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Statistical speech reconstruction for larynx-related dysphonia has achieved good performance using Gaussian mixture models and, more
recently, restricted Boltzmann machine arrays; however, deep neural network (DNN)-based systems have been hampered by the limited
amount of training data available from individual voice-loss patients. The authors propose a novel DNN structure that allows a partially
supervised training approach on spectral features from smaller data sets, yielding very good results compared with the current state-of-the-art.
1. Introduction: In this Letter, larynx-related dysphonia refers
to those who have undergone a partial laryngectomy or who
have larynx damage, impaired brain function or nerve lesion
(e.g. laryngeal palsy), or are avoiding phoned speech due to
a prescribed period of voice rest [1, 2]. This leads them to
produce medical whispers – a subset of whispering for medical
reasons – where the vocal cords do not vibrate as they would for
spoken utterances, even when producing vowels and other
phonemes that are normally voiced. Such whispers exhibit
reduced energy compared with speech and are easily obscured by
background noise, thus the need for speech reconstruction.
Simple prosthetic aids have been available since the invention
of the robotic sounding electrolarynx in the 1920s, but much
recent research has focused on two approaches to whisper-
to-speech conversion (WSC) [1], namely codec-based and
statistical voice conversion (SVC) methods. The former uses
parametric conversion frameworks which decompose whisper
input and then reconstruct into normal speech without model
training or use of a priori information. These include the code
excited linear prediction and mixed excitation linear
prediction-based reconstruction technique [2, 3] plus direct
conversion methods [1, 4].
Codec-based systems are fast, efficient, and simple to set up, but

exhibit unnatural pitch, and mean opinion scores seldom exceed
3.5. SVC-based methods using Gaussian mixture models
(GMMs) [5] reconstruct much more normal sounding speech
from whispers using a priori data to build joint whisper–speech
models. However, current systems are limited in only modelling
compressed mel-cepstral coefficients, failing to model inter-
dimensional correlation due to the restriction of a diagonal covari-
ance matrix when the training data is limited [6]. As a result, speech
converted from whispers using a GMM usually sounds ‘muffled’
with unusual pitch contours.
The authors previously introduced a WSC framework using

arrays of restricted Boltzmann machines (RBMs) [6] acting on
spectral envelope information, allowing much higher-dimensional
spectral information than GMM methods. This also modelled inter-
dimensional spectral correlation (due to full connectivity between
hidden and visible layers). It improved on baseline GMM-based
system in terms of both intelligibility and naturalness [6];
however, its architecture was significantly more complex than
GMM systems, and much slower since it had to convert each
frame individually using a gradient descent algorithm.
This Letter presents a new approach to improve quality while

reducing complexity, as shown in Fig. 1. Rather than operate
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multiple RBM arrays to learn spectral feature mappings, we
propose a single deep neural network (DNN) structure.
Unsupervised training is used first to create two separate Gaussian–
Bernoulli RBMs: one for whisper spectral features and one for
frame-aligned speech spectral features, effectively performing
feature coding. These trained RBMs are then stacked back-to-back
– a two-layer Bernoulli–Bernoulli neural network is sandwiched
between the RBMs to form a DNN stack. The middle layers are
then trained in a supervised fashion to form a fully connected
mapping from whisper features to frame-aligned speech features.

2. Background: GMM-based WSC methods were pioneered
by Toda et al. [5] to convert non-audible murmur signals into
speech with more normal sounding characteristics. The authors sub-
sequently extended their techniques to convert whisper-like speech
from post-partial laryngectomy patients, transforming acoustic fea-
tures of whispers into normal sounding speech after being suitably
trained with parallel utterance data (i.e. spoken and whispered ver-
sions of the same speech). State-of-the-art variants [7] made use of
up to three GMMs: one to convert the source spectral features into
target spectral features, another to convert the same source spectral
features into a pitch excitation, and the last one to generate addition-
al aperiodic components that are found in the target speech (which
can enhance naturalness). Converted speech is typically synthesised
by speech transformation and representation based on adaptive
interpolation of weighted spectrogram (STRAIGHT) [8], using
estimated spectral features, pitch, and aperiodic components.
Quality tends to be good though these methods suffer from over-
smoothing of detailed characteristics in the reconstructed spectra,
leading to muffled speech. Unnatural prosody can arise too, due
to the difficulty in estimating f 0 from the whisper spectrum.
Apart from these disadvantages, complexity is high due to the
three GMMs needed, and because systems require STRAIGHT
for re-synthesis.

