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Bacteria adapt to ever-changing habitats through specific responses to internal and
external stimuli that result in changes in gene regulation and metabolism. One internal
metabolic cue affecting such changes in Escherichia coli and related enteric species
is cytoplasmic accumulation of phosphorylated sugars such as glucose-6-phosphate or
the non-metabolizable analog α-methylglucoside-6-phosphate. This “glucose-phosphate
stress” triggers a dedicated stress response in γ-proteobacteria including several enteric
pathogens. The major effector of this stress response is a small RNA (sRNA), SgrS.
In E. coli and Salmonella, SgrS regulates numerous mRNA targets via base pairing
interactions that result in alterations in mRNA translation and stability. Regulation of target
mRNAs allows cells to reduce import of additional sugars and increase sugar efflux. SgrS
is an unusual sRNA in that it also encodes a small protein, SgrT, which inhibits activity
of the major glucose transporter. The two functions of SgrS, base pairing and production
of SgrT, reduce accumulation of phosphorylated sugars and thereby relieve stress and
promote growth. Examination of SgrS homologs in many enteric species suggests that
SgrS has evolved to regulate distinct targets in different organisms. For example, in
Salmonella, SgrS base pairs with sopD mRNA and represses production of the encoded
effector protein, suggesting that SgrS may have a specific role in the pathogenesis of
some γ-proteobacteria. In this review, we outline molecular mechanisms involved in SgrS
regulation of its target mRNAs. We also discuss the response to glucose-phosphate stress
in terms of its impact on metabolism, growth physiology, and pathogenesis.
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Over the last decade, small RNAs have emerged from relative
obscurity to take their places as central regulators of gene expres-
sion in organisms from all three domains of life. While hundreds
of small RNAs in dozens of bacterial genomes have been iden-
tified by computational or experimental methods, the functions
of the vast majority of these remain a mystery. Nevertheless, we
have learned a great deal about a small number of “model” bac-
terial sRNAs, including how their production is regulated, what
targets they in turn regulate and the physiological outcomes of
sRNA-mediated regulation. In this review, we first provide a brief
overview of features of regulatory sRNAs that act on mRNAs
through base pairing interactions. We then focus on one well-
characterized sRNA, SgrS (sugar transport related sRNA) and
describe its activities on target mRNAs and how these activities
regulate bacterial metabolism and pathogenesis.

MECHANISMS OF REGULATION BY BACTERIAL SMALL
RNAs
BASIC CHARACTERISTICS OF sRNA-MEDIATED REGULATION
Several mechanistic classes of sRNAs have been identified in
diverse bacterial species. Many characterized sRNAs act by base
pairing with mRNA targets to control mRNA stability and trans-
lation. Such sRNAs are often between 50 and 300 nucleotides in
length and require an RNA chaperone, Hfq, for their stability

and regulatory effects on target mRNAs (Sledjeski et al., 2001;
Moller et al., 2002; Zhang et al., 2002). Hfq is a hexameric
ring protein with sRNA- and mRNA-binding faces (Mikulecky
et al., 2004; Link et al., 2009; Zhang et al., 2013). On sRNAs,
Hfq binds to stem-loop terminator structures preceded by A/U
rich sequences (Valentin-Hansen et al., 2004; Otaka et al., 2011;
Ishikawa et al., 2012). Hfq-binding sites are located in 5′ untrans-
lated regions (UTRs) of many mRNAs that are regulated by
sRNAs (Soper and Woodson, 2008; Link et al., 2009; Salim
and Feig, 2010; Salim et al., 2012). Binding of Hfq to both
sRNAs and mRNAs increases their local concentrations, stim-
ulates structural remodeling to facilitate pairing and increases
annealing rates of cognate pairs (Fender et al., 2010; Maki et al.,
2010; Soper et al., 2010; Hopkins et al., 2011). Other factors
involved in sRNA-mRNA regulatory transactions include RNase
E and components of the degradosome (Masse and Gottesman,
2002; Masse et al., 2003; Morita et al., 2005). Polynucleotide
phosphorylase (PNPase, a 3′–5′ exonuclease), RhlB helicase
and enolase assemble on RNase E to form a degradosome
complex required for bulk mRNA turnover in proteobacte-
ria (Carpousis, 2007). RNase E binds A/U-rich single-stranded
regions of RNAs and is responsible for sRNA-mediated mRNA
degradation (Carpousis et al., 2009; Belasco, 2010; Prevost et al.,
2011).
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REPRESSION BY sRNAs
The canonical mechanism of negative regulation by sRNAs
involves base pairing interactions that directly inhibit transla-
tion initiation because the sRNA sequesters mRNA sequences
required for stable ribosome binding, in the region from ∼20 nt
upstream to 20 nt downstream of the start codon (Beyer et al.,
1994; Huttenhofer and Noller, 1994). As more detailed studies
of sRNA regulatory mechanisms have been performed, variations
on this theme have been discovered. Binding of sRNAs to mRNA
sequences outside the region recognized by the ribosome can still
inhibit translation initiation (Darfeuille et al., 2007; Sharma et al.,
2007; Bouvier et al., 2008; Holmqvist et al., 2010), for example, by
recruiting Hfq to bind at a site overlapping the ribosome binding
site (RBS) (Desnoyers and Masse, 2012) or by sequestering mRNA
sequences that apparently act as translational enhancer elements
(Bandyra et al., 2012; Desnoyers et al., 2013).

