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Introduction: Valid prediction models or predictors of disease progression in children and young patients

with autosomal dominant polycystic kidney disease (ADPKD) are lacking. Although total kidney volume

(TKV) and Mayo imaging classification are generally used to predict disease progression in patients with

ADPKD, it remains unclear whether germline mutation types are associated with these factors. We

therefore investigated the association between mutation type and TKV and Mayo imaging classification

among patients with ADPKD.

Methods: A total of 129 patients with ADPKD who underwent genetic analyses were enrolled in the study.

The associations between the severity of PKD (TKV $ 1000 ml and Mayo classes 1C–1E) and the PKD1

mutation types (nonsense mutation, frameshift or splicing mutation, and substitution) were evaluated.

Results: Among the mutation types, only PKD1 splicing/frameshift mutation had significant associations

with TKV $ 1000 ml in sex-adjusted and multivariable logistic analyses. Similarly, only the PKD1 splicing/

frameshift mutation was significantly associated with Mayo 1C–1E in sex-adjusted and multivariable lo-

gistic analyses. PKD1 nonsense mutation, PKD1 substitution, or PKD1 mutation position had no significant

association with TKV $ 1000 ml or Mayo 1C–1E.

Conclusion: Kidney cyst severity differs according to the mutation types in PKD1. Patients with PKD1

splicing mutations or PKD1 frameshift mutations are associated with TKV $ 1000 ml or Mayo 1C–1E.

Detailed assessment of mutation types may be useful for predicting renal prognosis in patients with

ADPKD and may especially contribute to the care of a high-risk group of children with ADPKD.
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ADPKD
is the most common progressive
hereditary kidney disease.1 At

present, kidney disease progression in patients with
ADPKD is generally predicted using estimated
glomerular filtration rate (eGFR),2,3 TKV,4–6 and the
Mayo imaging classification.7–9 eGFR, as a representa-
tive predictor of chronic kidney disease, is strong but
less sensitive in the early stages of ADPKD because the
eGFR sometimes declines in a nonlinear pattern10 and
generally remains in the normal range (eGFR $ 90 ml/
min per 1.73 m2) before the age of 30 years, despite the
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progressive formation of cysts.4 Therefore, in early
stage disease, kidney volume has been used as a pre-
dictor5,7,11,12 and has already been used as the end point
in clinical trials.13 Perrone et al.5 reported that the risk
of progression to a 30% decline in eGFR or end-stage
renal disease in patients with a larger TKV of $1000
ml was significantly greater than that in patients with a
smaller TKV (<1000 ml), regardless of kidney function.
TheMayo imaging classification divides typical ADPKD
into 5 groups (Mayo image classes 1A–1E) according to
age- and height-adjusted TKV to predict renal
outcome.7 Patients with Mayo image classes 1C–1E
(Mayo 1C–1E) had a faster decline in renal function
compared with those with classes 1A–1B7; Mayo image
classes 1C–1E are defined as “rapidly progressing dis-
ease,” and for which, tolvaptan treatments are
recommended.8,9
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Although TKV and the Mayo imaging classification
are clinically important, valid prediction models to
identify children with ADPKD who therefore likely to
suffer kidney failure are still lacking, as the radiolog-
ical features in children are different from those in
adult patients.14 As TKV changes with aging, the Mayo
imaging classification is only applicable from 16 years
of age.7 This situation is unfavorable because 20% of
children with ADPKD have hypertension,15 and the
pediatric stages of ADPKD have been recognized as
important stages for disease understanding and treat-
ment.14 Considering that beneficial effects of early
treatment for slowing the increase in TKV have been
reported in children with ADPKD16 and that valid
prediction models to identify children with ADPKD
likely to suffer kidney failure are lacking,14 it is
important to identify a high-risk group among patients
with ADPKD, who are candidates for early interven-
tion. The lack of early prognostic markers for kidney
prognosis is still a concern for both physicians and
patients17; additional indicators other than eGFR, TKV,
and Mayo 1C–1E are clinically desired in children with
ADPKD.

