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ABSTRACT: Hsp90 continues to be an important target for pharmaceutical
discovery. In this project, virtual screening (VS) for novel Hsp90 inhibitors was
performed using a combination of Autodock and Surflex-Sim (LB) scoring
functions with the predictive ability of 3-D QSAR models, previously generated
with the 3-D QSAutogrid/R procedure. Extensive validation of both structure-
based (SB) and ligand-based (LB), through realignments and cross-alignments,
allowed the definition of LB and SB alignment rules. The mixed LB/SB
protocol was applied to virtually screen potential Hsp90 inhibitors from the
NCI Diversity Set composed of 1785 compounds. A selected ensemble of 80
compounds were biologically tested. Among these molecules, preliminary data
yielded four derivatives exhibiting IC50 values ranging between 18 and 63 μM
as hits for a subsequent medicinal chemistry optimization procedure.

■ INTRODUCTION

Computer-aided virtual screening (VS) represents a powerful in
silico technique to discover new bioactive compounds,
providing solutions to many high-throughput screening
(HTS) problems, such as time and cost, by suggesting what
type of compounds should be used for HTS procedures, even
when no initial experimental data are available.1 According to
the data used, different strategies have been employed in VS:
when the structures of experimental three-dimensional (3-D)
targets are unknown, quantitative structure−activity relation-
ship (QSAR) and other ligand-based (LB) methods, such 3-D
QSAR and pharmacophore-based approaches,2 are used to
identify potential hits from chemical libraries; in contrast, in
cases where such 3-D information is available, structure-based
(SB) protocols that use molecular docking approaches are
mainly applied.3 Since the 3-D structures of new target proteins
are continuously becoming available, VS is increasingly
characterized by molecular docking applications. Acknowledged
as one of the fundamental procedures in SB drug discovery,
molecular docking, unfortunately, has significant limitation: in
fact, no scoring function has been developed yet that can
reliably and consistently predict a ligand-protein binding mode
and the binding affinity simultaneously. Therefore, a consensus
score strategy, based on the synergic use of the two main
computer-aided drug design (CADD) methodologies (SB and

LB methods), could improve the VS capability in recognizing
new bioactive compounds.4

In the present work, such a combination was applied to
identify new Hsp90 inhibitors.

Methodology Overview. As shown in Figure 1A, 3-D
QSAR models were built and externally validated for Hsp90
inhibitors as reported,5 and they were then employed as a
predictive tool in the VS protocol. The procedure was used to
rank a set of 1785 compounds (NCI Diversity Set) and
prioritize them for biological assay. Since the structures, having
unknown 3-D binding conformations, required alignment
before testing against the 3-D QSAR models, two different
alignment procedures were applied: an LB methodology, using
Surflex-sim,6 and an SB methodology, using AutoDock4,7

successfully reported as the molecular docking program for
Hsp90.8,9 Both the LB and the SB alignment protocols herein
have been tested and validated using a set of 15 compounds
(the training set used to build the 3-D QSAR models;5 see
Table S1 in the Supporting Information), retrieved from the
Protein Data Bank (PDB),10 with known binding modes using
either realignment (RA) or cross-alignment (CA) validations
(Figure 1B; see the Alignment Rules section). Both alignment
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methodologies (LB and SB) were applied on the external
database to obtain two separate sets of predicted binding
conformations used as external prediction sets to feed the 3-D
QSAR models5 and yield two sets of predicted pIC50 values.
The NCI Diversity Set was virtually screened employing this
LB-SB-VS strategy and 80 molecules were selected for enzyme-
based biological assays considering both the 3-D QSAR models’
predicted pIC50 values and the predicted free binding energy
from the AutoDock4 docking7 (see the Virtual Screening
section). Among the tested molecules, four resulted in
inhibiting the Hsp90 activity at micromolar levels.

Alignment Rules. In those cases where it is possible to
perform structure-based (SB) studies on large libraries of
compounds, to increase the flexibility of the search method, it
may be advantageous to carry out, in parallel, a ligand-based
(LB) alignment procedure. In fact, during an LB alignment, the
neglecting of proteins’ structural information allows one to
extend the alignment’s degrees of freedom (increased search
space range), voiding all the possible ligand-protein constraints
which can limit, during docking simulations, the ability to find
the appropriate poses for certain compounds. Therefore, in the
present study, LB and SB alignment methodologies were either
assessed (Figure 1B) on the 3-D QSAR’s training set

Figure 1. Overview of (A) the applied procedure and (B) alignment assessment protocol.
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compounds5 and then applied to determine the pose of
molecules with unknown binding modes as those comprised in
the NCI Diversity Set. The pipeline of the alignment processes
was described in detail in a previous work.4 In particular, the LB
approach was carried out using the principle of morphological
similarity implemented by the Surflex-sim6 program, whereas
the SB approach was performed by means of Autodock4.7 The