Regardless of the mechanism, sRNA-mediated translational
repression is often coupled to mRNA degradation by an RNase
E degradosome-dependent pathway. Translating ribosomes pro-
tect mRNA from RNase E degradation (Dreyfus, 2009), thus
sRNA inhibition of translation unmasks RNase E recognition
sites and makes target mRNAs susceptible to degradation (Prevost
et al., 2011). Though translational repression and mRNA degra-
dation are typically coupled, this is usually not obligatory for
gene silencing. In other words, mutations that abrogate RNase
E-dependent turnover of sRNA targets have no impact on transla-
tional repression (Morita et al., 2006; Rice and Vanderpool, 2011;
Rice et al., 2012). While less commonly described, in some cases
sRNA-mediated translational repression has no significant effect
on mRNA turnover (Moller et al., 2002). Conversely, there are
a handful of known cases where sRNAs do not directly affect
translation but rather specifically target mRNAs for degradation
(Desnoyers et al., 2009; Pfeiffer et al., 2009).

ACTIVATION BY sRNAs
sRNAs can also activate gene expression post-transcriptionally.
Positive regulation of target mRNAs is achieved via activation of
translation or stabilization of the target transcript. Some mRNAs
have intrinsic secondary structures in their 5′ UTRs that hin-
der translation, for example, because the RBS is sequestered.
Binding of sRNAs to these 5′ UTRs can prevent formation of
translation-inhibitory secondary structures and therefore acti-
vate translation (Morfeldt et al., 1995; Lease et al., 1998; Prevost
et al., 2007). Another mechanism of activation by sRNAs involves
sRNA-mRNA base pairing that alters accessibility of RNase E
recognition sites on mRNA targets. sRNA-mRNA binding can
induce cleavage of a target transcript, resulting in a processed
mRNA with an accessible RBS (Obana et al., 2010) or alterna-
tively sRNA base pairing with an intrinsically unstable mRNA
can occlude an RNase E recognition site and prevent cleavage
(Papenfort et al., 2013).

THE sRNA SgrS MEDIATES THE RESPONSE TO
GLUCOSE-PHOSPHATE STRESS
CHARACTERISTICS OF SgrS
SgrS is a 227-nt (in E. coli) Hfq-binding sRNA (Zhang et al.,
2003) that is produced during “glucose-phosphate stress,” which

is characterized by accumulation of phosphosugars like glucose-
6-phosphate (G6P) or its analog α-methyl glucoside-6-phosphate
(αMG6P) (Vanderpool and Gottesman, 2004; Wadler and
Vanderpool, 2007). Glucose and α-methyl glucoside (αMG) are
taken up and phosphorylated by the phosphoenolpyruvate phos-
photransferase system (PTS) (Postma et al., 1993; Deutscher et al.,
2006; Gorke and Stulke, 2008). If metabolism of G6P is blocked
(e.g., by mutation of genes encoding early glycolytic enzymes),
or if cells accumulate non-metabolizable αMG6P, sgrS is induced
by the transcription factor SgrR (Figure 1) (Vanderpool and
Gottesman, 2007). Both SgrS and SgrR are essential for cell
growth under glucose-phosphate stress conditions (Vanderpool
and Gottesman, 2004). SgrS regulates a number of mRNA targets
through base pairing interactions involving a conserved region
near the 3′ end (Figure 2A, conserved residues are in red in
Figure 2B). In addition, the 5′ end encodes a 43-amino-acid
protein called SgrT (Figure 2A). Remarkably, SgrS base pairing
activity and SgrT function by independent regulatory mecha-
nisms to allow cells to cope with glucose-phosphate stress and
continue growing (Figure 1) (Wadler and Vanderpool, 2007;
Balasubramanian and Vanderpool, 2013).

