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The Alpine ibex (Capra ibex) gut
microbiome, seasonal dynamics, and potential
application in lignocellulose bioconversion

Enrico Nanetti,1,10 Daniel Scicchitano,1,2,10 Giorgia Palladino,1,2 Nicolò Interino,3 Luca Corlatti,4,5 Luca Pedrotti,4

Federica Zanetti,6 Elena Pagani,6 Erika Esposito,3 Alice Brambilla,7,8 Stefano Grignolio,9 Ilaria Marotti,6

Silvia Turroni,1 Jessica Fiori,3 Simone Rampelli,1,2 and Marco Candela1,2,11,*
SUMMARY

Aiming to shed light on the biology of wild ruminants, we investigated the gut microbiome seasonal dy-
namics of the Alpine ibex (Capra ibex) from the Central Italian Alps. Feces were collected in spring, sum-
mer, and autumn during non-invasive sampling campaigns. Samples were analyzed by 16S rRNA amplicon
sequencing, shotgun metagenomics, as well as targeted and untargeted metabolomics. Our findings re-
vealed season-specific compositional and functional profiles of the ibex gut microbiome that may allow
the host to adapt to seasonal changes in available forage, by fine-tuning the holobiont catabolic layout
to fully exploit the available food. Besides confirming the importance of the host-associated microbiome
in providing the phenotypic plasticity needed to buffer dietary changes, we obtained species-level
genome bins and identified minimal gut microbiome community modules of 11–14 interacting strains as
a possible microbiome-based solution for the bioconversion of lignocellulose to high-value compounds,
such as volatile fatty acids.

INTRODUCTION

The gut microbiome is utterly recognized as a key element for host physiology, being involved in vital processes such as digestion, immunity,

and protection.1–3 Herbivorous mammals harbor complex and dynamic microbial communities in their guts, and ruminants are among the

most studied animals for gut microbiome structure, dynamics, and functions.4–6 Indeed, ruminants rely on gut symbionts (mainly bacteria,

fungi, and protists) to break down the complex biopolymers of plant cell walls and extract energy from these dietary sources, making

them an excellent model for investigating diet-host-microbiome relationships and dependencies.5,7–9 However, while the cattle microbiome

has been extensively studied10–12—also due to their high economic importance and role in the current global change scenario—less is known

about the structure and function of microbiomes associated with wild ruminants, weakening our understanding of the full diversity and

complexity of the ruminant gut microbiome and its importance in animal biology.7,9,13 Also, wild ruminants consume a more complex and

diverse diet than their domesticated relatives and are also more tolerant to roughage and lignin.14,15 This makes their gut microbiome a

possible, yet untapped, source of a diverse and undiscovered array of enzymes and taxa as a valuable natural reservoir of functionalities

for the efficient digestion and valorization of lignocellulosic (LC) substrates.16,17

Recent research has suggested the importance of wild ruminants’ gut microbiomes in cooperating with their hosts to cope with their com-

plex and diverse wild plant-based diet.8,9,15,18 However, studies were based on 16S rRNA amplicon sequencing, making it difficult to mech-

anistically understand the functional role of the gut microbiome in the adaptation to seasonal dietary shifts.

To shed light on this and to explore the potential of the ibex gut microbiome for industrial LC bioconversion processes, we collected fresh

fecal samples from 86 wild individuals of Alpine ibex (Capra ibex). Fecal samples were chosen since they are recognized as a good (and non-

invasive) proxy for microbial diversity across the ruminant digestive tract,19 being possibly enriched in functionalities for degrading the most
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recalcitrant and indigestible portion of the plant food, as it is not completely processed in the foregut. Among large ruminant mammals, the

Alpine ibex is the species using areas located at the highest elevations20 of the Alps, where seasonality is pronounced, with a long winter

season and low availability of forage that alternates with a late spring-summer seasonwith high availability of good-quality forage. As a result,

spatial behavior and habitat selection clearly vary among the seasons, as well as diet.21–23 This makes the Alpine ibex an excellent case study

for investigating the responses of the microbiome to the seasonality of trophic resources, including roughage or available trees and bushes,

whichwould require the selection of specialized gutmicrobiome components for the digestion ofmore recalcitrant plant foods. Samplingwas

performed across 3 different seasons, namely spring (June 2020), summer (August 2020), and fall (October 2020), at the Stelvio National Park,

Lombardia (Italy). Samples were collected from animals of approximately the same age, sampled non-invasively by actively searching for an-

imals over 2–3 days andwaiting for fecal deposition. Samples were then analyzed bymultiomics (i.e., 16S rRNA amplicon sequencing, shotgun

metagenomics, and metabolomics), in an attempt to map the compositional and functional shifts of the ibex gut microbiome in response to

seasonal vegetation changes from spring to fall. Our results showed well-defined seasonal dynamics of the Alpine ibex gut microbiome, with

communitymodules, taxa, functions, andmetabolites characterized by clear seasonal patterns.While providing someglimpses on the impor-

tance of the gut microbiome for the ibex biology, we discovered new microorganisms and community modules as potential candidates for

biotechnological processes of LC bioconversion and valorization.
RESULTS

Seasonal variation in the compositional structure of the Alpine ibex gut microbiome

A total of 86 Alpine ibex feces, 17 soil, and 8 grass samples were collected from two different sites (i.e., ‘‘Passo del Gavia’’ and ‘‘Valle del Brau-

lio’’) at Stelvio National Park, Lombardia (Italy), in June, August, and October 2020 (see Figure S1 for sampling coordinates and normalized

difference vegetation index of the sampling area for each sampling season). In particular, we collected approximately the same number of

ibex samples from each site and season to obtain a comparable subset of animal data for the three selected seasons (see Table S1 for sam-

pling details). The vegetation map of sampling sites highlighted that the majority of species grouped into the Magnoliophyta division,

whereas the remaining species belonged to the Pinophyta division. Based on Raunkiaer’s classification, plants occurred mostly as hemicryp-

tophytes (48%), followed by chamaephytes (7%), phanerophytes (5%), geophytes (5%), and therophytes (2%). Snow on the ground (cm) from

1992 to 2020 is provided in Figure S2, and 2019–2020 showed one of the highest records in the period of observation.