In a recent system developed by Li et al. [6], the over-smoothing
effect was mitigated through the use of RBM arrays which could
model a much higher resolution spectral envelope than commonly
achieved by the mel-cepstra of GMM systems. The RBM system
also decoupled the voiced/unvoiced classification from the pitch
estimation, allowing for smoother pitch reconstruction. This per-
formance gain, however, came at a substantial computational cost.

3. Motivation for the proposed technique: The motivation to
utilise a DNN architecture for the WSC task is simple: DNNs
have shown their ability to infer discriminative features in a
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Fig. 1 RBM networks first trained on time-aligned whisper and speech
spectral features (top), then used to train feature mapping network
weights (bottom)

Fig. 2 Standard DNN implementation for performing WSC
number of related domains including automatic speech recognition
[9], language identification [10], and machine hearing [11]. They
have also been applied to the field of SVC [12] as well as speech
enhancement [13]. Therefore, we began to train DNN-based
WSC regression models using minimum mean squared error
objective criteria on spectral envelope features. We followed
standard RBM-based pre-training methods using the contrastive
divergence (CD) algorithm and back-propagation (BP)
error-based fine-tuning. The results, however, were systems prone
to over-fitting due to the limited parallel data from each speaker
[Parallel training data means high-quality recordings of a patient
speaking sentences with a normal voice and speaking the same
sentences after laryngectomy. This is difficult to obtain in practise
from patients who have already lost the ability to speak
naturally.]. DNN performance was disappointing, as results will
indicate in Section 9.

Without obtaining significantly more training data, one potential
improvement would be to use supervised training, which is more
effective than unsupervised training. Unfortunately supervision
requires labelled data, which we do not have. However, we
propose a novel semi-supervised DNN (semi-DNN) architecture in
this Letter which first uses unsupervised training to perform
feature coding, and then uses that coding to enable supervised train-
ing. Specifically, we begin by training two separate RBMs on
whisper and voiced speech spectral envelopes. These are trained
in an unsupervised fashion, and can thus use large-scale databases
from many speakers. The RBMs output identically sized sets of
binary features from spectral envelope inputs. Frame-aligned
binary features from each RBM are then used as inputs to train
a fully connected mapping network, in a supervised fashion,
that effectively translates the RBM-extracted Bernoulli feature
spaces between the two speech modes. We will see that this
method reconstructs much better speech than a single DNN of
equivalent size, trained in a wholly unsupervised fashion using the
same data. It also outperforms existing GMM and RBM techniques.
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4. WSC using standard DNN: The most direct application of
DNN for WSC is a network where the input layer data is original
whisper features, and the output layer data maps to parallel
normal speech features. We implemented such a system, trained
using parallel frame-aligned spectral envelope data. To reduce the
over-smoothing of reconstructed spectra, dynamic features, and
maximum output probability parameter generation (MOPPG)
algorithms were deployed. These have been demonstrated in both
GMM and multiple RBM-based WSC tasks to be effective at
reducing over-smoothing [14].

Assume that X t = [xt , Dxt] are the static and dynamic features
of whispers, while the corresponding parallel features from
normal speech are Y t = [yt , Dyt]. When training the DNN using
error BP through minimum mean square error criteria, the objective
function for system u is

J (u) = − 1

2T

∑T
t=1

∑D
k=1

Ŷ tk (u)− Y tk

{ }2
(1)

The output layer of the DNN has D nodes, computed in a forward
layer-wise direction. During WSC, the output from time 0 to T
would be Ŷ = {Ŷt} where 1 ≤ t ≤ T . According to the MOPPG
algorithm, the converted static feature ŷ is computed as follows:

ŷ = (CTD(Y )C)−1CTD(Y )−1Ŷ (2)

where C is a transformation matrix that maps static features into
static and dynamic combined features, and Y = Cy. While D(Y )

can be estimated from

D(Y ) = S
(YY ) − S

(YX )
S
(XX )−1

S
(XY ) ≃ S

(YY )
m (3)

since the elements of covariance matrix S(YX ) are close to zero. The
DNN implementation is shown in Fig. 2.