TARGETS OF SgrS REGULATION
EIICBglc, encoded by ptsG, mediates transport and phosphory-
lation of glucose and αMG. SgrS negatively regulates ptsG by
directly inhibiting ptsG translation initiation by base pairing with
the ptsG 5′ UTR near the RBS (Figures 1, 2C). SgrS-dependent
translational repression requires Hfq and stimulates ptsG mRNA
degradation by an RNase E-dependent pathway (Vanderpool and
Gottesman, 2004; Kawamoto et al., 2006; Maki et al., 2008). SgrS
is highly unstable in the hfq mutant strain, highlighting the essen-
tial role of Hfq in SgrS-dependent regulation (Balasubramanian
and Vanderpool, 2013).

SgrS also represses manXYZ, which encodes a PTS trans-
porter of relatively broad substrate specificity. SgrS repression of
manXYZ is carried out through a more complex mechanism com-
pared to ptsG. Two distinct SgrS binding sites on manXYZ mRNA
are located within early manX coding sequences and within the
manX-manY intergenic region (Figures 1, 2C). SgrS binding at
the manX site is responsible for translational repression of manX,
but has no effect on translation of manY or manZ (Rice et al.,
2012). The intergenic SgrS binding inhibits translation of manY
and manZ (translation of manY and manZ is coupled) and this is
independent of manX regulation (Rice et al., 2012). SgrS binding
at each site individually does not affect manXYZ mRNA sta-
bility; pairing at both sites is required for RNase E-dependent
degradation of manXYZ mRNA (Rice et al., 2012).

A third SgrS target, yigL mRNA, which encodes a haloacid
dehalogenase-like phosphatase (Koonin and Tatusov, 1994), is
positively regulated by SgrS (Papenfort et al., 2013). Synthesis of
YigL is induced by SgrS in response to glucose-phosphate stress.
The yigL gene is in an operon with the upstream pldB, however
SgrS activates only yigL. In the absence of SgrS, RNase E process-
ing of the pldB-yigL transcript yields an mRNA that is susceptible
to further degradation. When SgrS is produced, it base pairs with
a sequence on the processed ′pldB-yigL mRNA (Figures 1, 2C)
and prevents further degradation. This mechanism of positive
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FIGURE 1 | Current model for the role of SgrS in the glucose-phosphate

stress response. The top panel illustrates the main features of the
phosphoenolpyruvate phosphotransferase system (PTS), which transports
numerous carbohydrates as well as glucose analogs (αMG, 2DG: α-methyl
glucoside and 2-deoxy glucose, respectively). Glucose-phosphate stress is
associated with accumulation of sugar-phosphates (hexagons with attached
green circles). The stress response is initiated by the activated transcription
factor, SgrR, which induces SgrS synthesis. SgrS has two functions; the first
is base pairing-dependent regulation of target mRNAs (illustrated in lower

panel), the second is production of the ∼40 amino acid protein SgrT. SgrT
acts to repress activity of the EIICBglc (PtsG) transporter (top panel). The
base pairing activity results in repression of two mRNA targets encoding PTS
sugar transporters, ptsG and manXYZ, and activation of a third mRNA target
encoding a phosphatase, yigL (described in detail in the text). Altogether, the
base pairing activity of SgrS on these various targets inhibits further uptake
of sugar-phosphates by inhibiting production of sugar transporters and
promotes sugar efflux by providing neutral sugar substrates that are pumped
out by an unknown efflux pump (indicated by a “?”).
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FIGURE 2 | Characteristics of SgrS and SgrS-mRNA base pairing

interactions. (A) The main functional domains of SgrS are illustrated. The
sgrT open reading frame is located at the 5′ end, the conserved base pairing
region is downstream of sgrT and upstream of the intrinsic terminator hairpin
(which comprises the Hfq-binding domain). (B) Alignment of the base pairing
region of SgrS homologs from enteric species. The most conserved region is
indicated by asterisks below the alignment and in red for the E. coli (Ec)
homolog. Abbreviations for other species: Sf, Shigella flexneri; St, Salmonella