For microbiome analysis, we performed bacterial metabarcoding (i.e., 16S rRNA gene sequencing of the V3-V4 hypervariable regions),

shotgun metagenomics, and metabolomics. First, a Bray-Curtis-based principal coordinates analysis (PCoA) of the 16S rRNA gene-based

taxonomic composition of the entire set of 111 samples (ibex, soil, and grass) was performed. Data revealed three distinct clusters matching

the three ecosystem types (permutation test with pseudo-F ratio, p = 0.001), with the soil microbiome showing the highest alpha diversity,

followed by the Alpine ibex gut microbiome and then by the grass microbiome (Kruskal-Wallis test, p% 0.001) (Figure S3). As no separation

was observed between the ibex gut microbiome profiles of the two sampling areas (permutation test with pseudo-F ratio, p = 0.66), the two

Alpine ibex subpopulations were considered as one for subsequent analyses. Indeed, the Valle del Braulio and Passo del Gavia ibex colonies

share the same genetic origin, and, since the exchange of individuals between the colonies cannot be excluded, although limited in number,

the two colonies can be regarded as a single meta-population.24,25

At the phylum level, the Alpine ibex gut microbiome was characterized by two dominant phyla, namely Firmicutes (mean relative

abundanceGSD, 62.8%G 13.2%) and Bacteroidetes (19.6%G 8.5%). Actinobacteria (6.2%G 8.0%), Saccharibacteria (3.8%G 4.2%), Verru-

comicrobia (3.0% G 2.9%), and Proteobacteria (2.6% G 5.9%) were less abundant phyla. At the family level, the dominant taxa were Rumi-

nococcaceae (35.8% G 14.1%), Lachnospiraceae (11.0% G 4.3%), and Christensenellaceae (7.6% G 3.4%). Subdominant families were Rike-

nellaceae (6.7% G 3.8%), Bacteroidaceae (4.2% G 3.0%), Prevotellaceae (4.0% G 3.5%), and Coriobacteriaceae (3.2% G 3.8%). For the

phylum- and family-level bacterial composition of the Alpine ibex gut microbiome across seasons, see Figure S4.

Notably, the ibex gutmicrobiomes clearly segregated by season in the Bray-Curtis-based PCoA (permutation test with pseudo-F ratio, p=

0.001) (Figure 1A). Conversely, no significant differences were found when comparing alpha diversity across seasons (Kruskal-Wallis test,

p > 0.05) (Figure 1B). According to Linear discriminant analysis Effect Size (LEfSe) analysis68 (Figure 1C), genera associated with spring

were Christensenellaceae R-7 group, Ruminococcaceae NK4A214 group, FamilyXIII AD3011 group, Lachnospiraceae NK3A20 group, Rumi-

nococcus 2, Eubacterium hallii group, Streptococcus, Eubacterium nodatum group, Acetitomaculum, andChthoniobacter. Summer samples

were enriched in Solibacillus and Prevotella 7, while autumn samples in Arthrobacter, Ruminococcaceae UCG-010, Bacillus, Paenibacillus,

Pseudomonas, Paludibacter, Ruminiclostridium 1,Odoribacter, and Staphylococcus. The only component of the core Alpine ibex gut micro-

biome identified in our dataset, defined as the only genus present with a relative abundanceR3% in at least 75% of the samples in each sea-

son,26 was Christensenellaceae R-7 group.
Seasonal changes in the Alpine ibex gut microbiome functional repertoire and metabolome

On a selected and representative subset of 12 Alpine ibex gut microbiome samples, 4 for each season, shotgun metagenomics was carried

out, obtaining an average of 5.2G 1.0 million high-quality reads per sample. According to the PCoA based on Bray-Curtis distances between

the abundance patterns of knockout (KO) genes, there was a trend toward a sample segregation by season (permutation test with pseudo-F

ratio, p = 0.088) (Figure 2A). Conversely, no changes in functional diversity were observed, with alpha-diversity scores remaining constant

across seasons (Figure 2B).
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Figure 1. Seasonal variation of the compositional profile of the Alpine ibex gut microbiome

(A) Principal coordinates analysis (PCoA) based on Bray-Curtis distances between the Alpine ibex gut microbiome profiles across seasons, i.e., spring (June, light

brown), summer (August, brown), and autumn (October, dark brown) (permutation test with pseudo-F ratio, p= 0.001). The first and second principal components

(MDS1 andMDS2) are plotted, and the percentage of variance in the dataset explained by each axis is shown. Ellipses include the 95% confidence area based on

the standard error of the weighted average of samples coordinates.

(B) Boxplots showing the alpha-diversity distributions of the Alpine ibex gut microbiome in spring, summer, and autumn, based on the Faith’s phylogenetic

diversity (PD whole tree), the Shannon index, and the number of observed amplicon sequence variants (ASVs). No significant differences were found for any

of the metrics (Kruskal-Wallis test, p > 0.05).

(C) Linear discriminant analysis (LDA) scores of discriminating Alpine ibex gut microbiome genera between spring, summer, and autumn (the logarithmic

threshold for discriminating features was set to 2.0 with p < 0.05). Plots were obtained by LDA effect size (LEfSe) analysis.
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Figure 2. Seasonal variation of the functional profile of the Alpine ibex gut microbiome

(A) Principal coordinates analysis (PCoA) based on Bray-Curtis distances between Alpine ibex gutmicrobiome functional profiles of KOgenes across seasons, i.e.,

spring (June, light brown), summer (August, brown), and autumn (October, dark brown) (permutation test with pseudo-F ratio, p = 0.09). The first and second

principal components (MDS1 and MDS2) are plotted, and the percentage of variance in the dataset explained by each axis is shown. Ellipses include the

95% confidence area based on the standard error of the weighted average of samples coordinates.

