COVID-19 and Acute Pancreatitis: A Systematic Review of Case Reports and Case Series

Vasiliki E. Georgakopoulou,^a Aikaterini Gkoufa,^b Nikolaos Garmpis,^c Sotiria Makrodimitri,^a Chrysovalantis V. Papageorgiou,^a Danai Barlampa,^d Anna Garmpi,^b Serafeim Chiapoutakis,^e Pagona Sklapani,^f Nikolaos Trakas,^g Christos Damaskos^h

From the "Pulmonology Department, Laiko General Hospital, Athens, Greece; ^bFirst Department of Internal Medicine, Laiko General Hospital, Athens, Greece; 'Second Department of Propedeutic Surgery, Laiko General Hospital, Athens, Greece; 'Department of Internal Medicine, Medical Center of Megalopolis, Arcadia, Greece; "Department of Thoracic Surgery, Agios Savvas General Cancer and Oncology Hospital of Athens, Athens, Greece; 'Department of Zytology, Mitera Maternity Hospital, Athens, Greece; 'Department of Biochemistry, Sismanogleio General Hospital, Athens, Greece; 'Renal Transplantation Unit, Laiko General Hospital, Athens, Greece

Correspondence: Dr. Vasiliki E. Georgakopoulou · Pulmonology Department, Laiko General Hospital, Athens 11527, Greece · vaso_georgakopoulou@hotmail.com · ORCID: https://orcid.org/0000-0003-0772-811X

Citation: Georgakopoulou VE, Gkoufa A, Garmpis N, Makrodimitri S, Papageorgiou CV, Barlampa D, et al. COVID-19 and Acute Pancreatitis: A Systematic Review of Case Reports and Case Series. Ann Saudi Med 2022; 42(4): 276-287 DOI: 10.5144/0256-4947.2022.276

Received: May 30, 2021

Accepted: April 13, 2022

Published: August 4, 2022

Copyright: Copyright © 2022, Annals of Saudi Medicine, Saudi Arabia. This is an open access article under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). The details of which can be accessed at http:// creativecommons. org/licenses/bync-nd/4.0/

Funding: None.

BACKGROUND: Coronavirus disease 2019 (COVID-19) presents mainly with mild symptoms and involvement of the respiratory system. Acute pancreatitis has also been reported during the course of COVID-19.

OBJECTIVE: Our aim is to review and analyze all reported cases of COVID-19 associated acute pancreatitis, reporting the demographics, clinical characteristics, laboratory and imaging findings, comorbidities and outcomes.

DATA SOURCES: We conducted a systematic search of Pubmed/ MEDLINE, SciELO and Google Scholar to identify case reports and case series, reporting COVID-19 associated acute pancreatitis in adults. **STUDY SELECTION:** There were no ethnicity, gender or language restrictions. The following terms were searched in combination: "COVID-19" OR "SARS-CoV-2" OR "Coronavirus 19" AND "Pancreatic Inflammation" OR "Pancreatitis" OR "Pancreatic Injury" OR "Pancreatic Disease" OR "Pancreatic Damage". Case reports and case series describing COVID-19 associated acute pancreatitis in adults were included. COVID-19 infection was established with testing of nasal and throat swabs using reverse transcription polymerase chain reaction. The diagnosis of acute pancreatitis was confirmed in accordance to the revised criteria of Atlanta classification of the Acute Pancreatitis Classification Working Group. Exclusion of other causes of acute pancreatitis was also required for the selection of the cases.

DATA EXTRACTION: The following data were extracted from each report: the first author, year of publication, age of the patient, gender, gastrointestinal symptoms due to acute pancreatitis, respiratory-general symptoms, COVID-19 severity, underlying diseases, laboratory findings, imaging features and outcome.

DATA SYNTHESIS: Finally, we identified and analyzed 31 articles (30 case reports and 1 case series of 2 cases), which included 32 cases of COVID-19 induced acute pancreatitis.

CONCLUSION: COVID-19 associated acute pancreatitis affected mostly females. The median age of the patients was 53.5 years. Concerning laboratory findings, lipase and amylase were greater than three times the ULN while WBC counts and CRP were elevated in the most of the cases. The most frequent gastrointestinal, respiratory and general symptom was abdominal pain, dyspnea and fever, respectively.

review

The most common imaging feature was acute interstitial edematous pancreatitis and the most frequent comorbidity was arterial hypertension while several patients had no medical history. The outcome was favorable despite the fact that most of the patients experienced severe and critical illness.

LIMITATIONS: Our results are limited by the quality and extent of the data in the reports. More specifically, case series and case reports are unchecked, and while they can recommend hypotheses they are not able to confirm robust associations.

CONFLICT OF INTEREST: None

cute pancreatitis is the leading cause of hospital admission for disorders of the gastrointestinal tract in several countries.¹ Gallstones and alcohol overconsumption are well-established risk factors. Other factors, possibly genetic, probably have a role. Drugs are an additional causative factor of acute pancreatitis. Moreover, smoking and diabetes type II increase the probability of acute pancreatitis development.

Mild cases are generally successfully managed with a conservative approach. Severe cases frequently need admission to an intensive care unit for monitoring and managing complications of the disease, which are related to high rates of mortality, even when the treatment is optimal.²

Approximately 10% of cases of acute pancreatitis are considered to have infectious microorganisms as an underlying cause.³ These microorganisms include viruses (like Coxsackie B and hepatitis), bacteria (like *Mycoplasma pneumonia* and *Leptospira*), and parasites (like *Ascaris lumbricoides* and *Fasciola hepatica*). Each microorganism leads to acute pancreatitis through various mechanisms.³ Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread rapidly worldwide and is characterized by the World Health Organization as an international public health emergency. Besides typical symptoms and signs from respiratory system, acute pancreatitis has been reported during the course of the disease.⁴