Mutations in PKD1 and PKD2 are responsible for
ADPKD.18,19 We believe that detailed information on
germline mutations could be helpful in predicting the
severity of ADPKD. Indeed, many reports have indi-
cated that patients with a PKD1 mutation, especially
truncating mutations, have a faster decline in kidney
function than patients with a PKD2 mutation.20–25

Similarly, patients with PKD1 mutations, especially
truncating mutations, have significantly larger kid-
neys26–28 and more cysts26 than those with PKD2 mu-
tations. As a result, genotypic factors such as
truncating PKD1 mutations, nontruncating PKD1 mu-
tations, and PKD2 mutations have been adopted in
scoring systems (PROPKD Score) to predict kidney
failure.29 Although the PROPKD Score contributes to
the clinical setting, it has limited value in patients who
are <35 years old and who do not have complica-
tions.30 In addition, the genetic variables used in the
PROPKD Score are limited to only 3 mutation types
(truncating PKD1, nontruncating PKD1, and PKD2).
Therefore, useful genetic information for determining
the prognosis of a patient is yet to be determined. In
ADPKD, 4 mutation types (splicing mutation, frame-
shift mutation, nonsense mutation, and substitution)
are reported to account for >90% of patients.30,31 Of
these gene mutations, 3 (splicing mutations, frameshift
mutations, and nonsense mutations) are classified as
truncating mutations, but they have recently been re-
ported to have different effects on disease severity in
patients with ADPKD.32,33 In particular, eGFR decline
is reported to be associated with PKD1 splicing
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mutations and PKD1 frameshift mutations.33 At pre-
sent, the relationship between TKV $ 1000 ml, Mayo
imaging classification of 1C–1E, and detailed gene
mutation types in PKD has not been reported. In this
study, we hypothesized that PKD1 splicing and
frameshift mutations could be predictors for a TKV $
1000 ml and Mayo imaging class of 1C–1E; in addition,
we investigated the relationship between these 2 pre-
dictors and the detailed gene mutation types.

METHODS

Study Design

A total of 129 patients with ADPKD who presented at
the Kidney Center at the Tokyo Women’s Medical
University Hospital (Tokyo, Japan) and underwent
genetic analysis34 between 2003 and 2017, including
magnetic resonance imaging or computed tomography
to evaluate TKV and Mayo imaging classification, were
included in the study (Supplementary Figure S1). All
procedures were approved by the research ethics
committee of Tokyo Women’s Medical University
(number 196 B) in accordance with the 1964 Declaration
of Helsinki and its later amendments or with compa-
rable ethical standards. Written informed consent was
obtained from all the participants. A detailed descrip-
tion of the methods can be found in the Supplementary
Material (Supplementary Methods: mutation analysis,
measurement of kidney volume and kidney cyst,
definition of comorbidities). The participants were
assessed up to October 31, 2020.

Outcome Evaluation

The primary outcomes were TKV $ 1000 ml and Mayo
imaging classification 1C–1E.

Statistical Analyses

Continuous variables are reported as mean � SD or as
median (minimum, maximum). Categorical variables are
reported as percentages, unless otherwise stated. Group
differences were evaluated using unpaired t tests,
Mann-Whitney U tests, c2 tests, or Fisher exact tests,
as appropriate. Logistic regression analyses were per-
formed to determine the factors associated with out-
comes.35,36 Variables of interest, including general risk
factors for outcomes based on existing knowledge,
were included in the multivariable model. Standard
methods were applied to estimate sample size for
multivariable logistic regression, with at least 5 out-
comes needed for each independent variable.36

Discriminatory ability was measured using the area
under the receiver operating characteristic curve. The
goodness-of-fit was evaluated using McFadden’s
pseudo-R-squared (pseudo-R2).37 All statistical tests
were 2-tailed, and statistical significance was set at P <
Kidney International Reports (2022) 7, 537–546



Table 1. Patient characteristics according to TKV and Mayo classification (entire cohort, N ¼ 129)

Variables Total, N [ 129
Patients with TKV

<1000 ml, n [ 55
Patients with TKV
‡1000 ml, n [ 74 P value Total, N [ 121

Mayo imaging
classification 1A--1B,

n [ 48

Mayo imaging
classification 1C--1E,

n [ 73 P value

Clinical findings

Age (yr) 45 (15–77) [129] 43 (15–74) 47 (22–77) 0.0709 45 (15–77) [121] 50.5 (21–77) 44 (15–75) 0.0019a