(B) Boxplots showing the alpha-diversity distributions of the Alpine ibex gut microbiome functional profiles in spring, summer, and autumn, based on the Shannon

index, the Simpson index, and the number of observed features. No significant differences were found for any of the metrics (Kruskal-Wallis test, p > 0.05).
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Next, we focused on the Alpine ibex gut glycobiome, namely the set of Carbohydrate-Active enZYmes (CAZymes) encoded by the gut

microbiome. Specifically, we identified 151 CAZymes in the ibex gut microbiome, representing all five classes listed in the CAZy database

(http://www.cazy.org/Glycoside-Hydrolases.html), i.e., glycoside hydrolases (GHs), glycosyl transferases (GTs), polysaccharide lyases (PLs),

carbohydrate esterases (CEs), and auxiliary activities (AAs). Notably, the ibex gut microbiome showed seasonal variations in the pattern of

CAZymes involved in the catabolism of plant cell wall polysaccharides, including cellulases, xylanases, mannases, pectinases, b-glucosidases,

and AAs enzymes (Figure 3). In particular, the autumn and summer samples were characterized by a higher load of cellulases, CEs, and b-glu-

cosidases, while being depleted in auxiliary functions for lignin degradation, compared to the spring samples.

Finally, the entire set of Alpine ibex fecal samples (n= 86) was subjected to both targeted and untargetedmetabolomics. According to our

findings, the Alpine ibex gut metabolome, as assessed by untargeted metabolomics, showed a strong seasonal segregation (p = 0.04) (Fig-

ure 4A), which associated with the previously reported gut microbiome seasonal changes, as assessed by the procrustean randomized test

(‘‘protest,’’ p value = 0.001 and correlation in a symmetrical rotation = 0.50). Similarly, we found relevant seasonal changes in the abundance

profiles of the main short-chain fatty acids (SCFAs)/branched-chain fatty acids (BCFAs) in the ibex samples (Figure 4B). Specifically, a signif-

icant increase in acetic and isovaleric acid was observed in autumn compared to spring (Wilcoxon rank-sum test, p% 0.05), while a similar, but

much smaller, trend was observed for valeric acid (p = 0.06), whereas propionic and butyric acid were significantly more abundant in spring

and summer compared to autumn (Wilcoxon rank-sum test, p < 0.01).

Identification and characterization of SGB community modules from the Alpine ibex gutmicrobiome for the degradation of

plant-derived biopolymers

Forty-nine high-qualitymetagenome-assembledgenomes (MAGs) were obtained from theAlpine ibex gutmicrobiome andwere successfully

dereplicated into 38 species-level genome bins (SGBs). Only one of these SGBs (assigned to theAcutalibacteraceae family) showed a genetic

distance <10% compared to already available genomes from ruminant gut microbiomes,78 suggesting that the others could be unreported

genomes. Notably, these 37 SGBs showed different distributions by season, as visualized in the PCoAs of the corresponding compositional

profiles across the three different seasons, confirming the seasonal dynamics of the Alpine ibex gut microbiome also at the SGB level (Fig-

ure S5). Considering the SGB communities of the Alpine ibex gut microbiome characterizing each season, we next obtained the correspond-

ing genome-scalemetabolicmodels (GSMMs) for the degradation of themain plant components (namely cellulose, hemicellulose, lignin, and

pectin) (Figure 5). Interestingly, for each season, we obtained a specific module of 11–14 SGBs synergistically interacting for the degradation

of plant cell wall biopolymers (Table S2). Only three SGBs, belonging to Akkermansia, Bacteroidaceae bacterium UBA4372, and Alistipes,

remained constant across all time points. Furthermore, based on the generated models, the primary metabolic endpoints from each SGB

plant-degrading module were generally constant, with butanol and oxalosuccinate produced in all seasons, and isobutyric acid produced
4 iScience 27, 110194, July 19, 2024
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Figure 3. Seasonal variation of the glycobiome layout of the Alpine ibex gut microbiome

(A) Hierarchical Ward-linkage clustering based on the Spearman correlation coefficients of the reads per kilobase of gene per million reads mapped (RPKM)

abundances of the main plant cell wall-hydrolyzing CAZymes families of the Alpine ibex gut microbiome across seasons, i.e., spring (June, light brown),

summer (August, brown), and autumn (October, dark brown). The relative Z score is reported. Rows represent all CAZymes families grouped by the

corresponding functional class.

(B) Boxplots showing the alpha-diversity distributions of CAZymes familiesof theAlpine ibexgutmicrobiome in spring, summer, and autumn,based on thenumberof

observed features, the Simpson index, and the Shannon index. No significant differences were found for any of the metrics (Kruskal-Wallis test, p > 0.05).
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in spring and autumn. In contrast, butyrate, isobutanol, succinate, and isovaleryl-coenzyme A (CoA) were season-specific metabolites

(Figure 5).

DISCUSSION

According to our findings, the main phyla of the Alpine ibex gut microbiome were Firmicutes and Bacteroidetes, followed by Actinobacteria,

Verrucomicrobia, and Saccharibacteria, while Ruminococcaceae, Lachnospiraceae, and Christensenellaceae were the dominant families. To

the best of our knowledge, this is the first report on the bacterial fraction of the Alpine ibex gut microbiome, which to date has only been

investigated considering fungal-methanogens associations27 or targeting specific microbial pathogens.28 Our results are consistent with

those of the few available studies conducted onmountain ungulates, such as the long-tailed goralNaemorhedus caudatus,29 mountain goats

Oreamnos americanus,7 takins Budorcas taxicolor,30 and chamois Rupicapra spp.,14,15 as well as on other wild and captive ruminants,31–37

suggesting the presence of a phylogenetically widespread ruminant core gut microbiome at the family level. The fine multiomic assessment

of the seasonal dynamics of the Alpine ibex gut microbiome allowed us to identify sharp seasonal patterns in terms of compositional,

functional, and metabolic layouts. Notably, Christensenellaceae R-7 group was detected as the only core microbiome genus (relative abun-

danceR3% in at least 75% of the samples in each season), confirming the impressive seasonal changes in the Alpine ibex gut microbiome at

low taxonomic ranks. On the other hand, as previously reported for other alpine ruminants,35 no significant seasonal shifts were observed in

alpha diversity, suggesting that a high level of microbial diversity is maintained throughout the year, possibly to ensure high redundancy in

microbiome functionalities for digestion of available plants.
iScience 27, 110194, July 19, 2024 5



Figure 4. Seasonal variation of the Alpine ibex fecal metabolome

(A) Principal coordinates analysis (PCoA) based on Bray-Curtis distances between Alpine ibex fecal metabolomic profiles across seasons, i.e., spring (June, light

brown), summer (August, brown), and autumn (October, dark brown) (permutation test with pseudo-F ratio, p = 0.04). The first and second principal components

(MDS1 andMDS2) are plotted, and the percentage of variance in the dataset explained by each axis is shown. Ellipses include the 95% confidence area based on

the standard error of the weighted average of samples coordinates.