The application of DNNs to whisper-to-speech reconstruction
can simplify the training and operating process compared with
the use of multiple RBMs [6]. However, in practise the DNNs
trained from the same data set as the GMM and multiple RBM
systems are prone to over-fitting due to insufficient training data.
This will be reflected in the results reported later in Section 8.

5. Training data: For WSC tasks, training data consists of parallel
sentences of whisper and target speech. Thus, models are trained
with the same sentences whispered as well as spoken, with the
aim of the training being to convert whispers into target speech.
Systems are speaker-dependent and trained for one user at a time
and sufficient good quality parallel whisper–speech data must be
prepared for each user, and then aligned at a frame-level.
Unfortunately, lack of training data is endemic for WSC systems,
particularly as the primary target users are patients with larynx
damage who can no longer produce normal speech on demand.
Contrast this with the fact that DNNs require a large amount of
training data in order to learn the numerous internal parameters of
deep fully interconnected layers. The apparent mismatch between
amount of training data and DNN requirements motivates the
novel semi-DNN proposed in the next section.
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6. Proposed semi-DNN: The core idea of the proposed semi-DNN
combines unsupervised and supervised training methods together
within a single composite deep network. With reference to Fig. 1,
the first stage is to train two separate Gaussian–Bernoulli RBMs
on whisper and corresponding parallel (frame-aligned) speech
features using the unsupervised CD algorithm [12]. In practise,
each RBM can model their respective feature space quite well,
mapping from Gaussian to Bernoulli space. The number of nodes
in the hidden layer is much lower than the number of nodes in
the visible layers, which effectively performs a feature coding or
information compression procedure. This aspect is crucial in
reducing the subsequent training requirements of the supervised
layer which will be added later. Coding implies that input data
can be reconstructed from the corresponding hidden data, with
the degree of reconstruction precision being dependent on both
the degree of redundancy in the training data and the
dimensionality of both layers. Assuming, as before, that X and Y
are whisper and speech spectral data (both static and dynamic
spectral envelope features) from time 1 to time T, time aligned on
a frame-by-frame basis. The hidden nodes ĥx corresponding to X
can be computed as follows:

ĥxtk =
1, P(hxtk = 1|X t , uX ) ≥ 0.5

0, P(hxtk = 1|X t , uX ) , 0.5

(
, for 1 ≤ t ≤ T (4)

where P(hxtk = 1|X t , uX ) = Ber hxtk |
�
(WT

tkX t + c)
( )

and
�
(x) =

1/(1+ exp (− x)) is the logistic function. The hidden data ĥy can
be obtained in a similar way. After ĥx and ĥy are obtained, they
are subsequently used as training data for the hidden middle
layers of the mapping DNN (the meat in the sandwich), trained in
a supervised fashion using the BP algorithm as illustrated in
Fig. 3. Finally, the resulting semi-DNN can be obtained by
stacking the two unsupervised RBMs and the middle network
together as shown on the right-hand side in Fig. 1.
This semi-supervised training method not only significantly

reduces the number of parameters that need to be trained by the
BP algorithm, but also stabilises the parameters of the middle
hidden layers compared with standard DNN training methods, in
part due to the already coded Bernoulli input which is thought to
have the effect of separating the mapping and feature extraction
functions of the network.

7. Semi-DNN training: In detail, training first involves spectral
features being extracted from corresponding whispered and
spoken utterances. Second, the features are then aligned using
dynamic time warping (DTW), since though the utterances were
spoken by the same person, there are significant timing
differences between whispering and speaking [15], and these
must be corrected to provide frame-level feature alignment. Third,
two RBMs are trained separately using normalised whisper
spectral data and normalised speech spectral data, both in an
unsupervised fashion. Fourth, the middle network in the DNN is
trained with data passed through the two RBMs. This is
supervised training. Finally, the two RBMs and middle mapping
network are concatenated together to form a complete DNN.
During WSC operation, spectral feature vectors consisting of
Fig. 3 Semi-DNN training methodology showing the two-pass training
arrangement in the shaded box to the right
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concatenated static and dynamic spectral envelope features are
extracted from whispers, input to the DNN, and an output
obtained by computing layer-wise in an upward direction with
respect to the bottom right network in Fig. 1. Finally, converted
static spectral envelopes are obtained using the MOPPG
algorithm, and the reconstructed speech is synthesised from the
static spectral envelope combined with an estimated f0 obtained
using the same method as in [6].

