cuproptosis phenotype-related genes,

thereby reversing the disadvantageous TME cell-infiltrating

characteristics and improving immunotherapy efficacy, thus

helping to develop new combination immunotherapeutic

strategies or new immunotherapy drugs. This could also provide

a theoretical basis for the development of more individualized

BRCA treatment in the future.

Despite conducting multi-pronged and multi-database

verification, this study has certain limitations. First, all

analyses were conducted on data from public databases. Large-

scale prospective and multi-center data are needed to validate

the scoring system. In addition, the underlying mechanism

between CRGs and TME cell-infiltrating characteristics and

immunotherapy efficacy needs to be further explored via vitro

and in vivo experiments. However, cuproptosis patterns and the

TME cell-infiltration characteristics may change during

treatments, such as neoadjuvant chemotherapy, chemotherapy,

hormonal therapy, radiotherapy, and targeted therapy. This may

limit the personalized evaluations and treatment. Therefore,

continuous monitoring of CRGs and immune markers is

essential for developing and adjusting treatment regimens.
Conclusion

This comprehensive analysis demonstrated the regulatory

mechanisms of cuproptosis that affect the prognosis and TME of

BRCA. Distinct cuproptosis patterns were identified as factors

impacting the heterogeneity and complexity of the TME. The

cuproptosis score is a powerful tool for evaluating the

cuproptosis pattern in individual patients. A comprehensive

evaluation of individual tumor cuproptosis patterns will

enhance our understanding of the TME cell-infiltrating

characteristics and provide new ideas for guiding more

personalized immunotherapeutic strategies.
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SUPPLEMENTARY FIGURE 1

Expression of CRGs in different clinical characteristic subgroups and

genetic alterations. (A) Overview of this study. (B) Boxplot shows the
expression of 10 CRGs between different age groups in the TCGA-BRCA

cohort. Age< 60, blue; Age ≧60, red. (C) Boxplot shows the expression of
10 CRGs between different stage groups in the TCGA-BRCA cohort. Stage

I/II, blue; Stage III/IV, red. (D) Boxplot shows the expression of 10 CRGs
between different menopause groups in the TCGA-BRCA cohort.

Indeterminate, blue; Peri, red; Post, green; Pre, orange. (E) The

mutation frequency of 10 CRGs in patients from TCGA-BRCA cohort.
(F) The location of 10 CRGs on 23 chromosomes. (ns, P ≥ 0.05, *P< 0.05,
** P< 0.01, *** P< 0.001, and **** P< 0.0001).

SUPPLEMENTARY FIGURE 2

Survival analyses for patients with low and high CRGs expression.
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SUPPLEMENTARY FIGURE 3

TME characteristics and biological features of cuproptosis patterns. (A)
The abundance of each TME infiltrating cell in cuproptosis patterns. (B)
The proportion of TME infiltration cell in cuproptosis patterns. (C, D)
Molecular function and cellular component annotation for cuproptosis

phenotype-related DEGs using GO enrichment analysis. (ns, P ≥ 0.05, *P<
0.05, ** P< 0.01, *** P< 0.001, and **** P< 0.0001).

SUPPLEMENTARY FIGURE 4

The predict ive value of cuproptosis score in tra in ing and

validation cohorts.

SUPPLEMENTARY FIGURE 5

TME characteristics of high and low cuproptosis score groups. (A) The
abundance of each TME infiltrating cell in high and low cuproptosis score
groups. (B) The proportion of TME infiltration cell in high and low

cuproptosis score groups. (ns, P ≥ 0.05, *P< 0.05, ** P< 0.01, *** P<
0.001, and **** P< 0.0001).

SUPPLEMENTARY FIGURE 6

The GSEA enrichment analysis in terms of the high and low cuproptosis

score groups.
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