Sex (men), n (%) 55 (42.6) [129] 14 (25.5) 41 (55.4) 0.0007a 52 (43.0) [121] 15 (31.3) 37 (50.7) 0.0346a

Smoking, current or former, n (%) 32 (24.8) [129] 9 (16.4) 23 (31.1) 0.0556 31 (25.6) [121] 8 (16.7) 23 (31.5) 0.0673

PKD1/PKD2/unknown, n (%) 99 (76.7)/21 (16.3)/9 (7.0)
[129]

42 (76.4)/8 (14.6)/5
(9.1)

57 (77.0)/13 (17.6)/4
(5.4)

0.6726 93 (76.9)/21 (17.4)/7 (5.8)
[121]

34 (70.8)/10 (20.8)/4
(8.3)

59 (80.8)/11 (15.1)/3
(4.1)

0.4018

PKD1 truncating mutation, n (%) 68 (52.7) [129] 25 (45.5) 43 (58.1) 0.1546 63 (52.1) [121] 21 (43.8) 42 (57.5) 0.1376

PKD1 splicing mutation or frameshift
mutation, n (%)

34 (26.4) [129] 8 (14.6) 26 (35.1) 0.0087a 33 (27.3) [121] 7 (14.6) 26 (35.6) 0.0110a

PKD1 nonsense mutation, n (%) 29 (22.5) [129] 13 (23.6) 16 (21.6) 0.7863 27 (22.3) [121] 11 (22.9) 16 (21.9) 0.8973

PKD1 substitution, n (%) 28 (21.7) [129] 14 (25.5) 14 (18.9) 0.3732 27 (22.3) [121] 11 (22.9) 16 (21.9) 0.8973

PKD1 mutation position (cDNA) 7816 (1–12,721) [99] 7546 (1–12,577) 8309 (529–12,721) 0.0834 8068 (1–12,721) [93] 7546 (1–12,145) 8515 (529–12,721) 0.0665

PKD2 mutation position (cDNA) 1249 (1–2614) [19] 1249 (181–2614) 1249 (1–2507) 0.5497 1249 (1–2614) [19] 1249 (181–2614) 1249 (1–2507) 0.5589

CKD1–2/CKD3/CKD4–5, n (%) 50 (39.4)/45 (35.4)/32 (25.2)
[127]

33 (60.0)/16 (29.1)/6
(10.9)

17 (23.6)/29 (40.3)/26
(36.1)

<0.0001a 48 (39.7)/41 (33.9)/32 (26.5)
[121]

21 (43.8)/18 (37.5)/9
(18.8)

27 (37.0)/23 (31.5)/23
(31.5)

0.2978

Mayo imaging classification class
1A–1B/ class 1C–1E, n (%)

48 (39.7)/73 (60.3) [121] 38 (76.0)/12 (24.0) 10 (14.1)/61 (85.9) <0.0001a NA NA NA NA

eGFR (ml/min per 1.73m2) 52.2 � 29.4 [127] 66.9 � 26.4 41.0 � 26.7 <0.0001a 52.0 � 29.7 [121] 56.9 � 27.7 48.7 � 30.7 0.1384

U-Prot (g/g･Cre) 0.00 (0.00–7.14) [104] 0.00 (0.00–0.59) 0.08 (0.00–7.14) 0.0059a 0.00 (0.00–7.14) [99] 0.00 (0.00–7.14) 0.00 (0.00–1.76) 0.2151

TKV (ml) 1525.0 � 1161.1 [129] 665.1 � 195.1 2164.1 � 1168.1 <0.0001a 1532.7 � 1154.6 [121] 765.6 � 369.5 2037.0 � 1217.6 <0.0001a

TKV $1000 ml, n (%) 74 (57.4) [129] NA NA NA 71 (58.7) [121] 10 (20.8) 61 (83.6) <0.0001a

htTKV (ml/m) 923.2 � 677.3 [121] 410.9 � 122.1 1283.9 � 675.6 <0.0001a 923.2 � 677.3 [121] 472.5 � 223.6 1219.5 � 712.3 <0.0001a