8. Performance evaluation: The effectiveness of the system is
evaluated for speaker-dependent WSC using both objective and
subjective criteria with results compared with a baseline GMM
system [5], the more recent RBM array structure [6], and the
direct DNN implementation from Section 4. For fairness, each
system makes use of identical pitch contour reconstruction data,
and thus the performance comparison is based on spectral feature
reconstruction fidelity.

Parallel speech and whisper data are obtained from the whisper-
TIMIT (wTIMIT) open-source whisper corpus on a per-speaker
basis. Testing data comprises 15 utterances selected randomly
from the 450 utterances of a single speaker in wTIMIT, with the
remaining 435 utterances used as a training set (∼15 min worth).
Frame size is 40 ms, with an overlap of 35 ms, and 513 log spectral
envelope parameters per frame (i.e. DC and 512 frequency bins). In
addition, 25-order mel-cepstra are simultaneously extracted from
each frame – these are used for both objective scoring as well as
for the DTW alignment (since the spectral envelope dimensionality
is so large it makes DTW almost unworkable).

The standard DNN implementation has input and output layers
with 1026 nodes comprising 513 spectral features and 513 differen-
tial features. The network contains two hidden layers of dimension
1024. When training the DNN in its supervised fine-tune stage
through the BP algorithm, the learning rate is 0.5. A weight
decay strategy is not used for this system.

During the RBM-based layer-wise pre-training, the batch size is
set to 10, with a single Gibbs sampling step, and learning rate of
0.0001. RBM training is iterated 100 times with a momentum
term of 0.5 for the first five iterations and 0.9 for the following
95 iterations.

The proposed semi-DNN input and output layers have identical
dimensions to the standard DNN system, namely 1026. It comprises
three hidden layers with dimensions of 1024, 512, and 1024. This
has been chosen to ensure that the number of trainable parameters
in the proposed semi-DNN match those of the standard DNN.
Additionally, the training configuration for the two RBMs and
middle mapping network in the semi-DNN is exactly the same as
that used in the standard DNN. Thus the training data, training set-
tings, number of training parameters, and feature dimensionality is
the same between the two systems. Any difference in performance
is thus achieved solely by the novel mapping structure and partially
supervised training that this structure makes possible.

The detailed configuration of the GMM and multiple RBM array
WSC systems used for comparison are as described in [6], but in
this case will use the same training and evaluation data set as the
DNNs above.

In the subjective and objective evaluations that follow, there are
thus six possible items of comparison: input whispers, correspond-
ing speech, and reconstructed speech from GMM, RBM, DNN, and
semi-DNN. Each of these six can thus be compared for all
utterances.

Subjective evaluation: Six naive student volunteers with normal
hearing participated in binary preference listening tests to evaluate
the four WSC models. In each sitting, every listener was presented
with a set of randomly sequenced pairs of recordings and asked to
state their preference between the two recordings, or to indicate ‘no
preference’. The recordings were sentences reconstructed from the
four systems under evaluation. Four binary tests conducted in this
way per sentence can, therefore, subjectively discriminate
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Fig. 4 Mean objective performance scores obtained from symmetrical IS
distance measure, segmental SNR, and LLR

Fig. 5 Comparison of the spectral envelope shape of each method for a
short section of voiced speech
between each of the four models. This was repeated for all evalu-
ation sentences for each listener.

Objective evaluation: For objective scoring, cepstral distortion is
used to evaluate the spectral distance between whispers, the con-
verted speech from different models, and the parallel normal
speech. The DTW algorithm is used to align 25-order mel-cepstra
of source speech and target speech, and hence provide a frame-level
alignment for parallel comparison. During testing, the mel-cepstra
of reconstructed speech from the RBM, standard DNN and pro-
posed semi-DNN models were generated directly from the recon-
structed spectral envelope output.