enterica serovar Typhimurium; Kp, Klebsiella pneumoniae; Erc, Erwinia
carotovora; Yp, Yersinia pestis; Sm, Serratia marcescens. (C) SgrS-mRNA
base pairing interactions. Interactions with each confirmed SgrS target are
shown (species abbreviations are as in B). Watson-Crick base interactions
G-C and A-U are indicated with vertical lines and non-canonical G-U pairs are
denoted with two dots. The conserved SgrS base pairing region is indicated
in red. Start codons are indicated in green and underlined. Ribosome binding
sites (RBS) are bold and underlined.
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regulation is unusual in that an initial processing event is required
to allow SgrS access to its binding site because cleavage within
pldB frees the pldB region from translating ribosomes (Papenfort
et al., 2013). Moreover, activation of yigL by SgrS is translation-
independent. SgrS stabilizes yigL mRNA by occluding a specific
RNase E cleavage site upstream of the yigL coding region, not
by enhancing yigL translation (Papenfort et al., 2013). A similar
translation-independent mechanism of mRNA stabilization was
recently described for the RydC sRNA-cfa mRNA regulatory pair
(Frohlich et al., 2013).

GLUCOSE-PHOSPHATE STRESS PHYSIOLOGY
Targets of SgrS include sugar transporters and a sugar phos-
phatase. SgrS-mediated repression of sugar transporters dimin-
ishes cells’ capacity to take up sugars and therefore reduces
further phosphosugar accumulation (Figure 1). However, this
effect is not immediate: PtsG protein has a half-life of ∼80 min
(Papenfort et al., 2013), so merely stopping new synthesis of
PtsG would not provide a fast remedy for the problem of phos-
phosugar accumulation. The activation of YigL synthesis by
SgrS addresses this problem since dephosphorylation of sug-
ars allows their efflux (Figure 1) (Winkler, 1971; Haguenauer
and Kepes, 1972; Papenfort et al., 2013). Growth competi-
tion experiments between wild-type and sgrS mutants pro-
vided insight into how regulation of different SgrS targets
contributes to stress resistance and growth during glucose-
phosphate stress (Sun and Vanderpool, 2013). When cells are
stressed while growing in rich medium, SgrS-mediated regu-
lation of ptsG mRNA alone is sufficient to confer wild-type
levels of growth. In contrast, cells stressed in minimal media
are far more growth inhibited, and repression of ptsG alone
is not sufficient to rescue growth. In minimal media stress
conditions, repression of ptsG and activation of yigL are nec-
essary, but not sufficient for full growth rescue (Sun and
Vanderpool, 2013). These findings illustrate the poorly under-
stood influence of nutrient availability on the severity of glucose-
phosphate stress. Moreover, these results highlight the fact that
additional unknown SgrS targets are involved in the stress
response.

Phosphosugar intermediates of central metabolism provide
precursors for biomass and energy, yet, as illustrated by glucose-
phosphate stress, excessive accumulation of phosphosugars is
detrimental to cell growth. Other types of phosphosugar stress
also cause growth inhibition or cell lysis (Yarmolinsky et al., 1959;
Englesberg et al., 1962; Irani and Maitra, 1977; Lee et al., 2009).
In most cases, the mechanisms responsible for phosphosugar-
associated inhibition or lysis have not been defined. However,
recent work suggests that in some cases phosphosugars them-
selves are not directly inhibitory. Rather, accumulation of phos-
phosugars is accompanied by depletion of other metabolites,
and stress is ameliorated by supplementation with the limit-
ing metabolites (Lee et al., 2009, 2013; Richards et al., 2013).
Glucose-phosphate stress is so far associated with accumula-
tion of a few sugar-phosphate intermediates of upper glycolysis
(Morita et al., 2003; Vanderpool and Gottesman, 2004; Sun and
Vanderpool, 2013). A recent study implicates depletion of inter-
mediates of lower glycolysis, particularly phosphoenolpyruvate