COVID-19 associated pancreatic inflammation results from the expression of angiotensin converting enzyme 2 (ACE2) receptors in pancreatic tissue. The structural protein glycosylated-spike (S) protein, encoded by SARS-CoV-2 genome, primarily induces the immune response of the host. The S protein binds to ACE2 receptor sites on the cell surface membrane mediating the cell invasion. ACE2 receptors are not only expressed in lung alveolar type-2 cells. ACE2 receptors are expressed in the pancreas, in both exocrine glands and islets, in a higher grade than in the lungs.^{5,6} This expression of ACE2 receptors can lead to pancreatic cell damage during COVID-19 infection. Direct cytotoxic action of SARS-CoV-2 or indirect, immune-mediated, systemic inflammation could be the mechanism of pathogenesis for pancreatic injury.^{5,6}

Globally, the incidence of acute pancreatitis ranges between 5 and 80 per 100000 population, with the highest incidence observed in the United States and Finland.⁷ The incidence of SARS-CoV-2 infection varies among regions. Cyprus has the highest incidence of COVID-19 cases among its population in Europe at 55424 per 100000 people, followed by a rate of 52 738 per 100000 in Iceland.⁸ In United States the incidence ranges between 2698 cases per 100000 population in Hawaii and 14541 cases per 100000 population in North Dakota.⁸ In this study, we aimed to review and analyze all reported cases of COVID-19 associated acute pancreatitis, reporting the demographics, clinical characteristics, laboratory and imaging findings, comorbidities and outcomes.

CASES AND METHODS

Search strategy and article selection

We conducted a systematic search of Pubmed/ MEDLINE, SciELO and Google Scholar to identify case reports and case series, reporting COVID-19 associated acute pancreatitis in adults, using the Patient, Intervention, Comparison and Outcome (PICO) Model.⁹ There were no ethnicity or gender restrictions. In addition, there were no language restrictions. We assessed all articles published from 01 January 2020 to 20 April 2021. A protocol of the study, including details of the methods used in the systematic review has been deposited in the PROSPERO database (https://www.crd.

york.ac.uk/PROSPERO/) with the registration number CRD42021266917.

The following terms searched in were combination:"COVID-19" OR "SARS-CoV-2" OR "Coronavirus 19" AND "Pancreatic Inflammation" OR "Pancreatitis" OR "Pancreatic Injury" OR "Pancreatic Disease" OR "Pancreatic Damage". The search was conducted by two reviewers (VEG, CD). Articles were first screened for relevance by title. Then they were evaluated by abstract. The relevant case reports were enrolled for full-text review. Moreover, a manual search of the lists of the references of these texts was performed for identifying additional relevant case reports and case series.

Case reports and case series describing COVID-19 associated acute pancreatitis in adults were included. COVID-19 infection was established with testing of nasal and throat swabs using reverse transcription polymerase chain reaction. The diagnosis of acute pancreatitis was confirmed in accordance to the revised criteria of the Atlanta Acute Pancreatitis Classification Working Group.¹⁰ At least two of the following three criteria had to be present for a diagnosis of acute pancreatitis: a) typical pain of acute pancreatitis (acute onset of a severe and persistent epigastric pain often with radiation to the back) b) serum lipase or amylase elevated at least three times the upper limit of normal; c) compatible imaging findings of acute pancreatitis on abdominal computed tomography (CT), on magnetic resonance imaging (MRI) or abdominal ultrasonography (U/S).¹⁰ Exclusion of other causes of acute pancreatitis was also required for the selection of the cases.

Data extraction

The following data were extracted from each report: the first author, year of publication, age of the patient, gender, gastrointestinal symptoms due to acute pancreatitis, respiratory-general symptoms, COVID-19 severity, underlying diseases, laboratory findings, imaging features and outcome. The tool suggested by Murad et al to assess the methodological quality and synthesis of the case series and case reports was utilized.¹¹ The possible best score was 6 for a case report or a case series of good quality. The patients represented the whole experience of the researchers, the diagnosis of SARS-CoV-2 and the outcomes were adequately ascertained; other causes of pancreatitis were excluded. The follow-up was long enough for outcomes to occur and the described cases had sufficient details to allow other researchers to replicate the findings. Table 1 shows the use of the tool suggested by Murad et al in our review. In addition, we followed the PRISMA (Preferred

Reporting Items For Systematic Reviews And Meta-Analyses) guidelines for writing this review.¹²

The statistical analysis of data was performed with IBM SPSS for Windows, Version 13.0 (Armonk, New York, United States: IBM Corp). Continuous variables were tested for normality of distribution by the Kolmogorov-Smirnov test. For normally distributed values, descriptive results are presented as mean (standard deviation) and median while categorical variables are mentioned as numbers and percentages. The meta-regression analysis was performed using a random-effects model and stepwise selection of variables.¹³ To determine if the findings affected the severity of COVID-19, we used a meta-regression analysis using the following equations: Severity1= β 0+ β 1*log1(lipase) and Severity2= β 0+ β 1*log2(amylase).

RESULTS

The systematic search identified 71 possibly relevant records after review of the title, abstract or full text screening, and after exclusion of duplicates (**Figure 1**). Forty records were excluded after careful screening of the titles and abstracts, since they did not mention COVID-19 associated with acute pancreatitis presented as case reports or case series. Finally, we identified 31 articles (30 case reports and 1 case series of 2 cases), which included 32 cases of COVID-19 induced acute pancreatitis (**Tables 2, 3, 4**).^{14.44} Nineteen patients were females (59.4%) and 13 patients were males (40.6%). The median age was 53.5 years (range 20-76 years). The median age of the females was 52 years (range 20-76 years) (median 52) years and the median age of the males was 48 (24-68) years.

The majority of the patients had abdominal pain as clinical manifestation (28/32, 87.5%). Other gastrointestinal symptoms were nausea, vomiting, diarrhea, constipation, anorexia and lack of flatus, while 2 (6.3%) of the patients presented with no gastrointestinal symptoms. Twenty (62.5%) patients presented with dyspnea and 14 (43.8%) presented with cough. A majority of patients had fever (59.4%). Four (12.5%) patients had no respiratory or general symptoms, while 2 (6.3%) patients had no respiratory symptoms. According to classification into severity of illness categories by National Institutes of Health (NIH),⁴⁵ 8 (25%) patients had mild SARS-CoV-2 illness, 4 (12.5%) patients had moderate SARS-CoV-2 illness, 10 (31.2%) patients had severe SARS-CoV-2 illness and 10 (31.2%) patients had critical SARS-CoV-2 illness (Table 4).

