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Summary 
The hematopoietic cell kinase (hck) is a member of the src family of tyrosine kinases, and is 
primarily expressed in myeloid cells. Hck expression increases with terminal differentiation in 
both monocyte/macrophages and granulocytes and is further augmented during macrophage 
activation. Recent evidence has implicated src-related tyrosine kinases in critical signaling pathways 
in other hematopoietic lineages. Herein we demonstrate that manipulation of the level of hck 
expression in the murine macrophage cell line BAC1.2F5 alters the responsiveness of these cells 
to activation by bacterial lipopolysaccharide (LPS) but does not affect survival or proliferation. 
Overexpression of an activated mutant of hck in BAC1.2F5 cells augments tumor necrosis factor 
(TNF) production in response to LPS, whereas inhibition of endogenous hck expression, by antisense 
oligonucleotides, interferes with LPS-mediated TNF synthesis. Together, these observations suggest 
that hck is an important component of the signal transduction pathways in activated macrophages. 

E xposure of monocytes and macrophages to bacterial LPS 
triggers a series of biochemical and functional changes 

including the activation of protein kinase C (1), tyrosine phos- 
phorylation of several proteins (2), production of reactive ox- 
ygen metabolites (3), and production and secretion of cytokines 
with critical roles in host defense (1, 4, 5). TNF is an impor- 
tant monokine with pleiotropic effects on the host inflam- 
matory response, including the induction of fever, direct an- 
tiviral and antitumor activity, and augmentation of monocyte, 
granulocyte, and lymphocyte function (for a review see refer- 
ence 5). 

Expression of the hematopoietic cell kinase (hck) 1 tyro- 
sine kinase is essentially limited to cells of monocyte/macro- 
phage and granulocyte lineages (6-9), increases with differen- 
tiation along either the macrophage or granulocyte pathways 
(7, 10, 11), and is further augmented by activation stimuli 
including LPS in mature monocytes and macrophages (9, 10, 
12). This pattern of expression suggested a potential role for 
hck in the terminal differentiation of macrophages and/or in 
the activation pathways of mature monocytes and macro- 
phages. Several lines of evidence support a role for other 
members of the src family of kinases in signal transduction 
pathways of lymphocytes, mast cells, and basophils (13-23). 

To study the possible role of hck in macrophage activation 

1 Abbreviations used in this paper: hck, hematopoietic cell kinase; LCM, L 
cell conditioned medium. 

and cytokine gene expression, we have manipulated the level 
of expression of hck in the murine macrophage cell line, 
BAC1.2F5. BAC1.2F5 cells require CSF-1 or GM-CSF for 
maintenance of viability and proliferation, grow as an ad- 
herent monolayer, and morphologically resemble normal mac- 
rophages (24-26). These cells express Ia antigen, possess Fc 
receptors, engage in Fc receptor-mediated phagocytosis, and 
produce cytokines in response to LPS (24-26). In this report, 
we show that BAC1.2F5 cells express hck mKNA, protein 
and kinase activity, and that hck expression and kinase ac- 
tivity are augmented by activation stimuli (e.g., LPS) and 
by growth factors (e.g., CSF-1 and GM-CSF). Furthermore, 
we demonstrate that manipulation of the level of hck kinase 
activity in BAC1.2F5 cells alters the response of these cells 
to LPS but does not affect viability or proliferation. Inhibi- 
tion of endogenous hck expression, with antisense oligonu- 
cleotides, leads to diminished LPS-mediated TNF produc- 
tion in BAC1.2F5 cells, whereas constitutive expression of 
an activated mutant of hck (p59 hckrS~ in BAC1.2F5 cells 
augments TNF production in response to LPS. 

Materials and Methods 
Materials. DMEM, t-glutamine, penicillin, streptomycin, G418 

(Geneticin), and herbimycin A were purchased from GIBCO (Grand 
Island, NY). FCS was obtained from HyClone Laboratories, Inc. 
(Logan, UT). LPS purified from Escherichia coli strain 0111:B4 was 
purchased from Sigma Chemical Co. (St. Louis, MO). L cell con- 
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ditioned medium (LCM) was prepared as described by Stanley and 
Heard (27) and was used as the source of CSF-1 for routine growth 
and maintenance of the BAC1.2F5 cell line and subclones. Recom- 
binant human CSF-1 was obtained from the Genetics Institute 
(Cambridge, MA) and recombinant murine GM-CSF was obtained 
from Amgen, Inc. (Thousand Oaks, CA). 