Maximum kidney cyst diameter (cm) 6.54 � 2.09 [129] 5.54 � 2.03 7.28 � 1.82 <0.0001a 6.56 � 2.04 [121] 5.66 � 1.94 7.15 � 1.89 <0.0001a

Maximum liver cyst diameter (cm) 3.95 � 3.55 [129] 3.63 � 3.21 4.18 � 4.79 0.3905 3.80 � 3.49 [121] 3.87 � 3.30 3.76 � 3.64 0.8627

Intracranial aneurysm, n (%) 19 (14.7) [129] 2 (3.6) 17 (23.0) 0.0021a 19 (15.7) [121] 3 (6.3) 16 (21.9) 0.0224a

Comorbidities

Hypertension, n (%) 81 (62.8) [129] 23 (41.8) 58 (78.4) <0.0001a 79 (65.3) [121] 25 (52.1) 54 (74.0) 0.0133a

Hyperuricemia, n (%) 44 (34.1) [129] 9 (16.4) 35 (47.3) 0.0002a 43 (35.5) [121] 10 (20.8) 33 (45.2) 0.0061a

Low HDL cholesterol, n (%) 19 (14.7) [129] 4 (7.3) 15 (20.3) 0.0463a 18 (14.9) [121] 2 (4.2) 16 (21.9) 0.0081a

CKD, chronic kidney disease; Cre, creatinine; eGFR, estimated glomerular filtration rate; HDL, high-density lipoprotein; htTKV, height-adjusted total kidney volume; mutation position (cDNA), the location number of PKD1 or PKD2 mutation position in the
nucleotide sequence of cDNA; NA, not applicable; PKD, polycystic kidney disease; TKV, total kidney volume; U-Prot, urinary protein excretion.
aP < 0.05.
Continuous values are expressed as the mean � SD or median (minimum–maximum). Count data are expressed as n (%). Values for number of subjects are in brackets.
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Table 2. Sex-adjusted and multivariable logistic regression for correlations between the TKV $1000 ml and risk factors (entire cohort, N ¼ 129)

Variables
A. Sex-adjusted logistic
regression analyses

Model for PKD1 truncating
mutation

(R2 [ 0.08, AUC [ 0.68)

Model for PKD1 splicing/
frameshift mutation

(R2 [ 0.10, AUC [ 0.70)

Model for PKD1 nonsense
mutation

(R2 [ 0.07, AUC [ 0.66)
Model for PKD1 substitution
(R2 [ 0.07, AUC [ 0.66)

Odds ratio (95% CI) P value Odds ratio (95% CI) P value Odds ratio (95% CI) P value Odds ratio (95% CI) P value

Men (vs. women) 3.59 (1.67–7.71) 0.0001a 3.56 (1.64–7.76) 0.0014a 3.65 (1.71–7.83) 0.0008a 3.59 (1.67–7.69) 0.0010a

PKD1 truncating mutation (vs. no) 1.61 (0.77–3.36) 0.2057 — — — — — —

PKD1 splicing mutation or
frameshift mutation (vs. no)

— — 3.09 (1.23–7.76) 0.0165a — — — —

PKD1 nonsense mutation (vs. no) — — — — 0.85 (0.35–2.03) 0.7115 — —

PKD1 substitution (vs. no) — — — — — — 0.74 (0.31–1.79) 0.5048

B. Multivariable logistic
regression analyses

Model for PKD1
truncating mutation

(R2 [ 0.15, AUC [ 0.75)

Model for PKD1 splicing/
frameshift mutation

(R2 [ 0.17, AUC [ 0.77)

Model for PKD1
nonsense mutation

(R2 [ 0.15, AUC [ 0.76)
Model for PKD1 substitution
(R2 [ 0.15, AUC [ 0.75)

Odds ratio (95% CI) P value Odds ratio (95% CI) P value Odds ratio (95% CI) P value Odds ratio (95% CI) P value

Men (vs. women) 1.84 (0.76–4.45) 0.1771 1.88 (0.77–4.61) 0.1685 1.82 (0.75–4.40) 0.1826 1.82 (0.75–4.39) 0.1843