The data on serum amylase levels in 27 patients was over three times the upper limit of normal (ULN), while the rest had amylase levels less than three times of ULN.

review

Table 1. Tool for evaluating the methodological quality of case reports and case series of the current review suggested by Murad et al.¹¹

Domains	Leading explanatory questions	Cases and cases series included in the current review	Score
Selection	1. Does the patient(s) represent(s) the whole experience of the investigator (center) or is the selection method unclear to the extent that other patients with similar presentation may not have been reported?	Yes	1
Ascertainment	2. Was the exposure adequately ascertained?	Yes	1
Ascentainment	3. Was the outcome adequately ascertained?	Yes	1
	4. Were other alternative causes that may explain the observation ruled out?	Yes	1
Causality	5. Was there a challenge/rechallenge phenomenon?	No	0
-	6. Was there a dose-response effect?	No	0
	7. Was follow-up long enough for outcomes to occur?	Yes	1
Reporting	8. Is the case(s) described with sufficient details to allow other investigators to replicate the research or to allow practitioners make inferences related to their own practice?	Yes	1
Total Score			6

Data about lipase levels were available in 22 patients. The majority of these patients (21/22, 95.5%) had lipase levels over three times of ULN while only 1 patient (1/22, 0.5%) had lipase levels less than three times of ULN. Data about white blood cells (WBC) count were available in 26 patients. Twelve patients (12/26, 46.2%) had elevated WBC count, 12 (46.2%) had WBC count with normal limits while 2 (7.6%) had decreased WBC count. Data on C-reactive protein were available in 20 patients. Eighteen patients (90%) had elevated levels of CRP while 2 (10%) had CRP levels within normal limits. Imaging data were available in 31 patients (Table 4). Twenty-one (67.8%) of the patients had abdominal CT or MRI features compatible with acute interstitial edematous pancreatitis. Medical history data were available in 31 patients. Arterial hypertension was most common, followed by diabetes mellitus, obesity, cholecystectomy and others. Two female patients were pregnant while 12 patients (38.5%) had no medical history.

Data on outcome were available in 30 cases. All these patients recovered (30/30, 100%). In two cases, the outcome was unknown because the article was published while patients were still hospitalized.

The meta-regression analysis included the 30 articles that presented full laboratory findings following development of acute pancreatitis (**Table 5**). The R value of

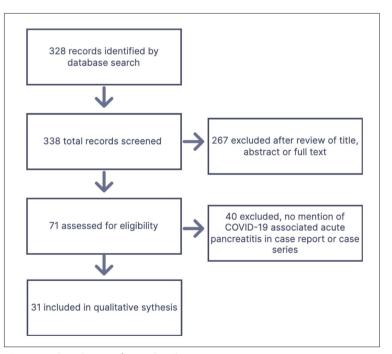


Figure 1. Flow diagram for study selection.

COVID-19 AND ACUTE PANCREATITIS

 Table 2. Demographic and clinical characteristics including COVID-19 severity and outcome of patients with COVID-19-induced acute pancreatitis.

panci	reatitis.						
#	Author, Year	Age/ Gender	Medical history	Gastrointestinal manifestations	Respiratory- general symptoms	Severity of COVID-19	Outcome
1	Meyers, 2020 ¹⁴	67/M	Arterial hypertension Cholecystectomy Alcohol use	Abdominal pain	Dyspnea Fever	Severe	Recovered
2	Karimzadeh, 2020 ¹⁵	65/F	Arterial hypertension Asthma	Abdominal pain Nausea	Dyspnea Chills Myalgia	Severe	Recovered
3	Shinohara, 2020 ¹⁶	58/M	Arterial hypertension	Abdominal pain	Dyspnea Fever	Critical	Recovered
4	Rabice, 2020 ¹⁷	36/F	Pregnancy Diabetes mellitus Asthma Obesity	Abdominal pain Nausea Vomiting	Dry cough Fever Myalgia	Severe	Recovered
5	Meireles, 2020 ¹⁸	36/F	Post-HELLP syndrome Stage V chronic kidney disease Arterial hypertension	Abdominal pain Nausea Vomiting	Dry cough Dyspnea Fever	Moderate	Recovered
6	Fernandes, 2020 ¹⁹	36/F	No medical history	Abdominal pain	Dyspnea Fever Headache	Moderate	Recovered
7	Alwaeli, 2020 ²⁰	30/M	No medical history	Abdominal pain Nausea Vomiting Diarrhea	Dry cough Dyspnea Fever	Critical	Recovered
8	Narang, 2020 ²¹	20/F	Pregnancy Obesity Cholocystectomy	Abdominal pain Nausea Vomiting	Dyspnea	Critical	Recovered
9	Kandasamy, 2020 ²²	45/F	No medical history	Abdominal pain Nausea Vomiting	Dyspnea	Severe	Recovered
10	Kumaran, 2020 ²³	67/F	Laparotomy and small bowel resection and anastomosis of superior mesenteric artery stenosis Arterial hypertension	Abdominal pain Diarrhea Vomiting	Dyspnea	Severe	Recovered
11	Acherjya, 2020 ²⁴	57/F	Arterial hypertension Diabetes mellitus Active malignancy of breast and larynx	Abdominal pain Vomiting	No respiratory symptoms Fever Generalized body ache Loss of smell Fatigue Arthralgia	Severe	Recovered
12	Bokhari, 2020 ²⁵	32/M	No medical history	Abdominal pain Vomiting	Productive cough Fever Myalgia	Mild	Recovered
13	Mazrouei, 2020 ²⁶	24/M	N/A	Abdominal pain Nausea Vomiting	No respiratory- other symptoms	Mild	Recovered
14	Patnaik, 2020 ²⁷	29/M	No medical history	Abdominal pain	Dyspnea Fever	Moderate	Recovered

review

 Table 2 (cont.). Demographic and clinical characteristics including COVID-19 severity and outcome of patients with

 COVID-19-induced acute pancreatitis.