(B) Boxplots showing the relative abundance distributions of short-chain fatty acids and branched-chain fatty acids in the Alpine ibex feces in spring, summer, and

autumn. Kruskal-Wallis test and Wilcoxon rank-sum test controlled for multiple testing using false discovery rate (FDR); *p value %0.05; **p value %0.01; ***p

value %0.001.
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When we focused on the microbiome layout of CAZymes for the degradation of plant biopolymers to fermentable monosaccharides, we

observed two distinct clusters according to the sampling season. In particular, one cluster was composed of summer and autumn samples

enriched in CAZymes associated with a vast array of functionalities, such as cellulases, xylanases, PLs, CEs, and b-glucosidases, while the other

cluster included spring samples, showing an overall lower diversity of CAZymes families, but a higher load of auxiliary enzymes dedicated to

lignin oxidation and degradation. These results provide some insight into the mechanistic understanding of the functional importance of the

Alpine ibex gut microbiome in the animal’s adaptation to dietary shifts. More specifically, the studied year (2019–2020 period) was charac-

terized by peculiar weather, which saw a prolonged persistence of snow on the ground until the beginning of June, with a direct effect on

the available forage. Indeed, looking at the majority of the available plant species for the ibex (e.g., hemicryptophytes and geophytes),

the snow sill on the ground in early June 2020 would have prevented their growth, and the ibex would have fed only on available trees

and bushes, belonging to chamaephytes, phanerophytes, and therophytes, which are characterized by high lignin contents. In this condition,

the Alpine ibex gut microbiome would respond adaptively, enriching for lignin-modifying functions, thus providing the host with the
6 iScience 27, 110194, July 19, 2024



Figure 5. Seasonal genome-scale metabolic models of the Alpine ibex gut microbiome

Schematic representation of the main plant-derived biopolymers (top), the predicted SGB communities digesting such polymers (middle), and the resulting

metabolic endpoints (bottom) in spring, summer, and autumn. Despite being largely characterized by different bacterial taxa, the ibex SGB gut communities

appear to be able to ferment plant fibers and produce both common and unique endpoints depending on the season.
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necessary degree of phenotypic plasticity to exploit this available plant food. On the contrary, the higher availability of grasses and herbs

during the 2020 summer-autumn period would result in a diet enriched in cellulose and hemicellulose, with a concomitant decrease in total

ingested lignin. Under these conditions, the Alpine ibex gut microbiome would respond by increasing the diversity of CAZymes for cellulose

and hemicellulose degradation, allowing the full exploitation of the available dietary sources. This vision is also supported at the composi-

tional level, as, in the summer period, the ibex gut microbiome was enriched in taxa belonging to Prevotella 7, whose members have been

suggested to be among the most important protein, hemicellulose, and pectin degraders in ruminants.38,39 Furthermore, autumn-enriched

taxa included Ruminococcaceae UCG-010, Bacillus, Paenibacillus, Pseudomonas, and Ruminiclostridium, which have enhanced cellulose and

hemicellulose digestion capabilities, via either secreted free enzymes or extracellular multi-enzyme structures called cellulosomes.33,40–44

Interestingly, the seasonal changes in the Alpine ibex gut microbiome taxonomy would explain the corresponding shifts in the overall gut

metabolome layout, as well as in the measured profiles of SCFAs. In particular, the higher levels of acetic acid in autumn may be due to

the prevalence, in this season, of some well-known acetate producers such as Ruminococcaceae UCG-010,33 Ruminiclostridium,40 Bacillus,45

and Paenibacillus.46 Conversely, taxa such as Eubacterium, Christensenellaceae, Prevotella, and Ruminococcus may be correlated with

increased proportions of propionic and butyric acid in spring and summer.37,47–49 As the main endpoints of microbiomemetabolism of plant

biopolymers in the gut, SCFAs represent key molecules that support nutrition and regulate different aspects of animal physiology, including

immune and metabolic homeostasis and protection against pathogenic microorganisms.31,38,50 Although SCFAs are produced throughout

the year, the Alpine ibex gut microbiome response to seasonal changes in available forage would also result in significant variation in their

production profiles, raising concerns about the possible physiological importance of these changes in the holobiont metabolome. Finally, in
iScience 27, 110194, July 19, 2024 7



ll
OPEN ACCESS

iScience
Article
our study, SGBs and the related metabolic models were created, allowing the identification of season-specific Alpine ibex gut microbiome

community modules for the degradation of plant biopolymers (i.e., cellulose, hemicellulose, lignin, and pectin) to alcohols and organic acids,

including volatile fatty acids such as butyrate, isobutyrate, and isovaleryl-CoA. Theseminimal modules of 11–14 interacting strains may repre-

sent new candidatemicrobial consortia to be exploited in circular processes for the valorization of LCbiomasses, enabling their bioconversion

into value-added platform chemicals.51 In addition, given the importance of transitioning tomore sustainable and secure food systems, these

community modules may foster innovative applications as next-generation probiotics in cattle, allowing for improved roughage tolerance in

livestock for the transition to more sustainable farming strategies, with less reliance on green grasses, which require consistent amounts of

water and are likely to be negatively affected by climate change.52

Overall, our findings support the importance of the Alpine ibex gut microbiome as a strategic evolutionary partner in the holobiont frame-

work, providing the animal host with the necessary phenotypic plasticity to buffer seasonal changes in the available forage. This microbiome-

host cooperation would be crucial for fine-tuning holobiont catabolism to fully exploit the available plant food. Besides confirming the rele-

vance of the host-associatedmicrobiome in the adaptation to dietary changes,53,54 we provided some insight into the possible exploitation of

the Alpine ibex gut microbiome for the development of innovative biotechnological solutions, in terms of circular LC bioconversion and valo-

rization processes, and also as next-generation probiotics for the transition to more sustainable and secure food systems.