Hypertension (vs. no) 3.01 (1.29–7.00) 0.0107a 3.00 (1.27–7.09) 0.0122a 3.21 (1.37–7.53) 0.0074a 3.09 (1.33–7.18) 0.0087a

Hyperuricemia (vs. no) 1.99 (0.73–5.41) 0.1777 1.91 (0.70–5.26) 0.2081 2.14 (0.79–5.77) 0.1346 2.01 (0.74–5.45) 0.1713

Low high-density lipoprotein
cholesterol (vs. no)

1.82 (0.49–6.71) 0.3675 1.69 (0.45–6.32) 0.4386 1.68 (0.46–6.15) 0.4338 1.83 (0.50–6.75) 0.3634

PKD1 truncating mutation
(vs. no)

1.36 (0.62–2.99) 0.4377 — — — — — —

PKD1 splicing mutation or
frameshift mutation (vs. no)

— — 2.69 (1.02–7.10) 0.0454a — — — —

PKD1 nonsense mutation
(vs. no)

— — — — 0.69 (0.27–1.76) 0.4308 — —

PKD1 substitution (vs. no) — — — — — — 0.79 (0.31–2.03) 0.6262

AUC, area under the receiver operating characteristic curve; PKD, polycystic kidney disease; R2, McFadden’s pseudo-R-squared; TKV, total kidney volume.
aP < 0.05.
Each mutation type, hypertension, hyperuricemia, and low high-density lipoprotein cholesterol were included in the multivariable model.

CLINICAL RESEARCH H Kataoka et al.: Germline Mutations and Kidney Volume in ADKPD
0.05. All statistical analyses were performed using JMP
Pro version 15.0.0 software program (SAS Institute,
Cary, NC).
RESULTS

Patient Characteristics

The characteristics of the entire patient group are
found in Table 1 and Supplementary Table S1.
Regarding mutation type, 34 patients harbored PKD1
splicing mutations or frameshift mutations owing to
the insertion or deletion of nucleotides (26.4%), 29
patients harbored PKD1 nonsense mutations (22.5%),
and 28 patients harbored PKD1 substitutions
(21.7%). At the time of evaluating TKV $ 1000 ml/
Mayo imaging classification, the median age was 45
years (minimum–maximum, 15–77 years), eGFR was
52.2 � 29.4 ml/min per 1.73 m2, TKV was 1525.0 �
1161.1 ml, and maximum liver cyst diameter was
3.95 � 3.55 cm. Hypertension affected 81 patients
(62.8%).

Comparative analysis of the patients within the
group revealed that 85.9% of the patients with
TKV $1000 ml had a higher Mayo image classification
(Mayo1C–1E) (P < 0.0001), compared with those with
TKV < 1000 ml (24.0%). Furthermore, we determined
the following characteristics: male sex (55.4% in
540
patients with TKV $ 1000 ml vs. 25.5% in patients
with TKV < 1000 ml, P ¼ 0.0007), PKD1 splicing
mutation or frameshift mutation (35.1% in patients
with TKV $1000 ml vs. 14.6% in patients with
TKV <1000 ml, P ¼ 0.0087), intracranial aneurysm
(23.0% in patients with TKV $1000 ml vs. 3.6% in
patients with TKV <1000 ml, P ¼ 0.0021), hyperten-
sion (78.4% in patients with TKV $1000 ml vs. 41.8%
in patients with TKV < 1000 ml, P < 0.0001), hyper-
uricemia (47.3% in patients with TKV $1000 ml vs.
16.4% in patients with TKV <1000 ml, P ¼ 0.0002),
and low HDL cholesterol (20.3% in patients with
TKV $1000 ml vs. 7.3% in patients with TKV <1000
ml, P ¼ 0.0463).