#	Author, Year	Age/ Gender	Medical history	Gastrointestinal manifestations	Respiratory- general symptoms	Severity of COVID-19	Outcome
15	Schepis, 2020 ²⁸	67/F	Recent hospitalization for Interstitial Edematous acute pancreatitis of unknown origin	Abdominal pain Vomiting	No respiratory- other symptoms	Mild	Recovered
16	Aloysius, 2020 ²⁹	36/F	Chronic anxiety Obesity	Abdominal pain Nausea Vomiting Diarrhea	Dry cough Dyspnea Fever	Critical	Recovered
17	Gonzalo-Voltas, 2020 ³⁰	76/F	Hypercholesterolemia Gastroesophageal reflux	Abdominal pain Vomiting	No respiratory- other symptoms	Mild	Recovered
18	Alves, 2020 ³¹	56/F	Arterial hypertension	Abdominal pain	Dry cough Dyspnea Fatigue	Critical	Recovered
19	Ghosh, 2020 ³²	63/M	Diabetes mellitus	No Gastrointestinal Symptoms	Dyspnea Dry cough Fever	Severe	Recovered
20	Kataria, 2020 ³³	49/F	No medical history	Abdominal pain Nausea Vomiting	Dyspnea Dry cough Lethargy Fever	Critical	Recovered
21	Hadi, 2020 ³⁴	47/F	No medical history	Anorexia	Dyspnea Fever Headache Neck Pain Sore Throat	Critical	N/A
22	Hadi, 2020 ³⁴	68/F	Arterial hypertension Hypothyroidism Osteoporosis	Abdominal pain Vomiting Diarrhea	Fever Fatigue Polydipsia	Critical	N/A
23	Brikman, 2020 ³⁵	61/M	No medical history	Abdominal pain	Dyspnea Cough Fever	Critical	Recovered
24	Lakshmanan, 2020 ³⁶	68/M	Nursing home resident Diabetes mellitus Arterial hypertension Stage IV chronic kidney disease	Anorexia Nausea Vomiting	No respiratory- other symptoms	Mild	Recovered
25	Miao, 2020 ³⁷	26/F	No medical history	Abdominal pain Vomiting	No respiratory symptoms Fever	Mild	Recovered
26	Pinte, 2020 ³⁸	47/M	No medical history	Abdominal pain Nausea Constipation Lack of flatus	Dry cough	Mild	Recovered
27	Anand, 2020 ³⁹	59/F	Cholecystectomy Thrombophilia	Abdominal pain Constipation	Cough Fever Sore Throat Myalgia	Mild	Recovered

COVID-19 AND ACUTE PANCREATITIS

 Table 2 (cont.).
 Demographic and clinical characteristics including COVID-19 severity and outcome of patients with COVID-19-induced acute pancreatitis.

#	Author, Year	Age/ Gender	Medical history	Gastrointestinal manifestations	Respiratory- general symptoms	Severity of COVID-19	Outcome
28	Wifi, 2021 ⁴⁰	72/F	Obesity Arterial hypertension Ischemic heart disease	Abdominal pain Nausea Vomiting	Cough Nasal Sneezing	Severe	Recovered
29	Mohammadi Arbati, 2021 ⁴¹	28/M	No medical history	Abdominal pain Nausea Vomiting	Dyspnea Dry cough Fever Myalgia	Critical	Recovered
30	Maalouf, 2021 ⁴²	62/M	Arterial hypertension Diabetes mellitus End-stage renal disease status Post Kidney Transplant	Abdominal pain Diarrhea Vomiting Anorexia	Dyspnea	Moderate	Recovered
31	AlHarm, 2021 ⁴³	52/F	Diabetes mellitus Arterial hypertension Hypothyroidism Obesity	Abdominal pain Nausea Vomiting	Dry cough Dyspnea Fever	Severe	Recovered
32	Chivato Martín- Falquina, 2021 ⁴⁴	55/M	No medical history	No Gastrointestinal Symptoms	Dyspnea	Severe	Recovered

HELLP: Hemolysis, Elevated Liver Enzymes, Low Platelet Count.

Table 3. Laborato	ry and Imaging [.]	findings among the	e 32 cases following	development of acu	ute pancreatitis.
-------------------	-----------------------------	--------------------	----------------------	--------------------	-------------------

#	Author, Year	Lipase (U/L)	Amylase (U/L)	WBC/CRP	Abdominal imaging features
1	Meyers, 2020 ¹⁴	>3 times of UNL	N/A	N/A / N/A	Abdominal CT: acute interstitial edematous pancreatitis.
2	Karimzadeh, 2020 ¹⁵	>3 times of UNL	<3 times of ULN	Normal/ N/A	Abdominal CT: no abnormal findings.
3	Shinohara, 2020 ¹⁶	N/A	>3 times of UNL	Normal/ Elevated	Abdominal CT: acute interstitial edematous pancreatitis.
4	Rabice, 2020 ¹⁷	>3 times of UNL	<3 times of ULN	Normal/ N/A	Abdominal CT was not recommended as it would not change clinical management.
5	Meireles, 2020 ¹⁸	>3 times of UNL	>3 times of UNL	N/A/ Elevated	Angio-abdominal CT: exclusion of ischemic changes
6	Fernandes, 2020 ¹⁹	>3 times of UNL	>3 times of UNL	N/A/ N/A	Abdominal CT: acute interstitial edematous pancreatitis.
7	Alwaeli, 2020 ²⁰	>3 times of UNL	<3 times of ULN	Normal/ N/A	Abdominal CT: acute interstitial edematous pancreatitis.
8	Narang, 2020 ²¹	>3 times of UNL	>3 times of UNL	Elevated/ N/A	Abdominal MRI: acute interstitial edematous pancreatitis.
9	Kandasamy, 2020 ²²	>3 times of UNL	>3 times of UNL	Elevated/ N/A	Abdominal CT: acute interstitial edematous pancreatitis.
10	Kumaran, 2020 ²³	N/A	>3 times of UNL	Elevated/ Elevated	Abdominal CT: necrotizing pancreatitis
11	Acherjya, 2020 ²⁴	>3 times of UNL	<3 times of UNL	Decreased/ Elevated	Abdominal CT: acute interstitial edematous pancreatitis.
12	Bokhari, 2020 ²⁵	>3 times of UNL	>3 times of UNL	Elevated/ Elevated	Abdominal CT: acute interstitial edematous pancreatitis.

review

Table 3 (cont.). Laboratory and Imaging findings among the 32 cases following development of acute pancreatitis.