To explore further, three other objective methods were also
applied; symmetrical Itakura–Saito (IS) distance (i.e. the average
IS distance in both directions), log-likelihood ratio (LLR), and seg-
mental SNR [15]. These were computed between each of the
DTW-aligned reconstructed outputs from the four models plus
the whisper input, and the corresponding speech recording.

9. Results: The subjective evaluation results are reported in
Table 1. Each row records the mean two-way preference of the
six listeners on each of 15 utterances. Each column identifies the
proportion of preferences reported for a particular WSC method,
apart from the last column which indicates where listeners were
unable or unwilling to express a preference.

Beginning with the top of the table, the first three rows indicate a
very significant preference for the proposed semi-DNN over either
GMM, DNN, or multiple RBMs. In particular, comparing rows 1
and 4 the preference for GMM is reduced from 43 to 13%
through the adoption of the novel semi-supervised training architec-
ture. This result very clearly demonstrates the effectiveness of the
proposed technique.

Cepstral distortion scores, reported in Table 2, indicate that all
four models improve on the correspondence of the whisper input
to matching speech in a spectral distance sense. However, the
semi-DNN and RBM models do not score as well as the GMM
and DNN reconstructions, in marked contrast to the subjective
results. This matches the findings of the RBM-GMM evaluation
in [6] and highlights a difference between objective and subjective
evaluations. To explore further, Fig. 4 plots the mean IS, LLR, and
segmental SNR scores – these are objective measures of the similar-
ity of the given signal to the corresponding speech (smaller
meaning more similar). Apart from segmental SNR, all methods
improve on the whispers, with the proposed semi-DNNmethod per-
forming well in each evaluation.

10. Further analysis: To provide additional insight into these
systems, Fig. 5 plots the linear predictive coefficients-derived
spectral envelope for an example utterance (0.5 s of voiced
speech and the corresponding time-aligned sections from the
whisper and reconstructed outputs).
Table 1 Results of the four binary subjective evaluation tests

GMM RBM DNN Semi-DNN No preference

13.3 — — 70.0 16.7
— — 3.3 77.8 18.9
— 13.3 — 43.3 43.3
43.3 — 32.2 — 24.4

Table 2 Cepstral distortion measure

Whispers GMM RBM DNN Semi-DNN

mean 8.45 5.37 6.43 5.76 6.06
Standard 4.3 2.61 2.89 2.68 2.62
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All models have significantly transformed the whisper spectrum
(background shading) to become much more similar to that of the
corresponding voiced speech (thick dark line). Assuming that the
spectral peaks represent formants, then formant location and ampli-
tude of the reconstructed output closely follows that of the speech.
The semi-DNN output is arguably slightly closer than the other
methods (apart from the peak at about 2.5 kHz which the RBM
method matches more closely).

A different utterance is explored in Fig. 6, with spectrograms of
each of the six signals plotted for comparison. The different time-
scale on the speech spectrum is needed to align it to the whisper
and reconstructed speech which are of a different duration. Note
the finely detailed formant tracks throughout the recording, and
the improved contrast of the semi-DNN formant spectra.

11. Conclusion and future work: This Letter has proposed a new
method of constructing a DNN for performing statistical WSC. This
has been compared and evaluated against a direct standard DNN
implementation, as well as against state-of-the-art GMM and
RBM methods, demonstrating excellent performance for both
subjective and objective criteria. However, the major benefit of
the system is that, for the first time, it enables partially supervised
training of a statistical WSC DNN system. This is important for
enabling future healthcare implementations. Having already
suffered voice-loss, patients are unable to record the extensive
and high-quality parallel speech and whisper utterance databases
required for DNN, GMM, and RBM training. The proposed
semi-DNN system still requires parallel training data, but only
needs enough to train a single mapping network, rather than an
entire system. The high-dimensional feature coding input and
output layers can be trained using different material that is not
Healthcare Technology Letters, 2017, Vol. 4, Iss. 4, pp. 129–133
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Fig. 6 Spectrogram plots of
a Original whispers, speech reconstructed using
b GMM
c DNN
d RBM
e Semi- DNN methods
f Matching speech aligned below
speaker specific. This helps to unlock the potential of high-quality
DNN methods for future practical WSC systems.
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