Drawing a comparative analysis between the pa-
tients with and without a Mayo classification of 1C–1E
revealed that 83.6% of patients with Mayo classes 1C–
1E compared with 20.8% of those with Mayo classes
1A–1B had higher rates of TKV $ 1000 ml (P <
0.0001). We also determined the following character-
istics: male sex (50.7% in patients with Mayo 1C–1E
vs. 31.3% in patients with Mayo 1A–1B, P ¼ 0.0346),
PKD1 splicing mutations or frameshift mutations
(35.6% in patients with Mayo 1C–1E vs. 14.6% in
patients with Mayo 1A–1B, P ¼ 0.0110), intracranial
aneurysm (21.9% in patients with Mayo 1C–1E vs.
6.3% in patients with Mayo 1A–1B, P ¼ 0.0224),
Kidney International Reports (2022) 7, 537–546



Table 3. Sex-adjusted and multivariable logistic regression analyses for correlations between the Mayo imaging classification 1C–1E and
mutation types (entire cohort, N ¼ 121)

Variables
A. Sex-adjusted logistic
regression analyses

Model for PKD1 truncating
mutation

(R2 [ 0.04, AUC [ 0.63)

Model for PKD1 splicing/
frameshift mutation

(R2 [ 0.07, AUC [ 0.67)

Model for PKD1 nonsense
mutation

(R2 [ 0.03, AUC [ 0.60)
Model for PKD1 substitution
(R2 [ 0.03, AUC [ 0.60)

Odds ratio (95% CI) P value Odds ratio (95% CI) P value Odds ratio (95% CI) P value Odds ratio (95% CI) P value

Men (vs. women) 2.21 (1.03–4.78) 0.0430a 2.21 (1.01–4.83) 0.0474a 2.27 (1.06–4.89) 0.0353a 2.26 (1.05–4.86) 0.0366a

PKD1 truncating mutation
(vs. no)

1.69 (0.80–3.57) 0.1700 — — — — — —

PKD1 splicing mutation or
frameshift mutation
(vs. no)

— — 3.17 (1.23–8.17) 0.0169a — — — —

PKD1 nonsense mutation
(vs. no)

— — — — 0.89 (0.37–2.17) 0.6912 — —

PKD1 substitution
(vs. no)

— — — — — — 1.00 (0.41–2.44) 0.9945

B. Multivariable logistic
regression analyses

Model for PKD1
truncating mutation

(R2 [ 0.10, AUC [ 0.70)

Model for PKD1 splicing/frameshift
mutation

(R2 [ 0.12, AUC [ 0.74)

Model for PKD1
nonsense mutation

(R2 [ 0.10, AUC [ 0.69)
Model for PKD1 substitution
(R2 [ 0.10, AUC [ 0.68)

Odds ratio (95% CI) P value Odds ratio (95% CI) P value Odds ratio (95% CI) P value Odds ratio (95% CI) P value

Men (vs. women) 1.31 (0.53–3.23) 0.5625 1.35 (0.54–3.39) 0.5165 1.27 (0.52–3.12) 0.5980 1.27 (0.52–3.11) 0.6039

Hypertension (vs. no) 1.67 (0.71–3.97) 0.2423 1.72 (0.72–4.13) 0.2230 1.80 (0.76–4.27) 0.1847 1.76 (0.75–4.15) 0.1967

Hyperuricemia (vs. no) 1.75 (0.65–4.71) 0.2669 1.66 (0.61–4.50) 0.3219 1.89 (0.71–5.02) 0.2013 1.88 (0.70–5.03) 0.2081

Low high-density
lipoprotein
cholesterol (vs. no)

4.85 (1.01–23.35) 0.0487a 4.56 (0.94–22.23) 0.0602 4.58 (0.96–21.91) 0.0570 4.66 (0.97–22.36) 0.0543

PKD1 truncating mutation
(vs. no)

1.49 (0.68–3.29) 0.3230 — — — — — —

PKD1 splicing mutation or
frameshift mutation (vs.
no)

— — 2.84 (1.06–7.59) 0.0378a — — — —

PKD1 nonsense mutation
(vs. no)

— — — — 0.83 (0.32–2.12) 0.6912 — —

PKD1 substitution
(vs. no)

— — — — — — 1.04 (0.40–2.65) 0.9425

AUC, area under the receiver operating characteristic curve; PKD, polycystic kidney disease; R2, McFadden’s pseudo-R-squared.
aP < 0.05.
Each mutation type, hypertension, hyperuricemia, and low high-density lipoprotein cholesterol were included in the multivariable model.
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hypertension (74.0% in patients with Mayo 1C–1E vs.
52.1% in patients with Mayo 1A–1B, P ¼ 0.0133),
hyperuricemia (45.2% in patients with Mayo 1C–1E vs.
20.8% in patients with Mayo 1A–1B, P ¼ 0.0061),
and low HDL cholesterol (21.9% in patients with
Mayo 1C–1E vs. 4.2% in patients with Mayo 1A–1B,
P ¼ 0.0081).