Cells and Cell Culture. BAC1.2F5 cells were obtained from 
Charles Sherr (St. Jude Children's Research Hospital) and were rou- 
tinely cultured in DMEM supplemented with 15% FCS, 25% LCM 
as a source of CSF-1, 2 mM t-glutamine, 20 mM Hepes (pH 7.3), 
50 U ml-* peniciUin G, and 50 #g ml-t streptomycin. 

Retrovirus Production and Infection of BAC1.2F5 Cells. LNSL7- 
based vectors (28) expressing cDNAs encoding wild-type, activated 
(p59 h'~rs~ and kinase-negative (p59 ~kE269) forms of hck have been 
previously described (29). These vectors were introduced into the 
ecotropic retroviral packaging cell line Psi-2 (30) by calcium chlo- 
ride transfection. Psi-2 cells expressing the constructs were selected 
by growth in G418 400 #g ml-1 (active drug), and supernatants 
from LNSL7-expressing Psi-2 cells were used to infect BAC1.2F5 
cells. BAC1.2F5 clones expressing LNSL7-based constructs were 
isolated by the use of cloning cylinders in the presence of G418 
400/zg ml-2. 

Antisense Oligonucleotides. Phosphorothioated 21-met oligonu- 
cleotides corresponding to the seven codons immediately down- 
stream from the AUG translational initiation site of the routine 
hck gene (8) were purchased from SyntheceU Corp. (Rockville, MD). 
The antisense oligonucleotide sequence was (5'-GAACCTGGA- 
CTTCACGCATCC-Y). The sense (control) oligonucleotide se- 
quence was (5'-GGATGCGTGAAGTCCAGGTTC-Y). 

RNA Isolation and Northern Blot Analysis. Total cellular RNA 
was isolated from BAC1.2F5 cells by the guanidinium isothio- 
cyanate/cesium chloride method and quantitated spectrophotometri- 
call), as described (31). For blots, 20 #g RNA was electrophoresed 
on 2.2 M formaldehyde, 1% agarose gds, transferred to Nytran 
membranes, UV irradiated, and baked, as described (32). Blots were 
hybridized overnight with 106 dpm ml-t of 32p-labeled murine or 
human hck cDNA probes or a routine TNF cDNA probe, washed 
twice with 3x SSC, 0,1% SDS, and twice with 0.2x SSC, 0.1% 
SDS at 42~ then autoradiographed at -70~ in the presence 
of two enhancing screens. 

Immunoblotting and Immunoprecipitations. For Western blotting 
and immunoprecipitations, cells were lysed in extraction buffer (20 
mM "Iris, 100 mM NaC1, 1% Triton X-100, 50 mM NaF, 1 mM 
Na3VO4, 0.2 mM PMSF, 10 #g m1-1 leupeptin, and 10 #g m1-1 
aprotinin). For immunoblotting, lysates were electrophoresed on 
7.5% SDS-polyacrylamide gels, transferred to nitrocellulose mem- 
branes, and reacted with rabbit polyclonal antisera raised against 
an hck-TrpE fusion protein (9). Blots were reacted with a donkey 
anti-rabbit IgG horseradish peroxidase conjugate (Amersham Corp., 
Arlington Heights, IL), and proteins were detected by enhanced 
chemiluminescence (Amersham Corp.). For immunoprecipitations, 
lysates were incubated with anti-hck rabbit polyclonal antiserum, 
and the immunocomplexes were collected with protein A-agarose 
(Bethesda Research Laboratories, Gaithersburg, MD) and analyzed 
by SDS-PAGE. 

In Vitro Kinase Assays. For in vitro kinase assays, PBS-washed 
cells were lysed in 2% NP-40 and TEN (50 mM Tris-HC1, pH 
7.4, 1 mM EDTA, 0.15 M NaC1). Lysates were incubated with 
the rabbit polyclonal anti-hck antiserum and immunocomplexes were 
collected with protein A-agarose. Immunoprecipitated proteins were 
suspended in 10 #1 kinase buffer (containing 50 ram Pipes, pH 
7.0, 1 mM MnC1, 1 mM Na3VO4, and 10 #Ci of'y-[32p]ATP) and 
incubated at room temperature for 20 rain as described (33). In 

some experiments, denatured rabbit muscle enolase was added as 
an exogenous substrate, as described (34). Products of the kinase 
reactions were analyzed by SDS-PAGE. 

Determination of TNF Concentrations. TNF protein levels were 
measured with a solid-phase sandwich ELISA specific for murine 
TNF-c~, as specified by the manufacturer (Genzyme Corp., Cam- 
bridge, MA). 