(PEP) as an important cause of glucose-phosphate stress. When
αMG is taken up and phosphorylated, it cannot be metabo-
lized to replenish glycolytic intermediates. Thus, PEP utilized
to drive αMG uptake is not replaced via glycolytic metabolism.
Under these conditions, SgrS regulation of target mRNAs and
production of SgrT limits PEP consumption by reducing lev-
els and activity of PtsG (Figure 1). In sgrS mutants, exposure
to αMG results in strong growth inhibition (Vanderpool and
Gottesman, 2004; Richards et al., 2013) that is largely reversed
by supplementing stressed cultures with glycolytic intermedi-
ates (Richards et al., 2013). The ratios of PEP to pyruvate seem
to be particularly relevant for growth during glucose-phosphate
stress. Increasing pyruvate levels during stress results in lysis
of sgrS mutant cells, whereas increasing PEP levels rescues cell
growth (Richards et al., 2013). The observation that stress (and
growth inhibition) is more severe when cells are growing in min-
imal compared to rich media is also consistent with metabolite
depletion as an underlying cause of glucose-phosphate stress. In
rich media, cells do not have to synthesize many biosynthetic
intermediates. In contrast, growth in minimal media requires de
novo biosynthesis of amino acids. Thus, depletion of glycolytic
intermediates during glucose-phosphate stress would have more
severe effects on growth under conditions where these same inter-
mediates are needed as precursors for biosynthesis. Consistent
with this idea, supplementation of minimal media with amino
acids improves stress recovery in minimal medium (Sun and
Vanderpool, 2013).

The transcription factor SgrR also plays an important, but
not fully characterized role in glucose-phosphate stress physiol-
ogy. SgrR activates expression of sgrS and at least two other genes
during glucose-phosphate stress: setA, encoding an efflux pump
(Liu et al., 1999; Sun and Vanderpool, 2011), and alaC (for-
merly yfdZ), a glutamate-pyruvate aminotransferase (Vanderpool
and Gottesman, 2007; Kim et al., 2010). The role of alaC in
helping cells recover from glucose-phosphate stress is unknown.
In contrast, setA, which is encoded just downstream of sgrS, is
important for growth recovery under certain stress conditions
(Sun and Vanderpool, 2011). Given its function as an efflux
pump, the hypothesis that SetA was responsible for export of
αMG was tested, but was not supported (Sun and Vanderpool,
2011). Thus, the role of SetA in glucose-phosphate stress also
remains elusive.

DISTRIBUTION AND FUNCTION OF SgrS IN
γ-PROTEOBACTERIA
IDENTIFICATION OF SgrS IN ENTERIC BACTERIA
SgrS homologs were identified in many γ-Proteobacteria, includ-
ing Escherichia sp., Salmonella sp., Shigella sp., Yersinia sp,
Serratia sp., Klebsiella pneumoniae and Erwinia sp. (Horler and
Vanderpool, 2009). The sgrR-sgrS intergenic region (containing
the sgrS promoter) is highly conserved, suggesting that SgrR
regulates sgrS expression in all these organisms. All identified
SgrS homologs contain a Rho-independent terminator and most
possess an additional stem-loop structure upstream of the ter-
minator; these two structures are important for Hfq binding to
SgrS (Figure 2A) (Horler and Vanderpool, 2009; Otaka et al.,
2011; Ishikawa et al., 2012). While the overall conservation of
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SgrS is low, a short stretch of ∼13 nts near the SgrS 3′ end
is nearly invariant (Figure 2B). This SgrS sequence is comple-
mentary to the translation initiation regions of ptsG mRNAs
in all species where an SgrS homolog was found (Horler and
Vanderpool, 2009). Mutation of residues G176 and G178 within
the conserved region of E. coli SgrS abrogates SgrS-mediated
repression of ptsG mRNA and prevents recovery from glucose-
phosphate stress (Maki et al., 2008). Introduction of analogous
mutations in the conserved regions of SgrS homologs from
Salmonella, E. carotovora, Y. pestis and K. pneumoniae similarly
prevented regulation of ptsG (Wadler and Vanderpool, 2009).
Regulation of other targets is less well conserved among SgrS
homologs. The SgrS sequences required for base pairing with
manX are upstream of the conserved region (Figure 2C) and
are poorly conserved among SgrS homologs. SgrS homologs
from Salmonella and K. pneumoniae have the same predicted
SgrS-manX base pairing interaction and manX translation is reg-
ulated as expected. In contrast, E. carotovora and Y. pestis SgrS
homologs have changes in the manX pairing site resulting in loss
of complementarity to their cognate manX and were accordingly
shown not to regulate manX translation (Rice and Vanderpool,
2011).