Limitations of the study

The main limit of our study is the lack of individual records of animal behavior and diet during the period of the study, which can be obtained

by using GPS collars for animal tracking. Further, a second limitation is the lack of a second year of sampling, allowing to control for a possible

annual variation. Finally, putative lignocellulose-degrading strains and hubs have been only identified as metagenomic assembled genomes,

without having microbial isolates.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

DNeasy Blood & Tissue QIAGEN Cat#69506

NextSeq 500/550 High Output Kit v2.5 (300

Cycles)

Illumina Cat#20024908

QIAseq FX DNA Library CDI Kit (96) QIAGEN Cat#180484

Chemicals

AMPure XP magnetic beads Beckman Coulter Cat#A63881

Deposited data

Human gut metagenomes Pasolli et al. 201955 http://segatalab.cibio.unitn.it/data/Pasolli_et_

al.html

Bacterial and archael reference genomes Mukherjee et al. 201756 https://img.jgi.doe.gov/

Ruminant metagenomes Stewart et al. 201857 https://doi.org/10.7488/ds/2296

Ruminant metagenomes Stewart et al. 201958 Project number ENA: PRJEB31266

Alpine Ibex (Capra Ibex) This study Project number ENA: PRJEB70425

Software and algorithms

bowtie2 2.3.4.3 Langmead et al. 201259 https://github.com/BenLangmead/bowtie2

CarveMe 1.5.1 Machado et al. 201860 https://github.com/cdanielmachado/carveme

CheckM 1.2.0 Parks et al. 201561 https://github.com/Ecogenomics/CheckM

dRep 3.2.2 Olm et al. 201762 https://github.com/MrOlm/drep

gplots 3.1.3 r package Warnes et al., 201663 https://CRAN.R-project.org/package=gplots

GTDB-Tk 2.1.0 Chaumeil et al. 202264 https://github.com/Ecogenomics/GTDBTk

Metage2metabo 1.5.0 Belcour et al. 202065 https://github.com/AuReMe/metage2metabo

Metawrap 1.3.2 Uritskiy et al. 201866 https://github.com/bxlab/metaWRAP

Prokka 1.14.6 Seemann 201467 https://github.com/tseemann/prokka

R Software 4.2.0 R Software www.r-project.org

Samtools 1.10 Bonfield et al. 202168 https://github.com/samtools/samtools

vegan 2.6–2 r package Oksanen et al. 202269 https://CRAN.R-project.org/package=vegan
RESOURCE AVAILABILITY

Lead contact

Further information and request for resources and reagents should be directed to and will be fulfilled by the lead contacts, Marco Candela

(marco.candela@unibo.it).
Materials availability

This study did not generate new unique reagents.
Data and code availability

� High-quality reads from the samples sequenced in this study were deposited in the European Nucleotide Archive under the project

accession number ENA: PRJEB70425.
� Ruminant and human metagenomes derived from 4 previously published studies available in public repositories (see key resources

table for references).
� This paper does not report original code.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Shotgun metagenomes

Alpine ibex (Capra ibex) metagenomedatasets used in this study are sequenced in this study (see data and code availability section for further

details), other ruminant and human metagenomes derived from 4 previously published studies available in public repositories (see method

details and key resources table for the respective references).

METHOD DETAILS

Study site and sampling procedure

A total of 86 fecal samples were collected at Stelvio National Park (Lombardia, Italy) from an equal number of Alpine ibex specimens, which

were followed and observed until defecation.When possible, surface soil and grass samples were also collected in the proximity, for a total of

111 samples (i.e., 86 ibex feces, 17 soil and 8 grass samples). Samples were collected at two different nearby sites, namely ‘‘Passo del Gavia’’

(46�20’04.1"N/10�29’15.4"E) and ‘‘Valle del Braulio’’ (46�31’03.4"N/10�24’42.8"E), across three different seasons, namely spring (16th, 17th and

18th June 2020), summer (3rd, 4th and 5th August 2020) and fall (1st and 2nd October 2020) (Figure S1). A schematic summary of the sample

distribution across the two sites and the three timepoints is provided in Table S1. All samples were collected using sterile gloves, placed

in sterile plastic tubes, and kept frozen at�20�C until microbial DNA extraction. Themean values of snow on the ground (cm) for the sampling

year were retrieved from the meteorological station Valdisotto Oga S. Colombano (SO, ARPA Lombardia), which is located at an altitude of

2300 m and collects detailed measurements almost every 30 min. Data from July to June of the subsequent year (from 1992 to 2022) are re-

ported in Figure S2. Coordinates of sampling sites were uploaded in the Italian Geoportale Nazionale (http://www.pcn.minambiente.it/

viewer/index.php?services=progetto_natura), managedby theMinistry of Environment and providing different kinds of spatial data. In partic-

ular, a map of plant alliances of the sampling sites was retrieved form the portal. Plant species characterizing the identified phytosociological

synthaxa were then inferred according to Prodromo della Vegetazione Italiana (https://www.prodromo-vegetazione-italia.org). Each species

was assigned to a Raunkiaer’s life form (chamaephytes, geophytes, hemicryptophytes, phanerophytes and therophytes) using Pignatti et al.70

Microbial DNA extraction, 16S rRNA amplification and sequencing

Total microbial DNAwas extracted from approximately 0.25 g of each of the 111 samples, i.e., ibex feces, soil, and grass. DNA extraction from

fecal samples was performed using the DNeasy Blood & Tissue Kit (QIAGEN, Hilden, DEU) with a modified protocol.71 In brief, fecal material

was addedwith four 3-mmglass beads and 0.5 g of 0.1-mm zirconia beads (BioSpec Products, Bartlesville, OK, USA), and the homogenization

stepwas performed three times using a FastPrep instrument (MP Biomedicals, Irvine, CA, USA) at 5.5m/s for 1min. Samples were then heated

at 95�C for 15 mins. DNA from soil and grass was extracted using the DNeasy PowerSoil Kit (QIAGEN) following the manufacturer’s instruc-

tions with a minor modification: a FastPrep instrument (MP Biomedicals) was used for the homogenization step as described above. DNAwas

quantified using aNanoDropND1000 spectrophotometer (NanoDrop Technologies,Wilmington, DEU). PCRwas performed in a final volume

of 50 mL containing genomic DNA (25 ng), 2X KAPA HiFi HotStart ReadyMix (Roche, Basel, CHE) and 200 nmol/L of 341F and 785R primers

carrying Illumina overhang adapter sequences for amplification of the V3-V4 hypervariable regions of the 16S rRNA gene. The PCR thermal

cycle consisted of an initial denaturation (95�C for 3mins), followed by 25 cycles of denaturation (95�C for 30 s), primer annealing (55�C for 30 s)

and DNA extension (72�C for 30 s); the entire reaction was completed with a final extension step (72�C for 5 mins).72 PCR amplicons were then

cleaned up using Agencourt AMPure XPmagnetic beads (BeckmanCoulter, Brea, CA, USA). Indexed libraries were prepared by limited-cycle