Phosphoamino Acid Analysis. 32p-labeled protein bands were ex- 
cised from polyacrylamide gels, rehydrated, digested with trypsin, 
lyophilized, hydrolyzed in 0.5 ml 6N HC1 for 1 h at 110~ and 
subjected to two-dimensional thin-layer chromatography in the pres- 
ence of cold phosphoserine, phosphothreonine, and phosphotyro- 
sine in pH 1.9 buffer, then autoradiographed at -70~ as described 
(35, 36). Markers were visualized with ninhydrin after autoradi- 
ography. 

Results and Discussion 

BAC1.2F5 cells express hck m K N A  (Fig. 1 a), immunoreac- 
tive p59 hc~ protein (Fig. 2 a), and hck kinase activity (Fig. 
2, b and c). Hck m R N A  levels increase three- to sixfold within 
1-4 h of exposure of quiescent BAC1.2F5 cells to growth 
factors (CSF-1 and GM=CSF) and activating stimuli including 
LPS (Fig. 1 a); hck protein expression parallels the accumula- 
tion of hck m K N A  (Fig. 2 a). The upregulation of hck ex- 
pression by growth factors and LPS in BAC1.2F5 cells is similar 
to that reported in human monocyte-derived macrophages 
(9) and murine bone marrow-derived monocytes and mac- 
rophages (10, 12). 

Exposure of quiescent BAC1.2F5 cells to CSF-1, LPS (Fig. 
2, b and c), and GM-CSF (data not shown) also promptly 
augments hck kinase activity, as measured both by autophos- 
phorylation kinase reactions (Fig. 2 b) and trans-phosphory- 
lation reactions with denatured rabbit muscle enolase serving 
as a substrate (Fig. 2 c). At optimal concentrations of CSF-1 
and LPS, the kinetics of induction of augmented hck kinase 
activity by these stimuli are very similar (Fig. 3), with some 
increase in kinase activity observed as early as 5 min after 
stimulation and maximal kinase activity detected by 10-20 

Figure 1. Northern blot analysis of hck mRNA expression in BAC1.2F5 
parental cells and transfected cell lines. (a) BAC1.2F5 cells were incubated 
for 16 h in the absence of growth factors, then exposed to medium alone 
(lane 1) or medium plus rHuCSF-1 100 pg ml -I (lane 2), rMuGM-CSF 
100 pg ml- ~ (lane 3), or LPS 1 #g ml- ~ (lane 4) for 4 h. (b) BAC1.2F5 
cells (lane 5) and subclones expressing the LNSL7 vector alone (lane 6), 
LNSL7-Huhck ~9 (lane 7), LNSL7-Huhck rs~ (lane 8), and LNSL7- 
Muhck Fs~ (lane 9) were grown to confluence in medium containing LCM 
(27) as a source of CSF-1. Total RNA was isolated from the indicated 
cells and analyzed by Northern blotting with human (lanes 7 and 8) and 
murine (lanes 5, 6, and 9) hck cDNA probes. 
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Figure 3. Augmented tick kinase activity in BAC1.2F5 cells stimulated 
with rCSF-1 or LPS. BAC1.F5 cells were incubated overnight in the ab- 
sence of growth factors, then exposed to medium alone (lane I), rCSF-1 
100 pg ml-1 for 5 rain (lane 2), 10 min (lane 3), or 20 min (lane 4); or 
LPS 1 #g ml-1 for 5 rain (lane 5), 10 min (lane 6), or 20 min (lane 7). 
Lysates were prepared and subjected to immunoprecipitation with a rabbit 
polyclonal anti-tick antiserum. Autophosphorylation in vitro kinase assays 
were performed on the immunoprecipitates, and reaction products were 
analyzed by SDS-PAGE, as described in Materials and Methods. 