CONSERVATION OF SgrT
While the exact molecular function of SgrT has not been reported,
available data strongly suggest that this small protein interacts
directly with PtsG protein to inhibit its activity (Wadler and
Vanderpool, 2007). Most SgrS homologs contain open reading
frames similar in size to E. coli SgrT (∼40 amino acids) (Horler
and Vanderpool, 2009). While the primary amino acid sequence
of putative SgrT homologs was not well conserved, homologs
from Salmonella, Klebsiella, and Erwinia were functional when
expressed in an E. coli sgrST mutant (Wadler and Vanderpool,
2009). Interestingly, some species with SgrS homologs appear to
lack a functional SgrT. In Yersinia sp., SgrS appears to be trun-
cated at the 5′ end, and SgrS from Yersinia species ranges in size
from ∼85 to 140 nt and lacks the sgrT open reading frame. In
pathogenic E. coli O157:H7 strains, a point mutation in the SgrS
5′ region alters the sgrT start codon, presumably abrogating SgrT
production in these strains.

Differential presence and absence of SgrT in organisms that
possess SgrS led to a closer comparison of E. coli K12 and
Salmonella SgrS sRNAs. In E. coli K12, sgrT alone (without the
region of SgrS involved in base pairing with mRNAs) was not
sufficient to allow growth rescue during glucose-phosphate stress
conditions. This is in part due to very low levels of SgrT produced
from the native sgrS allele in E. coli (Wadler and Vanderpool,
2009). E. coli SgrS has a sequence in the 5′ region that forms
a structure that inhibits sgrT translation. On the other hand,
Salmonella SgrS does not have the same inhibitory structure
and therefore produces more SgrT than E. coli SgrS (Wadler
and Vanderpool, 2009; Balasubramanian and Vanderpool, 2013).
While native levels of SgrT production have not been inves-
tigated in Erwinia or Klebsiella species, it was observed that
ectopic production of SgrT homologs from these organisms in
an E. coli sgrST mutant rescued growth during glucose-phosphate
stress (Wadler and Vanderpool, 2009). Thus, SgrT is functionally

conserved when it is present, but levels of SgrT production vary
among bacteria.

SgrS REGULATION OF sopD mRNA
Although SgrS is conserved among enteric bacteria, divergence
in primary sequence has resulted in species-specific target regu-
lons, exemplified by the finding that Erwinia and Yersinia SgrS
homologs do not regulate their cognate manXYZ homologs (Rice
and Vanderpool, 2011). Another instance of species-specific reg-
ulation by SgrS is regulation of the Salmonella-specific gene sopD
(Papenfort et al., 2012). SopD is an effector delivered to host
cells through the Type 3 Secretion Systems (T3SSs) encoded
on Salmonella pathogenicity island (SPI)-1 and SPI-2 (Brumell
et al., 2003) and it functions as a general virulence factor in
mice (Jiang et al., 2004; Bakowski et al., 2007). Regulation of
sopD by SgrS involves base pairing interactions between the con-
served region of SgrS and the early coding sequence of sopD
mRNA (Figure 2C); the interaction inhibits translation initia-
tion and stimulates sopD mRNA degradation (Papenfort et al.,
2012). Interestingly, Salmonella encodes a second SopD protein,
SopD2, which shares 42% identity with SopD and likely arose
from a duplication (Jiang et al., 2004). The predicted SgrS-sopD2
base pairing interaction differs from SgrS-sopD at only a single
position, a wobble G:U base pair instead of the G:C base pair.
Remarkably, this interaction that differs by only a single hydro-
gen bond prevents regulation of sopD2 by SgrS (Papenfort et al.,
2012).

While the biological significance of sopD regulation by SgrS
is not yet clear, the inclusion of sopD in the Salmonella SgrS
regulon illustrates plasticity in the evolution of sRNA regulons.
The presence of sgrR-sgrS-sgrT in the same genomic context in
pathogenic and non-pathogenic γ-proteobacteria (Horler and
Vanderpool, 2009) suggests that this is an ancestral, or “core”
RNA among these organisms. Yet, this core sRNA has acquired
the ability to regulate a gene that was horizontally acquired by
Salmonella. Studies of other SgrS homologs in pathogenic and
non-pathogenic enteric bacteria will surely shed light on the
breadth of regulatory activities of this fascinating dual-function
sRNA.
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