PCR using Nextera technology and purified as above. Finally, the libraries were quantified using a Qubit 3.0 fluorimeter (Invitrogen, Waltham,

Massachusetts, USA), normalized to a concentration of 4 nM and pooled in a single Eppendorf tube. The pool was denatured with 0.2 N

NaOH and diluted to a final concentration of 4.5 pMwith a 20% PhiX control. Sequencing was performed on an IlluminaMiSeq platform using

a 2 x 250 bp paired-end protocol, according to the manufacturer’s instructions (Illumina, San Diego, CA, USA).

Metabarcoding bioinformatics and biostatistics

Raw sequences were analyzed using a pipeline combining PANDAseq73 and QIIME 2.74 High-quality reads (min/max length = 350/550 bp)

were retained using the ‘‘fastq filter’’ function of the Usearch11 algorithm75 and then binned into amplicon sequence variants (ASVs) using

DADA2.76 The VSEARCH algorithm77 and the SILVA database (December 2017 release)78 were used for taxonomic classification. All unas-

signed and eukaryotic sequences were discarded. Overall, an average sequencing depth of 10,725G 2,871 (meanG SD) high-quality reads

per sample was obtained, resulting in a total of 20,592 ASVs. Alpha-diversity was assessed using three different metrics, namely Faith’s Phylo-

genetic Diversity (PD whole tree), the number of observed ASVs and the Shannon index. Beta-diversity was assessed using Bray-Curtis

distances.

Statistical analyses were performed using R software (https://www.r-project.org/), v. 4.2.0, implemented with the packages ‘‘Made4’’,79

‘‘vegan’’69 (https://cran.r-project.org/web/packages/vegan/index.html), ‘‘pairwiseAdonis’’80 and ‘‘gplots’’63 (https://cran.r-project.org/web/

packages/gplots/index.html). Data separation in the PCoAs was assessed using a permutation test with pseudo-F ratio (functions ‘‘adonis’’

in the vegan package and function ‘‘pairwiseAdonis’’ in the homonymous package). A procrustean randomized test (function ‘‘protest’’ in the

vegan package) was performed to highlight significant relationship between microbiome and metabolomic distance matrices. The Kruskal-

Wallis test among groups was used to assess significant differences in alpha-diversity (calculated on taxonomical annotation). P-values were

corrected for multiple testing, when necessary, using the Benjamini-Hochberg method, with a false discovery rate (FDR) % 0.05 considered
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statistically significant. Linear discriminant analysis (LDA) effect size81 (LEfSe) was used to identify discriminant genera across the three time-

points (p % 0.05). The online Galaxy Version interface (https://huttenhower.sph.harvard.edu/galaxy/, last accessed September 2023)

was used.
Shotgun metagenomics sequencing

A subset of representative 12 Alpine ibex fecal samples (six per site, including two per season) was selected for shotgun metagenomic

sequencing. The QIAseq FX DNA library kit (QIAGEN) was used for DNA library preparation according to the manufacturer’s instructions.

Briefly, 450-bp size, end-repaired and A-tailed fragments were generated by fragmenting 100 ng of each DNA sample using FX enzyme

mix with the following thermal cycle: 4�C for 1 min, 32�C for 8 mins and 65�C for 30 mins. DNA samples were then incubated at 20�C for

15 mins to perform adapter ligation in the presence of DNA ligase and Illumina adapter barcodes. Agencourt AMPure XP magnetic beads

(Beckman Coulter) were used for purification, followed by library amplification with a 10-cycle PCR and a further purification step. Samples

were then pooled at an equimolar concentration (4 nM) to obtain the final library. Sequencingwas performedon an IlluminaNextSeqplatform

using a 2 3 150 bp paired-end protocol, following the manufacturer’s instructions (Illumina).
Metagenomics bioinformatics and biostatistics

Raw reads were filtered for eukaryotic host DNA using bmtagger software andCapra ibex (NCBI GenBank accession: GCA_006410555.1) as a

reference. After this filtering step, reads were processed with trimBWAstyle (https://github.com/genome/genome/blob/master/lib/perl/

Genome/Site/TGI/Hmp/HmpSraProcess/trimBWAstyle.usingBam.pl) for quality trimming (quality score above 20) and length drop with

default parameters. Duplicates were estimated and removed using the Picard tool EstimatedLibraryComplexity (v. 1.71). A total of 61 million

high-quality microbial paired-end reads were retained, with an average of 5.2 G 1.0 (mean G SD) million reads per sample. The resulting

reads were used to obtain a general functional annotation for each sample, usingHUMAnN v. 3.0.1.82 The output tables were then normalized

using humann_renorm_table with the following parameter ‘‘—units cpm’’. The resulting tables weremerged and then processed by removing

the UNMAPPED ID and converting the UniRef90 classification into the KEGG Orthology (KO) classification. This final table was used to

compute alpha-diversity indices (Shannon, Simpson, and observed features) and beta-diversity based on Bray-Curtis distances. Data sepa-

ration in the Bray-Curtis-based PCoA was assessed in R using a permutation test with pseudo-F ratio (function ‘‘adonis’’ in the vegan package

and function ‘‘pairwiseAdonis’’ in the homonymous package). The Kruskal-Wallis test amonggroups was used to assess significant differences

in alpha-diversity, with P-values corrected for multiple testing as previously described. In parallel, high-quality reads were assembled using

metaspades.py (v. 3.15.3) with default parameters. Each assembly was annotated using prokka67 (v. 1.14.6) with default parameters and