Figure 2. Expression of hck proteins and kinase activities by BAC1.2F5 
cells and transfected cell lines. (a) Immunoblot of whole cell lysates from 
BAC1.2F5 cells and subclones. BAC1.2F5 parental cells were incubated 
overnight in the absence of growth factors, then exposed to medium alone 
(lane I), rCSF-1 100 pg m1-1 (lane 2), or LPS 1 #g m1-1 (lane 3) for 
16 h. BAC1.2F5 subclones expressing LNSL7 vector alone (lane 4), human 
kinase-negative p59 hd'E:69 (lane 5), human activated p59 h'~FS~ (lane 6), or 
routine activated p59 h'~rs~ (lane 7) were cultured in medium containing 
LCM (27) as a source of CSF-1. Lysates were prepared and analyzed by 
immunoblotting with a rabbit polyclonal anti-hck antiserum. (b) In vitro 
kinase activity of tick proteins in BAC1.2F5 cells and subclones: autophos- 
phorylation reactions. Kinase activities of hck proteins immunoprecipi- 
tared with anti-tick antisera from BAC1.2F5 cells incubated overnight in 
the absence of growth factors, then exposed to medium alone (lane 1), 
rCSF-1 100 pg ml- 1 (lane 2), or LPS 1 #g ml- 1 (lane 3) for 10 rain, and 
from BAC1.2F5 subclones expressing vector alone (lane 4), human 
p59 h,kE~9 (lane 5), human p59 ~'c~rs~ (lane 6), and murine p59h~krs01 (lane 
7). Cells were lysed and in vitro kinase assays performed as described in 
Materials and Methods. (c) Trans-phosphorylation kinase activity of hck 
proteins in BAC1.2F5 cells and subclones. Kinase activities of tick proteins 
immunoprecipitated from BAC1.2F5 cells incubated overnight in the ab- 
sence of growth factors, then exposed to medium alone (lane I), rCSF-1 
100 pg ml-a (lane 2), or LPS 1 #g ml-1 (lane 3) for 10 rain, and from 
BAC1.2F5 subclones expressing vector alone (lane 4), human p59 ~kEz69 
(lane 5), human p59 h'~rs~ (lane 6), and murine p59 h,~rs~ (lane 7). Cells 
were lysed and kinase assays performed in the presence of denatured rabbit 
muscle enolase as described in Materials and Methods. 

Figure 4. Phosphoamino acid analysis of 
rabbit muscle enolase after incubation with 
anti-tick immunoprecipitate from BAC1.2F5 
cells. BAC1.2F5 cells were incubated over- 
night in the absence of growth factors, then 
stimulated for 10 min with LPS 1 ~g ml - 1. 
Cells were lysed, lysates subjected to immu- 
noprecipitation with a rabbit polyclonal an- 
tiserum specific for tick, immunoprecipitates 
collected with protein A-agarose, and a t~ans- 
phosphorylation in vitro kinase assay was per- 
formed in the presence of exogenous dena- 
tured rabbit muscle enolase, as described in 
Materials and Methods. The band corre- 
sponding to rabbit muscle enolase ('~45 kD) 
was cut out of the gel, solubilized, reacted 
with trypsin, and analyzed by thin-layer chro- 
matography to determine the content ofphos- 
photyrosine (Y), phosphoserine (S), and 
phosphothreonine (T), as described in Ma- 
terials and Methods. 

min after stimulation. Phosphoamino acid analysis confirmed 
that this in vitro kinase activity resulted in phosphorylation 
of enolase exclusively on tyrosine residues (Fig. 4). LPS and 
IFN-3'  have also been reported to provoke increased hck ki- 
nase activity in murine bone marrow-derived macrophages 
(12), but  the effect was noted only after more than 6 h of  
stimulation and may have primarily reflected increased steady- 
state levels of  p59 hck protein, rather than augmented kinase 
activity per se. 

Unstimulated BAC1.2F5 cells contain little or no T N F  
m K N A  (Fig. 5 a) and do not secrete detectable amounts of 
T N F  protein (data not shown). In response to LPS (but not 
CSF-1 or GM-CSF; data not shown), BAC1.2F5 cells accumu- 
late large amounts of  T N F  m l ~ N A  and secrete T N F  protein 
(Fig. 5). 

To determine if p59 h~ was an important  signaling mole- 
cule in activated macrophages, we employed complementary 
strategies to modulate hck kinase activity in BAC1.2F5 cells. 
First, we used retroviral constructs to overexpress a mutant  
form of  human and routine hck with increased kinase activity 
(p59 h'~Fs~ YS01-F501) (29) in BAC1.2F5 cells. Cells ex- 
pressing vector alone (LNSL7) or a kinase-defective mutant  
of  human hck (p59 ~E269, K269-E269) were used as controls. 
Second, we used antisense oligonucleotides specific for mu- 
fine hck to inhibit endogenous p59 ~'~ expression in BAC1.2F5 
cells. We also examined the effect of  an inhibitor of tyrosine 
kinase activity, herbimycin A, on the activation requirements 
of  these cells. 