3-D coordinates of training set compounds,5 used to validate
the LB and SB procedure, were taken first from their respective
minimized complex (experimental conformation, EC) and
second from randomly built conformations (herein random
conformation, RC), using the ChemAxon Marvin software

Table 1. RMSD and AA Values Calculated between the
Random (RC) and Experimental Conformations (EC) in the
Realignment and Cross-Alignment Processes (RCRA and
RCCA, Respectively)

RCRA ECCA RCCA

entrya PDB code RC vs EC EC vs all RC vs all

1 1UY8 0.46 0.37 0.52
2 1UYC 0.47 0.45 0.49
3 1UYD 0.7 0.36 0.43
4 1UYE 0.69 0.55 0.6
5 1UYG 0.41 0.74 0.65
6 1UYH 0.46 0.38 0.49
7 1UYK 0.62 0.26 0.56
13 2BT0 0.58 0.33 0.48
14 2CCS 0.46 0.64 0.74
16 2CCU 0.8 3.5 3.8
17 3B25 0.48 0.39 0.21
18 3B26 0.5 0.6 0.35
20 3B28 0.71 0.55 0.45
21 3OWB 0.65 0.74 0.7
22 3OWD 0.98 0.3 0.81

AAb 100 93.33 93.33
aEntry numbers are referred to those reported in Table 1 of reference
5 bAlignment accuracy, which refers to the fraction of correct and
partially correct aligned structures (RMSD values of <2 Å and <3 Å,
respectively), and it is explained by eq 1.

Table 2. RMSD and DA Values of Best Docked (BD) and Best Cluster (BC) Conformations of Experimental (EC) and Random
Conformations (RC) Calculated after Superimposition on Experimental Conformation (EC) in Redocking (ECRD, RCRD) and
Cross-Docking (ECCD, RCCD) Procedures

ECRD RCRD ECCD RCCD

entrya PDB code BD BC BD BC BD BC BD BC

1 1UY8 5.63 4.55 4.79 4.13 2.11 2.14 3.09 2.01
2 1UYC 5.18 4.21 4.66 4.80 1.67 1.67 2.01 2.01
3 1UYD 2.67 4.42 2.59 2.59 1.77 1.77 1.28 1.28
4 1UYE 3.34 4.41 4.90 4.90 1.31 1.31 1.76 1.76
5 1UYG 7 5.39 4.86 4.86 1.5 1.5 1.8 1.8
6 1UYH 5.45 4.44 5.69 3.69 1.56 1.56 2.75 2.07
7 1UYK 6.17 5.4 5.83 5.83 1.7 1.7 2.05 2.05
13 2BT0 1.12 1.12 0.88 0.88 1.4 1.4 1.75 1.75
14 2CCS 0.82 0.82 2.7 0.49 1.40 1.40 1.37 1.37
16 2CCU 2.21 2.21 2.14 2.14 3.91 3.91 5.69 3.94
17 3B25 2.7 2.7 3.36 3.8 1.7 1.7 1.3 1.3
18 3B26 5.17 5.17 4.18 4.90 2.53 2.53 2.71 2.71
20 3B28 4 4 3.6 3.24 2.1 2.1 1.8 1.8
21 3OWB 4.73 4.44 5.57 4.46 2.76 2.14 2.87 2.27
22 3OWD 3.32 3.32 4.90 4.92 1.75 1.75 2.69 2.77

docking accuracy, DAb 23 20 17 20 80 80 67 70

aEntry numbers are referred to those reported in Table 1 of ref 5. bThis refers to the percentage of correct and partially correct docked structures
(RMSD values of <2 and 3 Å; respectively, see eq 1).

Table 3. Molecular Structure and Biological Activity of the
Most Active Compounds Selected by the VS Protocol
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(http://www.chemaxon.com), subsequently aligned to the
experimental poses (see the LB Alignment Assessment and
SB Alignment Assessment sections).