‘‘—addgenes’’ to retrieve all classes of Carbohydrate-Active enZYmes (CAZymes), according to the latest version of the online CAZy data-

base, namely glycoside hydrolases (GHs, EC 3.2.1.-), glycosyl transferases (GTs, EC 2.4.x.y), polysaccharide lyases (PLs, EC 4.2.2.-), carbohy-

drate esterases (CEs) and auxiliary activities (AAs) enzymes. Using prokka output files, open reading frames (ORFs) for each CAZyme were

retrieved and used to build a reference database, dereplicated at 90% similarity and used to assess the abundance of each CAZyme in

our samples. Alignment was performed using Bowtie2 v. 2.3.4.359 with the parameter "–end-to-end –very-sensitive"; the number of aligned

reads for each sample was then retrieved using Samtools v. 1.16.68 Reads per kilobase of gene per million reads mapped (RPKMs) in each

sample and for each gene were calculated by summing the number of reads of all mapped ORFs and processed as follows:

Total reads mapped to gene

Total reads � Mean Gene length
� 109

The abundance table, in terms of RPKMs, of each CAZyme family identified in our dataset was used to plot a heatmap of the CAZymes

families involved in the catabolism of plant polysaccharides, assigned to the corresponding functional classes, using the heatmap.2 function

in R. The Spearman distance and the ward.D2 method were used to cluster the different samples according to the obtained CAZymes abun-

dances. The heatmap represents the Z-score of the identified CAZymes families, with clustering performed for samples. The RPKMs abun-

dance table of the CAZymes families assigned to a specific functional class was also used to calculate alpha-diversity, using the number of

observed features, the Simpson index, and the Shannon index.
Metagenome-Assembled Genomes (MAGs) reconstruction

Assemblies from each sample were used to construct Metagenome-Assembled Genomes (MAGs) using the metawrap binning module

(metawrap version 1.3.266). Only MAGs with completeness > 50% and contamination < 5%, as assessed through the checkm lineage_wf work-

flow,61 were retained. All retrieved high-quality MAGs were then dereplicated into species-level genome bins (SGBs) using the dRep dere-

plicate command (dRep v. 3.2.262) and the following parameters: ‘‘–ignoreGenomeQuality -pa 0.9 -sa 0.95 -nc 0.30 -cm larger -centW 0’’. The

taxonomic classification of SGBswas performed using the gtdbtk classify_wf workflowwith default parameters,64 while the abundance of each

SGB in each sample was obtained using the metawrap quant_bins module (metawrap v. 1.3.2). The SGBs abundance table was used to

construct a presence/absence table of each SGB across samples. A phylogenetic tree including all SGBs was then built by using phylophlan83

with the parameters ‘‘–diversity low –fast –min_num_markers 79’’, and used to measure UniFrac distances between samples, which were

plotted in a Principal Coordinates Analysis (PCoA) graph. Finally, the SGBs were compared, using MinHash sketches implemented in the

mash tool (v. 2.3), with 8,217 genomes from three of the largest ruminant gut metagenomic datasets,10,57,58 with the Genomic Encyclopedia
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of Bacteria and Archaea (GEBA) collection56 and with 4,930 SGBs previously identified in a study describing the gut microbiome of different

human individuals across age, geography and lifestyle.55

Genome-scale metabolic models for the degradation of plant food substrates

Microbiome-scale metabolic models for the identification of key SGBs involved in the degradation of plant food substrates, such as cellulose,

hemicellulose, pectin, and lignin, were obtained using CarveMe60 and Metage2Metabo.65 Specifically, CarveMe was applied to each

SGB, grouped by timepoint, using the default options, to build the specific genome-scale metabolic model (GSMM) for each SGB.

Metage2Metabo was then used with the parameter ‘‘metacom’’ to build a single metabolic network combining all the GSMMs by timepoint

and retrieving the list of the minimal communities of SGBs essential for the degradation of plant components. The pipeline was repeated

using as input the set of GSMMs divided by timepoint and considering the 4 main plant biopolymers.

Metabolomics

All fecal samples underwent two kinds of analytical characterization: SCFAs (Short Chain Fatty Acids) and BCFAs (Branched Chain Fatty Acids)

quantitation through head space-solid phase microextraction (HS-SPME-GC-MS) and untargeted metabolomic analysis with liquid chroma-

tography-high resolution mass spectrometry (LC-HRMS) analysis.

Reagents, materials and solutions

All standards (purity > 99%) for acetic, propionic, butyric, isobutyric, valeric, isovaleric and d8-butyric acids (d8-BA) were provided by Sigma-

Aldrich (Milan, ITA). Perchloric acid (HClO4) 70 was also provided by Sigma-Aldrich. MILLEX GP syringe filter, 0.22 mm in pore size, with Poly-

ethesulfone (PES)membranewere provided byMillipore corp. (Bedford,MA). UHPLC-MSgrade acetonitrile, UHPLC-MS grademethanol and

water were provided by VWR Chemicals (Radnor, PA, USA). LC-MS grade formic acid was purchased from Carlo Erba Reagents S.r.l. (Milan,

ITA). The manual holder and the commercially available SPME fibers 75 mm Carboxen�/polydimethylsiloxane (CAR/PDMS) were purchased

from Supelco (Bellefonte, PA, USA). Prior to first use, the SPME fiber was conditioned for 60 minutes at 300�C as per manufacturer’s instruc-

tions. Individual acid stock solutions were prepared at a concentration of 1,000 ppm (mg/mL) by diluting 20 mL of acid with milliQ water in a

20-mL volumetric flask. Individual standard solutions were prepared by diluting the stock solution to final concentrations of 5, 10, 25, 50 and

100 ppm. A stock solution for internal standard (d8-BA) at a concentration of 10 mg/mL was obtained by diluting 95.2 mL of acid with H2O in a

10-mL volumetric flask. From this stock solution, a working solution with a final concentration of 0.5 mg/mL was obtained by successive dilu-

tion with milliQ water. LC-MS analysis was performed on an Eksigent M5 MicroLC system (Sciex, Concord, Ontario, Canada) coupled to a

TripleTOF 6600+ mass spectrometer with OptiFlow Turbo V Ion Source (Sciex).