Activated p59 ~kFs~ and kinase-negative p59 h'kE269 mutants 
(29) of  hck were expressed in BAC1.2F5 cells by infecting 
the cells wi th  retroviral stocks produced by introduction of 
LNSL7-hck constructs (28, 29) into the Psi-2 retroviral pack- 
aging cell line (30). Clones were selected in G418 and screened 
for expression of  hck mlLNA (Fig. 1 b), protein (Fig. 2 a), 
and kinase activity (Fig. 2, b and c). BAC1.2F5 subclones 
expressing either human or murine p59 h'kFs~ or human 
p59 *~kr269 were morphologically similar to parental cells and 
cells expressing vector alone and continued to require CSF-1 
for proliferation and survival. BAC1.2F5 parental cells and 
hck-expressing subclones also exhibited similar surface marker 
phenotypes. All expressed Lyl, Mac1, and Mac2 surface an- 
tigens and were negative for Ly2 and Mac3 expression (data 
not shown). However, in response to LPS, BAC1.2F5 clones 
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Figure 5. Augmented production of TNF mRNA and protein by 
BAC1.2F5 cells and subclones expressing p59 h*kF501. (a) Northern blot 
analysis of TNF mRNA accumulation by BAC1.2F5 cells and subclones: 
unstimulated, lanes 1-4; after exposure to LPS 100 ng m1-1 (lanes 5-8) 
or LPS 500 ng ml-1 (lanes 9-12) for 4 h. RNA was isolated from un- 
stimulated BAC1.2F5 cells (lane I) and subclones expressing human ki- 
nase-defective p59 h'~2~9 (lane 2), human activated p59~kF501 (lane 3), and 
murine activated p59 h'~Fs01 (lane 4); and after LPS stimulation of 
BAC1.2F5 cells (lane 5) and subclones expressing vector alone (lane 6), 
human kinase-defective p59 hckE269 (lanes 9 and 10), human activated 
p59 ~kFs~ (lanes 7, 11, and 12), and murine activated p59 ~kr501 (lane 8). 
Total RNA was isolated from the indicated cells and analyzed by Northern 
blotting with a murine TNF cDNA probe. (b) TNF secretion by BAC1.2F5 
cells and subclones expressing vector alone (LNSL7), human kinase-nega- 
tive p59 h'kE269, and human activated kinase, p59 hCkFs01. Cells were cultured 
in 6-well tissue culture plates in medium containing LCM as a source of 
CSF-1, and were exposed to LPS 1 #g ml-1 for 16 h. Supernatants were 
collected and stored at - 70~ until analysis. TNF protein levels were de- 
termined by use of a solid-phase sandwich ELISA (Genzyme Corp.). Data 
represent means of three experiments _+SD. 

expressing either human  or murine  p59 hckFs~ accumulated 
5-20-fold more  T N F  m K N A  (Fig. 5 a) and secreted two-  
to four-fold more  T N F  protein (Fig. 5 b) than did parental 
cells, clones expressing vector alone (LNSL7),  or clones ex- 
pressing human kinase-defective p59 ~'kE269. In the absence of  
LPS, BAC1.2F5 clones expressing p59 ~kFs~ accumulated ap- 
preciable T N F  m R N A  (Fig. 5 a) but  produced little or no 
immunoreact ive T N F  (data not  shown).  

In parallel experiments, we employed antisense ol igonu- 
cleotides to study the effects of  inhibiting endogenous p59 hck 
expression in BAC1.2F5 cells. BAC1.2F5 cells were exposed 
to either sense or  antisense hck oligonucleotides at concen- 
trations varying f rom 1-30 # M  for intervals ranging from 
24 h to 4 wk.  Exposure of  BAC1.2F5 cells to hck antisense 
oligonucleotides for 72 h resulted in a significant reduction 
( two- to five-fold) in the expression of  p59 hck protein (Fig. 
6 a) and kinase activity, as measured by autophosphoryla t ion 
(Fig. 6 b) and trans-phosphorylat ion (Fig. 6 c) kinase assays, 
whereas exposure of  the cells to the sense control  oligonucle- 
otide had no effect. 