#	Author, Year	Lipase (U/L)	Amylase (U/L)	WBC/CRP	Abdominal imaging features
13	Mazrouei, 2020 ²⁶	>3 times of UNL	>3 times of UNL	N/A N/A	Abdominal CT: acute interstitial edematous pancreatitis.
14	Patnaik, 2020 ²⁷	>3 times of UNL	>3 times of UNL	Elevated/ Elevated	Abdominal CT, Abdominal U/S : acute interstitial edematous pancreatitis and no evidence of common bile duct calculi.
15	Schepis, 2020 ²⁸	N/A	>3 times of UNL	Normal/ N/A	Abdominal CT: large pancreatic pseudocyst causing a partial stomach outlet obstruction
16	Aloysius, 2020 ²⁹	>3 times of UNL	>3 times of UNL	Normal/ Elevated	Abdominal CT: normal gall bladder, biliary tract, with unremarkable pancreas.
17	Gonzalo-Voltas, 2020 ³⁰	N/A	>3 times of UNL	Elevated/ Elevated	Abdominal CT: acute interstitial edematous pancreatitis.
18	Alves, 2020 ³¹	>3 times of UNL	>3 times of UNL	N/A/ N/A	Abdominal CT: acute interstitial edematous pancreatitis.
19	Ghosh, 2020 ³²	<3 times of UNL	<3 times of UNL	Normal/ Elevated	Abdominal CT: necrotizing pancreatitis
20	Kataria, 2020 ³³	>3 times of UNL	>3 times of UNL	Normal/ Elevated	Abdominal CT: acute interstitial edematous pancreatitis.
21	Hadi, 2020 ³⁴	N/A	>3 times of UNL	Normal/ Elevated	Abdominal U/S: acute interstitial edematous pancreatitis.
22	Hadi, 2020 ³⁴	N/A	>3 times of UNL	Normal/ Elevated	N/A
23	Brikman, 2020 ³⁵	>3 times of UNL	<3 times of UNL	Elevated/ N/A	Abdominal CT: acute interstitial edematous pancreatitis.
24	Lakshmanan, 2020 ³⁶	>3 times of UNL	>3 times of UNL	Normal/ Elevated	Abdominal CT: acute interstitial edematous pancreatitis (peripancreatic fat stranding, greatest around the tail, with mild duodenal wall thickening and adjacent fat stranding)
25	Miao, 2020 ³⁷	>3 times of UNL	N/A	Normal/ Elevated	Abdominal CT, abdominal U/S: acute interstitial edematous pancreatitis.
26	Pinte, 2020 ³⁸	N/A	N/A	Elevated/ Elevated	Abdominal CT: acute interstitial edematous pancreatitis.
27	Anand, 2020 ³⁹	N/A	N/A	Elevated/ Elevated	Abdominal CT: acute interstitial edematous pancreatitis.
28	Wifi, 2021 ⁴⁰	>3 times of UNL	>3 times of UNL	Elevated/ Elevated	Abdominal CT: without abnormal findings
29	Mohammadi Arbati, 2021 ⁴¹	>3 times of UNL	>3 times of UNL	Elevated/ Normal	Abdominal CT: necrotizing pancreatitis
30	Maalouf, 2021 ⁴²	>3 times of UNL	N/A	Decreased/ Elevated	Abdominal MRI: necrotizing pancreatitis
31	AlHarm, 2021 ⁴³	N/A	<3 times of UNL	Elevated/ Normal	Abdominal CT: acute interstitial edematous pancreatitis.
32	Chivato Martín- Falquina, 202144	N/A	>3 times of UNL	N/A N/A	Abdominal CT: acute interstitial edematous pancreatitis.

CRP: C-reactive protein; CT: Computerized tomography; MRI: Magnetic resonance imaging, U/S: Ultrasonography, ULN: Upper limit of normal, WBC: White blood cells.

Table 4. Demographic and clinical data from the 32 cases.

Demographics	
Gender	
Males	13/32 (59.4)
Females	19/32 (40.6)
Gastrointestinal symptoms	
Abdominal pain	28/32 (87.5)
Nausea	14/32 (43.8)
Vomiting	20/32 (62.5)
Diarrhea	5/32 (15.6)
Constipation	2/32 (6.3)
Anorexia	3/32 (9.3)
Lack of flatus	1/32 (3.1)
No gastrointestinal symptoms	2/32 (6.3)
Respiratory/General symptoms	
Dyspnea	20/32 (62.5)
Cough	14/32 (43.8)
Fever	19/32 (59.4)
Myalgia	4/32 (12.5)
Fatigue	3/32 (9.3)
Headache	2/32 (6.3)
No respiratory or general symptoms	4/32 (12.5)
No respiratory symptoms	2/32 (6.3)
COVID-19 Severity	
Mild SARS-CoV-2 illness	8/32 (25)
Moderate SARS-CoV-2 illness	4/32 (12.5)
Severe SARS-CoV-2 illness	10/32 (31.2)
Critical SARS-CoV-2 illness/ Need for admission to ICU	10/32 (31.2)
Laboratory findings following development of acute pancreatitis	
Amylase levels over three times of ULN	20/27 (74.1)
Amylase levels less than three times of ULN	7/27 (25.9)
Lipase levels over three times of ULN	21/22 (95.5)
Lipase levels less than three times of ULN	1/22 (0.5)
Elevated white blood cell count	12/26 (46.2)

COVID-19 AND ACUTE PANCREATITIS

Table 4 (cont.). Demographic and clinical data from the 32 cases.