PKD1 Splicing/Frameshift Mutation as a

Predictive Indicator of Both TKV $ 1000 ml and

Mayo 1C–1E

Univariable and multivariable logistic regression ana-
lyses were performed for TKV $ 1000 ml and Mayo
imaging classification 1C–1E (univariable analyses,
Supplementary Tables S2 and S3; multivariable ana-
lyses, Tables 2 and 3). PKD1 or PKD2 mutation posi-
tions were not associated with TKV $ 1000 ml/Mayo
1C–1E (Supplementary Tables S2 and S3).

Among the mutation types, only the PKD1 splicing/
frameshift mutation had significant associations with
Kidney International Reports (2022) 7, 537–546
TKV $ 1000 ml in sex-adjusted (P ¼ 0.0165) and
multivariable (P ¼ 0.0454) logistic analyses (Figure 1a
and Table 2). Similarly, only the PKD1 splicing/
frameshift mutation was significantly associated with
Mayo 1C–1E in sex-adjusted (P ¼ 0.0169) and multi-
variable (P ¼ 0.0378) logistic analyses (Figure 1b and
Table 3). In contrary, PKD1 truncating mutation, PKD1
nonsense mutation, and PKD1 substitution had no
significant associations with TKV $ 1000 ml/Mayo 1C–
1E in sex-adjusted and multivariable logistic analyses
(Figure 1 and Tables 2–3).
DISCUSSION

Chronic kidney disease, especially hereditary kidney
disease, results in a lifelong fight against illness.
Therefore, we believe that providing useful predictive
information to patients fighting this illness is impor-
tant. Recently, the significance of a detailed mutation
type for patients with ADPKD regarding cerebral
541



Figure 1. Odds ratios for TKV$ 1000 ml and the Mayo imaging classification 1C–1E in the entire cohort. (a) Mutation type for TKV$ 1000 ml. (b)
Mutation type for the Mayo imaging classification 1C–1E. The circles represent odds ratios, and the bars represent 95% CI for the association of
mutation types with TKV $ 1000 ml (derived from A in Table 2) and Mayo imaging classification 1C–1E (derived from A in Table 3). PKD,
polycystic kidney disease; PKD1 nonsense, PKD1 nonsense mutation; PKD1 splicing/frameshift, PKD1 splicing mutation or PKD1 frameshift
mutation owing to the insertion or deletion of nucleotides; TKV, total kidney volume.
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aneurysm, severity of polycystic liver disease,32 and
renal prognosis33 has been reported. Nevertheless, the
association between TKV/Mayo classification and
germline mutation types has not been clearly eluci-
dated. To the best of our knowledge, the present study
is the first of its kind to perform a detailed analysis of
patients with ADPKD, whereby the association be-
tween TKV$ 1000 ml/Mayo 1C–1E and genetic factors,
including genotype, mutation type, and mutation po-
sition, was investigated. The results have revealed that
the detailed mutation type of PKD1 splicing/frameshift
had a significant association with TKV $ 1000 ml and
the Mayo 1C–1E classification.

As intrafamilial phenotypic variability exists among
patients with the same mutation, somatic inactivation
of the remaining wild-type PKD1 or PKD2 allele is
thought to be required to initiate ADPKD and to play a
key role in patients with ADPKD (the 2-hit model of
ADPKD).38–40 As a result, most previous studies on
ADPKD have focused on the second hit mechanism and
have made remarkable progress in the genome studies
of ADPKD; however, research on germline mutations or
genetic background has not progressed extensively.
Although the 2-hit model is an important mechanism of
ADPKD, recent evidence has suggested that PKD pro-
gression or severity is influenced by the level of
functional polycystins (haploinsufficiency/loss of
function model).41,42