BAC1.2F5 cells exposed to hck antisense oligonucleotides 

Figure 6. lick antisense oligonucleotides reduce hck protein expression 
and inhibit TNF production by BAC1.2F5 cells. (a) Immunoblot of ly- 
sates from BAC1.2F5 cells exposed to medium alone (lane 1), medium 
with 10 #M hck sense oligonucleotide control (lane 2), or 10 #M hck an- 
tisense oligonucleotide (lane 3) for 72 h. Lysates were prepared, subjected 
to SDS-PAGE, transferred to nitrocellulose, and analyzed by immunoblot- 
ting with rabbit polyclonal anti-hck antisera. (b) Determination of hck au- 
tophosphorylation kinase activity in BAC1.2F5 cells incubated in medium 
alone (lane I), medium with 10 #M hck sense oligonucleotide (lane 2), 
or 10 #M hck antisense oligonucleotide (lane 3) for 72 h, then exposed 
to LPS 100 ng ml-1 for 10 min. Lysates were prepared and in vitro ki- 
nase assays were performed as described in Materials and Methods. (c) De- 
termination of hck trans-phosphorylation kinase activity in BAC1.2F5 cells 
incubated in medium alone (lane I), medium with 10/xM hck sense oligo- 
nucleotide (lane 2), or 10 #M hck antisense oligonucleotide (lane 3) for 
72 h, then exposed to LPS 100 ng ml-1 for 10 min. Lysates were pre- 
pared and trans-phosphorylation kinase assays performed with denatured 
rabbit muscle enolase as a substrate, as described in Materials and Methods. 
(d) TNF secretion by Bacl.2F5 cells exposed to hck-specific oligonucleo- 
tides. Bacl.2F5 cells were cultured in 6-well plates for 72 h in the presence 
of medium alone (with LCM as a source of CSF-1) or in the presence 
of 10 #M concentrations of sense or antisense hck oligonucleotides, then 
exposed to LPS 250 ng ml- 1 (solid bars) or LPS 1 #g ml- 1 (open bars) for 
16 h. Supernatants were collected and frozen at -70~ until analyzed. 
TNF concentrations were quantitated by use of a solid-phase antibody 
sandwich ELISA. Data represent means of three experiments _+SD. 

accumulated significantly less T N F  m R N A  (25-50% of  con- 
trol, data not  shown) and produced significantly less T N F  
protein (30-35% of  control ,  Fig. 6 d) in response to LPS 
than did untreated cells or  cells exposed to an equimolar con- 
centration of  the sense oligonucleotide control.  In parallel 
experiments, exposure of  BAC1.2F5 cells to sense or  antisense 
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Herbimycin A inhibits TNF production by BAC1.2F5 cells 
and subclones expressing p59 h'kFs~ BAC1.2F5 cells and subdones ex- 
pressing human p59 ~kFs~ were exposed to herbimycin A at the indicated 
concentrations for 4 h, then stimulated with LPS 250 ng ml- 1 for 16 h. 
Supernatants were collected and stored at -70~ until analyzed. TNF 
concentrations were quantitated by use of a solid-phase antibody sand- 
wich ELISA. 

oligonudeotides corresponding to the analogous seven codons 
of murine lira kinase (33) had no effect on TNF production 
by BAC1.2F5 cells, which also express p56tr" (data not 
shown). Proliferation of BAC1.2F5 cells in response to CSF-1 
was not affected by exposure to hck sense or antisense oligo- 
nucleotides (data not shown). 

The effect of hck antisense oligonucleotides on TNF produc- 

tion by BAC1.2F5 cells was comparable with that observed 
with preincubation of these cells with the tyrosine kinase 
inhibitor herbimycin A. Pretreatment of BAC1.2F5 parental 
cells and subclones overexpressing p59 ~kFs~ with herbimycin 
A inhibited LPS-stimulated TNF production by these cells 
in a dose-dependent manner, leading to a maximal four- to 
five-fold reduction in TNF secretion at optimal concentra- 
tions (Fig. 7). Weinstein, et al. (2), have reported that her- 
bimycin A blocks the LPS-stimulated release of arachidonic 
acid metabolites in the murine RAW 264.7 macrophage cell 
line, and herbimycin A also inhibits LPS-induced TNF produc- 
tion by human alveolar macrophages (Beatty, C., and C. B. 
Wilson, personal communication). 

These experiments provide the first direct evidence for a 
functional role for the hck tyrosine kinase and suggest that 
p59 hck is an integral component of the signaling pathways 
involved in macrophage activation and TNF production. 
Whereas other stimuli (e.g., CSF-1 and GM-CSF) also up- 
regulate hcle expression and kinase activity, the results of our 
experimental manipulation of hck expression in BAC1.2F5 
cells suggest that p59 ~ does not play a critical role in the 
mitogenic responses to those stimuli. An improved under- 
standing of the role of p59 hc~ in macrophage signaling 
pathways will require identification of associated cell surface 
molecules and substrates of the hck kinase. 
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