tuble i (conta). Demographic and ch	
Demographics	
White blood cell count with normal limits	12/26 (46.2)
Decreased WBC count	2/26 (7.6)
Elevated levels of CRP	18/20 (90)
C-reactive protein levels within normal limits	2/20 (10)
Imaging features	
Acute interstitial edematous pancreatitis	21/31 (67.8)
Necrotizing pancreatitis	4/31 (12.9)
No abnormal imaging findings	3/31 (9.7)
Abdominal CT was not performed due to pregnancy	1/31 (3.2)
Angio-abdominal CT was conducted in order to exclude ischemic changes	1/31 (3.2)
Large pancreatic pseudocyst causing a partial stomach outlet obstruction on abdominal CT	1/31 (3.2)
Medical history	
Arterial hypertension	11/31 (35.5)
Diabetes mellitus	6/31 (19.4)
Obesity	5/31 (16.1)
Cholecystectomy	3/31 (9.7)
Asthma	2/31 (6.5)
Chronic kidney disease	3/31 (9.7)
Osteoporosis	1/31 (3.2)
Hypothyroidism	2/31 (6.5)
Gastroesophageal reflux	1/31 (3.2)
Hypercholesterolemia	1/31 (3.2)
Active cancer of larynx and breast	1/31 (3.2)
Thrombophilia	1/31 (3.2)
Pregnancy	2/31 (6.5)
No medical history	12/31 (38.5)
Outcomes	
Recovery	30/30 (100)
Death	0

Data are n (%); ULN: Upper limit of normal.

 Table 5. Data for the meta-regression meta-analysis.

#	Author, Year	Age/ Gender	Severity of COVID-19	Lipase (U/L)	Amylase (U/L)
1	Meyers, 2020 ¹⁴	67/M	Severe	>3 times of UNL	N/A
2	Karimzadeh, 2020 ¹⁵	65/F	Severe	>3 times of UNL	<3 times of ULN
3	Shinohara, 2020 ¹⁶	58/M	Critical	N/A	>3 times of UNL
4	Rabice, 2020 ¹⁷	36/F	Severe	>3 times of UNL	<3 times of ULN
5	Meireles, 2020 ¹⁸	36/F	Moderate	>3 times of UNL	>3 times of UNL
6	Fernandes, 2020 ¹⁹	36/F	Moderate	>3 times of UNL	>3 times of UNL
7	Alwaeli, 2020 ²⁰	30/M	Critical	>3 times of UNL	<3 times of ULN
8	Narang, 2020 ²¹	20/F	Critical	>3 times of UNL	>3 times of UNL
9	Kandasamy, 2020 ²²	45/F	Severe	>3 times of UNL	>3 times of UNL
10	Kumaran, 2020 ²³	67/F	Severe	N/A	>3 times of UNL
11	Acherjya, 2020 ²⁴	57/F	Severe	>3 times of UNL	<3 times of UNL
12	Bokhari, 2020 ²⁵	32/M	Mild	>3 times of UNL	>3 times of UNL
13	Mazrouei, 2020 ²⁶	24/M	Mild	>3 times of UNL	>3 times of UNL
14	Patnaik, 2020 ²⁷	29/M	Moderate	>3 times of UNL	>3 times of UNL
15	Schepis, 2020 ²⁸	67/F	Mild	N/A	>3 times of UNL
16	Aloysius, 2020 ²⁹	36/F	Critical	>3 times of UNL	>3 times of UNL
17	Gonzalo-Voltas, 2020 ³⁰	76/F	Mild	N/A	>3 times of UNL
18	Alves, 2020 ³¹	56/F	Critical	>3 times of UNL	>3 times of UNL
19	Ghosh, 2020 ³²	63/M	Severe	<3 times of UNL	<3 times of UNL
20	Kataria, 2020 ³³	49/F	Critical	>3 times of UNL	>3 times of UNL
21	Hadi, 2020 ³⁴	47/F	Critical	N/A	>3 times of UNL
22	Hadi, 2020 ³⁴	68/F	Critical	N/A	>3 times of UNL
23	Brikman, 2020 ³⁵	61/M	Critical	>3 times of UNL	<3 times of UNL
24	Lakshmanan, 2020 ³⁶	68/M	Mild	>3 times of UNL	>3 times of UNL
25	Miao, 2020 ³⁷	26/F	Mild	>3 times of UNL	N/A
26	Pinte, 2020 ³⁸	47/M	Mild	N/A	N/A
27	Anand, 2020 ³⁹	59/F	Mild	N/A	N/A
28	Wifi, 2021 ⁴⁰	72/F	Severe	>3 times of UNL	>3 times of UNL
29	Mohammadi Arbati, 2021 ⁴¹	28/M	Critical	>3 times of UNL	>3 times of UNL
30	Maalouf, 2021 ⁴²	62/M	Moderate	>3 times of UNL	N/A
31	AlHarm, 202143	52/F	Severe	N/A	<3 times of UNL
32	Chivato Martín-Falquina, 202144	55/M	Severe	N/A	>3 times of UNL

ULN: Upper limit of normal

0.461 represents the simple correlation, which indicates a moderate degree of correlation. The R² value indicates how much of the total variation in severity, the dependent variable, was explained by the independent variables. In this case, R² indicated that only 21.3% could be explained by the independent variables. The association of the regression model was statistically significant (i.e., a good fit for the data) (P<.05) (**Tables 6 and 7**).

DISCUSSION

There are very few case reports and case series describing COVID-19 induced acute pancreatitis. To our knowledge, we present the largest and most comprehensive systematic review of case reports and case series on SARS-CoV-2 infection causing acute pancreatitis. The ages of the patients were uniformly distributed with a median age of 53.5 years. The majority of the patients were females. Lipase and amylase were greater than three times the ULN while WBC counts and CRP were elevated in the most of the cases. The majority of the patients mentioned abdominal pain while other frequent symptoms were nausea and vomiting. The most common respiratory symptoms were dyspnea and cough. Fever was the most frequent general symptom and in some cases neither respiratory nor general symptoms were present. Most of the patients experienced severe and critical SARS-CoV-2 illness. The imaging features of abdominal CT were mostly compatible with acute interstitial edematous pancreatitis. The most frequent comorbidity was arterial hypertension and 38.5% of the patients had no medical history. In addition, where data were available, all the patients recovered.