In human genetic diseases, haploinsufficiency or loss
of function is caused by the nonsense-mediated decay
(NMD) process.43–45 The degradation of transcripts
containing premature termination codons through
NMD46–48 prevents the synthesis of aberrantly trun-
cated proteins with potentially harmful dominant-
negative effects.49–51 Nevertheless, various additional
determinants of NMD have been recently pro-
posed52,53; NMD efficacy and escape from NMD have
been attracting research attention.52,54 It is possible
that premature termination codon-containing mRNAs
542
escaping NMD produce aberrant transcripts/truncated
proteins with dominant-negative effects/gain of func-
tion that in turn contribute to phenotypic
variation.47,55,56

In this study, TKV $ 1000 ml/Mayo 1C–1E had
associations with PKD1 splicing/frameshift mutations,
which was not observed in patients with PKD1
nonsense mutations (Figure 1). Transcripts with
germline frameshift mutations and splicing mutations
that escape NMD are reported in various genetic
diseases56–59 and experimental researches.60–62 These
transcripts can substantially change the amino acid
sequences of the encoded proteins, exert a more dra-
matic effect on the protein 3-dimensional structure
than a single amino acid change,63,64 and form aber-
rant transcripts of the mutated genes.56,57,65 In
contrast, nonsense mutations that generate in-frame
premature termination codons generally do not pro-
duce transcripts with extra aberrant amino acids and
tend to cause haploinsufficiency/loss of function.56,66

Indeed, Malan et al.56 elucidated the phenotypic dif-
ference between Marshall-Smith Syndrome and Sotos-
like overgrowth syndrome based on the difference be-
tween nonsense mutations/large deletions and
frameshift/splice-site mutations. Patients with Marshall-
Smith Syndrome had expression of both the normal and
mutant alleles, indicating transcripts with frameshift
and splice-site mutations that escape the NMD yield
mutant proteins that exert a dominant-negative effect
and cause a more severe phenotype of Marshall-Smith
Syndrome. In contrast, patients with Sotos-like over-
growth syndrome had expression of only a single wild-
type allele. This indicated that transcripts with large
deletions and nonsense mutations undergoing NMD
lead to haploinsufficiency in patients with Sotos-like
overgrowth syndrome with mild intellectual deficits.65

We consider that a similar underlying mechanism
affected the patients with ADPKD in this study,
resulting in no association between nonsense mutations
Kidney International Reports (2022) 7, 537–546



Table 4. Relationship between mutation types and phenotypes in
kidney cysts, liver cysts, and intracranial aneurysms

Mutation type
Kidney

dysfunction33
Kidney cysts (the
present study)

Liver
cysts32

Intracranial
aneurysms
(submitted)

Splicing mutation C C C (younger age)

Frameshift mutation C C : (younger age)

Nonsense mutation C

Substitution : (older age,
low GFR)

GFR, glomerular filtration rate; C, high risk; :, moderate risk.
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and TKV $ 1000 ml/Mayo 1C–1E. The phenotypic
difference according to mutation type in patients with
ADPKD (illustrated in in Table 4) might be affected by
haploinsufficiency/loss of function model or dominant-
negative effects/gain of function.

The present study has certain limitations. First,
as an observational study, the causal relationships
associated with our observations were not proven.
Second, the sample size was relatively small; hence,
further studies are required to confirm our findings
in a larger patient cluster. Third, our results do not
necessarily exclude a second-hit theory by somatic
mutations. Nevertheless, the results of the present
study suggest that the pathology of ADPKD can
also develop when germline mutations are present.
Genetic diagnosis can improve the clinical man-
agement of patients and has the potential to benefit
patients with ADPKD (especially for a high-risk
group of children, such as those with young-
onset hypertension) by providing novel therapeu-
tic options.67,68

In conclusion, this study revealed that patients
with ADKPD exhibited an association between PKD1
splicing mutations or PKD1 frameshift mutations and
TKV $ 1000 ml and Mayo classification of 1C–1E.
The novel finding that the differences in these
germline mutations affect the severity of kidney
cysts may provide prognostic benefits for patients
with ADPKD.
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