HS-SPME GC-MS analysis for SCFAs and BCFAs

Solid-liquid extraction was performed as a preliminary clean-up. A perchloric acid solution (10% v/v in water) was added to frozen aliquots of

fecal samples to a final concentration of 250mg/mL. The resulting solutions were centrifuged at 15,000 rpm for 10minutes at 4�C. After centri-
fugation, the supernatant was collected in a 1.5-mL glass vial and stored at -20�C. For HS-SPME analysis, 50 mL of fecal sample solution were

added to 450 mL of H2O and 10 mL of IS solution in a 4-mL glass vial, which was then capped with a pierceable septum cap. Prior to extraction,

the vials containing the samples were heated at 70�C for 10 minutes under continuous stirring at 270 rpm using a poly(tetrafluoroethylene)-

coatedmagnetic stir bar. After thermal conditioning, the septum of the vial was pierced with the needle of the SPME device and the fiber was

exposed approximately 10 mm above the solid sample, allowing extraction of the analytes for 30 minutes. The optimized temperatures and

times were slightly modified as pointed out by Fiori and colleagues in a previously published article.84 After extraction, the fiber was retracted

into the protective sheath, removed from the headspace glass vial and transferred without delay into the injection port of the gas chromato-

graph/mass spectrometer. The fiber was thermally desorbed in the injection port at 250�C for 2 minutes and the GC/MS run was started. To

thermally clean the SPME fiber, it was left in the injection port for an additional 8 minutes after complete desorption of the analytes.

GC-MS analysis was carried out on a TRACE GC 2000 Series (ThermoQuest CE Instruments, Austin, TX, USA) gas chromatograph, inter-

faced with Trace ITQ MS (ThermoQuest CE) mass detector with 3D ion trap analyzer, operating in EI mode (70 eV). The capillary GC column

was a Phenomenex ZB-WAX (30 m x 0.25 mm ID, 0.15 mm film thickness). Helium (He) was used as carrier gas at a flow rate of 1.0 mL/min. A

temperature program was adopted: initial temperature was 40�C (hold time: 5 mins), then temperature ramped by 10 �C/min to 220�C (hold

time: 5 mins). The temperatures of the transfer line and ionization sourceweremaintained at 250�Cand 200�C, respectively. TheGCwas oper-

ated in splitless mode. Mass spectra were recorded in full scan mode (34-200 amu) to collect total ion current chromatograms. Quantitation

was carried out using the extracted ion chromatograms by selecting qualifier and quantifier fragment ions of the studied analytes: 43 and

60 amu for AA, 55 and 73 amu for PA, 55 and 77 amu for iBA, 60 and 87 amu for iVA, 60 and 73 amu for BA and VA, 63 and 77 amu for

d8-BA.

LC-HRMSMS untargeted metabolomics

For metabolome analysis, approximately 200 mg of homogenized fecal samples were extracted by the addition of three equivalents (weight/

Vv) of methanol, followed by vortex-mixing for 3 seconds and sonication for 10 minutes. The samples were then centrifuged at 14,000 rpm

for 10 minutes at 4�C, and the supernatant was collected and filtered through 0.22-mm PES membranes. The obtained extracts were stored
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at -80�C until further analysis. In order to avoid bias, all experimental samples were randomized before sample preparation and before analyt-

ical run. Interpooled Quality Control samples (QCs) were prepared by pooling together equal aliquots (10 mL) from each sample before

extraction and underwent the same treatment as experimental samples. Before injection, each methanol extract was diluted in a 1:10 ratio

with Milli-Q water.

LC-MS analysis was performedon an EksigentM5MicroLC system (Sciex) coupled to a TripleTOF 6600+mass spectrometer withOptiFlow

Turbo V Ion Source (Sciex). Analyses were carried out in both positive and negative ionization, with the column temperature set at 35�C. In
brief, 5 mL from each sample were loaded onto a Phenomenex LunaOmega Polar C18 1003 1.0 mm I.D. 1.6 mm100 Å. Before the first sample

injection, the sameQC sample was injected repeatedly, for a total of 10 times, to allow for system equilibration and conditioning. Chromato-

graphic separation occurred in 25minutes at a constant flow rate of 30 mL/min. The gradient elution programwas as follows: 0-2minutes, 0.2%

eluent B; 2-5minutes, 0.2-15%eluent B; 5-15minutes, 15-70%eluent B; 15-18minutes, 70-98%eluent B; 18-20minutes, 98% eluent B; 20-22mi-

nutes, 98-0.2% eluent B; 22-25minutes, 0.2% eluent B. Equilibration time between chromatographic runs was 3 minutes. Mobile phase A con-

sisted of 0.1% formic acid and mobile phase B was acetonitrile/0.1% formic acid. IonSpray voltage (ISV) was 5,000 V and Curtain Gas supply

pressure (CUR) was 30 PSI; nebulizer and heater gas pressures were set at 30 and 40 PSI, respectively. The ion spray probe temperature was

300�C. Declustering potential was 80 V. Analyses were carried out using a collision energy of 40 eV. Sample analyses were performed in Data

Independent Acquisition mode (SWATH-MS: Sequential Window Acquisition of All Theoretical Mass Spectra). The variable SWATH windows

used for acquisition were obtained through the SWATH Variable Window Calculator app (Sciex). The software employs the m/z density his-

togram constructed from the TOF MS analysis to equalize the density of the precursors in each window across the m/z range. The overlap

between windows was 1 Da. PepCal Mix (Sciex) was used to ensure steady MS and MSMS calibrations during the whole analysis timeframe.
Data analysis

SWATH raw data files were viewed using PeakView 2.2 (AB sciex). Peak picking (minimum spectral peak width of 10 ppm,minimumpeak width

of five scans), alignment, filtering (intensity threshold of 10,000 cps, removal of features detected in less than 50% of samples) and annotation

were performed using SCIEX OS. Untargeted metabolomic analysis was based on all ion features in the SWATH-MS/MS data after peak

finding, alignment and filtering. Metabolites eluted close to the solvent front (< 1 min) were excluded. Fatty acids abundances were repre-

sented by boxplots. The Kruskal-Wallis test among groups followed by post-hoc Wilcoxon rank-sum test between pairs of groups were used

to assess significant differences in fatty acids abundances, with P-values corrected for multiple testing as previously described. The untar-

geted metabolomic data were normalized according to the Total Peak Area method, i.e., each peak area was normalized to the sum of

the areas of all detected peaks in each sample.85 The normalized table, based on negative ionization, was then used to calculate the relative

abundance of eachmetabolite in each sample. The resulting relative abundance table was used in R as input to compute the PCoA, based on

the Bray-Curtis distances between samples, using the ‘‘vegdist’’ function from the vegan package.
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