The results of meta-regression analysis showed a low heterogeneity between the studies regarding the sever-

Table 6. Results of the regression analysis for lipase (n=24).

Parameter	Beta estimate	z	Р
ßO	484	780	.442
ß1	.753	2.072	.124

Severity1=-,484+753*log1(lipase)

Table 7. Results of the regression analysis for amylase lipase (n=27).

Parameter	Beta estimate	z	Р
ßO	484	780	.442
ß1	1.223	1.586	.042

Severity2=-,484+1,1223*log2(amylase)

ity of COVID-19 disease and that serum levels of lipase and amylase had a moderate positive correlation with the severity of COVID-19 disease.

Data from studies about COVID-19 patients presenting with acute pancreatitis are limited. Szatmary et al in a study of hospitalized patients for acute pancreatitis found only 5 patients with SARS-CoV-2 infection in whom other causes of acute pancreatitis were excluded. All the patients were young adult males with a median age of 42 years and all were obese with no history of cardiovascular disease. There were no data about serum lipase levels; serum amylase levels were increased. Abdominal CT was used to establish the final diagnosis. The finding of pancreatic inflammation on CT was mild pancreatic edema without pancreatic or peripancreatic necrosis, compatible with acute interstitial edematous pancreatitis. In this study, all patients with COVID-19 associated acute pancreatitis recovered.⁴⁶

Our systematic review was written after a comprehensive search of the literature with specific criteria for inclusion and quality assessment. However, our results are limited by the quality and extent of the data in the reports. More specifically, case series and case reports are unchecked, and while they can recommend hypotheses they are not able to confirm robust associations. Clinicians should be aware of the few cases reported in the literature, suggesting that acute pancreatitis can result from COVID-19. While case reports can provide signals, they are not strong enough for statistical inference. Thus, the evidence provided is insufficient to suggest systematic screening in patients with COVID-19 for pancreatic involvement, but should alert physicians of possible pancreatic involvement by SARS-CoV-2.

In conclusion, COVID-19 associated acute pancreatitis affected mostly females with a median age of 53.5 years. Concerning laboratory findings, lipase and amylase were greater than three times the ULN while WBC counts and CRP were elevated in the most of the cases. The most frequent gastrointestinal, respiratory and general symptom was abdominal pain, dyspnea and fever, respectively. The most common imaging feature was acute interstitial edematous pancreatitis and the most frequent comorbidity was arterial hypertension while several patients had no medical history. The outcome was favorable despite the fact that most of the patients experienced severe and critical illness. Our results warrant the need for larger controlled research to detect acute pancreatitis during COVID-19 course and to provide data on patient characteristics and outcomes.

REFERENCES

 Lankisch PG, Apte M, Banks PA. Acute pancreatitis. Lancet. 2015;386(9988):85-96.
 Greenberg JA, Hsu J, Bawazeer M, Mar-

Cheenberg SA, Hsu S, Dawazeer M, Marshall J, Friedrich JO, Nathens A, et al. Clinical practice guideline: management of acute pancreatitis. Can J Surg. 2016;59(2):128-40.
 Rawla P, Bandaru SS, Vellipuram AR. Review of Infectious Etiology of Acute Pancreatitis.

Gastroenterology Res. 2017;10(3):153-8. 4. Gupta V. COVID-19 and Acute Pancreati-

4. Gupta V. COVID-19 and Acute Pancreatitis: What Do Surgeons Need to Know? Indian J Surg. 2020:1-4.

 Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, et al. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends Microbiol. 2016;24(6):490-502.

6. Liu F, Long X, Zhang B, Chen X, Zhang Z. ACE2 Expression in Pancreas May Cause Pancreatic Damage After SARS-CoV-2 Infection. Clin Gastroenterol Hepatol. 2020:18(9):2128-2130.e2.

7. Banks PA. Epidemiology, natural history, and predictors of disease outcome in acute and chronic pancreatitis. Gastrointest Endosc. 2002 Dec;56(6 Suppl):S226-30.

8. Incidence of coronavirus (COVID-19) cases in Europe as of June 12, 2022, by country. 2022, Cited: July 23. Available from: https:// www.statista.com/statistics/1110187/coro-

navirus-incidence-europe-by-country/ 9. Systematic Reviews: What is a systematic review? [Internet]. Curtain University. Cited July 2022: https://libguides.library.curtin. edu.au/systematic-reviews

10. Banks PA, Bollen TL, Dervenis C, Gooszen HG, Johnson CD, Sarr MG, et al. Acute Pancreatitis Classification Working Group. Classification of acute pancreatitis--2012: revision of the Atlanta classification and definitions by international consensus. Gut. 2013;62(1):102-11.

11. Murad MH, Sultan S, Haffar S, Bazerbachi F. Methodological quality and synthesis of case series and case reports. BMJ Evid Based Med. 2018;23(2):60-63.

12. Moher D, Liberati A, Tetzlaff J, Altman DG. PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.

 Borenstein M, Hedges LV, Higgins JP, Rothstein HR. A basic introduction to fixedeffect and random-effects models for metaanalysis. Res Synth Methods. 2010;1(2):97-111. doi: 10.1002/irsm.12.

14. Meyers MH, Main MJ, Obstein KL. A Case of COVID-19-Induced Acute Pancreatitis. Pancreas. 2020;49(10):e108-e109.

 15. Karimzadeh S, Manzuri A, Ebrahimi M, Huy NT. COVID-19 presenting as acute pancreatitis: Lessons from a patient in Iran.

Pancreatology. 2020;20(5):1024-5. **16.** Shinohara T, Otani A, Yamashita M, Wakimoto Y, Jubishi D, Okamoto K, et al. Acute Pancreatitis During COVID-19 Pneumonia. Pancreas. 2020;49(10):e106-e108.

17. Rabice SR, Altshuler PC, Bovet C, Sullivan C, Gagnon AJ. COVID-19 infection presenting as pancreatitis in a pregnant woman: A case report. Case Rep Womens Health. 2020;27:e00228.

18. Meireles PA, Bessa F, Gaspar P, Parreira I, Silva VD, Mota C, et al. Acalculous Acute Pancreatitis in a COVID-19 Patient. Eur J Case Reo Intern Med. 2020;7(6):001710.

19. Fernandes DA, Yumioka AS, Filho HRM. SARS-CoV-2 and acute pancreatitis: a new etiological agent? Rev Esp Enferm Dig. 2020;112(11):890.

20. Alwaeli H, Shabbir M, Khamissi Sobi M, Alwaeli K. A Case of Severe Acute Pancreatitis Secondary to COVID-19 Infection in a 30-Year-Old Male Patient. Cureus. 2020;12(11):e11718.

21. Narang K, Szymanski LM, Kane SV, Rose CH. Acute Pancreatitis in a Pregnant Patient With Coronavirus Disease 2019 (COVID-19). Obstet Gynecol. 2020;Publish Ahead of Print.

 Kandasamy S. An unusual presentation of COVID-19: Acute pancreatitis. Ann Hepatobiliary Pancreat Surg. 2020;24(4):539-41.
 Kumaran NK, Karmakar BK, Taylor OM.

Coronavirus disease-19 (COVID-19) associated with acute necrotising pancreatitis (ANP). BMJ Case Rep. 2020;13(9):e237903.

24. Acherjya GK, Rahman MM, Islam MT, Alam AS, Tarafder K, Rahman MM, et al. Acute pancreatitis in a COVID-19 patient: An unusual presentation. Clin Case Rep. 2020;8(12):3400-3407.

25. Bokhari SMMA, Mahmood F. Case Report: Novel Coronavirus-A Potential Cause of Acute Pancreatitis? Am J Trop Med Hyg. 2020;103(3):1154-5.

26. Mazrouei SSA, Saeed GA, Al Helali AA. COVID-19-associated acute pancreatitis: a rare cause of acute abdomen. Radiol Case Rep. 2020;15(9):1601-3.

27. Patnaik RNK, Gogia A, Kakar A. Acute pancreatic injury induced by COVID-19. ID-Cases. 2020;22:e00959.

28. Schepis T, Larghi A, Papa A, Miele L, Panzuto F, De Biase L, et al. SARS-CoV2 RNA detection in a pancreatic pseudocyst sample. Pancreatology. 2020;20(5):1011-2.

29. Aloysius MM, Thatti A, Gupta A, Sharma N, Bansal P, Goyal H. COVID-19 presenting as acute pancreatitis. Pancreatology. 2020;20(5):1026-7.

30. Gonzalo-Voltas A, Fernández-Pérez-Torres CU, Baena-Díez JM. Acute pancreatitis in a patient with COVID-19 infection. Med Clin (Barc). 2020;155(4):183-4

31. Alves AM, Yvamoto EY, Marzinotto MAN, Teixeira ACS, Carrilho FJ. SARS-CoV-2 leading to acute pancreatitis: an unusual presentation. Braz J Infect Dis. 2020;24(6):561-4. **32.** Ghosh A, Gupta V, Misra A. COVID19 induced acute pancreatitis and pancreatic necrosis in a patient with type 2 diabetes. Diabetes Metab Syndr. 2020;14(6):2097-8 **33.** Kataria S, Sharif A, Ur Rehman A, Ahmed

Z, Hanan A. COVID-19 Induced Acute Pancreatitis: A Case Report and Literature Review. Cureus. 2020;12(7):e9169.

34. Hadi A, Werge M, Kristiansen KT, Pedersen UG, Karstensen JG, Novovic S, et al. Coronavirus Disease-19 (COVID-19) associated with severe acute pancreatitis: Case report on three family members. Pancreatology. 2020;20(4):665-7.

35. Brikman S, Denysova V, Menzal H, Dori G. Acute pancreatitis in a 61-year-old man with COVID-19. CMAJ. 2020;192(30):E858-E859.

36. Lakshmanan S, Malik A. Acute Pancreatitis in Mild COVID-19 Infection. Cureus. 2020;12(8):e9886.

37. Miao Y, Lidove O, Mauhin W. First case of acute pancreatitis related to SARS-CoV-2 infection. Br J Surg. 2020;107(8):e270.

38. Pinte L, Baicus C. Pancreatic involvement in SARS-CoV-2: case report and living review. J Gastrointestin Liver Dis. 2020;29(2):275-6.

39. Anand ER, Major C, Pickering O, Nelson M. Acute pancreatitis in a COVID-19 patient. Br J Surg. 2020;107(7):e182.

40. Wifi MN, Nabil A, Awad A, Eltatawy R. COVID-induced pancreatitis: case report. Egypt J Intern Med. 2021;33(1):10.

41. Mohammadi Arbati M, Molseghi MH. COVID-19 Presenting as Acute Necrotizing Pancreatitis. J Investig Med High Impact Case Rep. 2021;9:23247096211009393.

 Maalouf RG, Kozhaya K, El Zakhem A. SARS-CoV-2 induced necrotizing pancreatitis. Med Clin (Barc). 2021;S0025-7753(21)00025-7.

43. AlHarmi RAR, Fateel T, Sayed Adnan J, AlAwadhi K. Acute pancreatitis in a patient with COVID-19. BMJ Case Rep. 2021;14(2):e239656.

44. Chivato Martín-Falquina I, García-Morán S, Jiménez Moreno MA. Acute pancreatitis in SARS-CoV-2 infection. Beyond respiratory distress. Rev Esp Enferm Dig. 2021: Epub ahead of print.

45. Clinical Spectrum of SARS-CoV-2 Infection. 2022, Cited: July 23 https://www.covid19treatmentguidelines.nih.gov/overview/ clinical-spectrum/

46. Szatmary P, Arora A, Thomas Raraty MG, Joseph Dunne DF, Baron RD, Halloran CM. Emerging Phenotype of Severe Acute Respiratory Syndrome-Coronavirus 2-associated Pancreatitis. Gastroenterology. 2020 Oct;159(4):1551-4

review