LB Alignment Assessment. The LB-based alignment
procedure assessment was carried out as follows: first, each
modeled structure (RC) was aligned to its experimental pose

Figure 2. Predicted activity contribution plots (solid: 75%, positive: green, negative: yellow), overlapped with PLS-coefficients plots (mesh: 65%,
positive: red, negative: blue) obtained from the used 3-D QSAR models at the selected PC,5 for the most active screened compounds in their BC
system (protein and pose): NCI23128 in 1UY6, NCI610930 in 1UYC, NCI117285 and NCI170578 in 1UY8.
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(random conformation realignment, RCRA); second, either the
experimental (EC) or modeled structure (RC) was aligned to a
target list containing all ligands in their binding conformation
except itself (experimental conformation cross-alignment
(ECCA) and random conformation cross-alignment
(RCCA)). The alignment fitness was quantified by evaluating
either the root mean square deviaton (RMSD) and the
subsequent alignment accuracy (AA, Table 1) values. Similar to
the definition of docking accuracy (DA, see below), AA can be
used, in an LB alignment, to explain the algorithm’s ability to
recognize the ligand’s pose, with respect to those exper-
imentally observed, and can be calculated by the following
equation derived from that of the DA:11

χ = ≤ + ≤ − ≤A a b afrmsd 0.5(frmsd frmsd ) (1)

where, in the case of docking accuracy, χA = DA, and, in the
case of alignment accuracy, χA = AA. χA can range between 0
(no alignment) and 1 (maximum performance of alignment).
For comparison purposes, a and b coefficients were chosen as
for the docking accuracy,11 following the guidelines indicated
by Vieth et al.:12 2 Å and 3 Å were selected as a threshold for

Figure 3. The most active screened compounds in their BC system (protein and pose) overlapped with 2YK216 (Hit 1 in orange, Hit 2 in cyan,
protein in cyan): (A) NCI610930 in 1UYC (ligand and protein in green), (B) NCI117285 in 1UY8 (ligand in yellow, protein in magenta), and (C)
NCI170578 in 1UY8 (ligand and protein in magenta).

Figure 4. Depiction of the most active screened compound
NCI610930 in its BC system (ligand and protein in green) overlapped
with 2YKI16 (brown colored).
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correct and partially correct aligned ligands, respectively;
structures with RMSD values over 3 Å were not included as
they were considered misaligned. Therefore, frmsd ≤ a and
frmsd ≤ b represent the fraction of aligned ligands showing an
RMSD value less than or equal to 2 and 3 Å, respectively.
Considering RCRA, all of the RMSD values in the training

set compounds were below 1 Å, resulting in an AA value equal
to 100%, while ECCA and RCCA led to AAs greater than 90%
(see Table 1).
The high AA values of the RCCA proved Surflex-Sim’s ability

to align randomly built conformations accurately, suggesting
that it would exhibit a similar accuracy, even with molecules
with unknown binding conformation and, thus, can be
considered as a useful tool for LB alignment of Hsp90
inhibitors in a VS protocol.
SB Alignment Assessment. Autodock47 was used for all

docking calculations. The AutoDockTools (ADT) package7

was employed to generate the docking input files and analyze
the docking results. The grid box was centered on the average
mass center of the ligands. A grid box size of 53 × 47 × 51
points, with a spacing of 0.375 Å, was set to accommodate all
considered Hsp90 experimental ligands and ATP binding site
residues. Autogrid4, as implemented in the Autodock software
package,7 was used to generate grid maps. The Lamarckian
genetic algorithm (LGA) was employed to generate orienta-
tions or conformations of the ligands within the binding site.
The global optimization started with a population of 150
randomly positioned individuals, a maximum of 2.5 × 106

energy evaluations and a maximum of 27000 generations. A
total of 100 runs were performed, and the cluster analysis was
carried out using an RMSD tolerance of 2 Å. The ligands
extracted from minimized complexes5 were docked in the
known binding site both in the corresponding crystal protein
(redocking) and in all crystals (cross-docking) following the
procedure previously reported.4

With the purpose to check the reliability of the docking
protocol, docking validation was performed using the 15
compounds composing the 3-D QSAR models’ training set,5 as
the above-described LB assessment. In particular, experimental
and random conformations, EC and RC respectively (see the
Alignment Rules section) were docked into the corresponding
protein structure (redocking (RD), ECRD, and RCRD). ECRD
and RCRD predicted binding energy and RMSD values were
calculated, analyzing both best docked (BD, the conformer
characterized by the lowest estimated free binding energy) and
best cluster (BC, the lowest energy conformer of the most
populated cluster) conformations (see Table 2). Interestingly,
RMSD values obtained from ECRD and RCRD were generally
greater than 2,13 leading to low DA values (Table 2). These
results reflect the intrinsic lack of accuracy, of the implemented
scoring function, to select the right binding pose in a system
(RD) in which the protein is maintained rigid.
To implicitly account for conformational protein flexibility,

cross docking (CD) was applied, with the purpose to improve
DA, on each EC (experimental conformation cross-docking,
ECCD) and RC (random conformation cross-docking, RCCD)
considering all the available receptors excluding the native one
(see Table 2). All the obtained poses were merged in a single
file and clustered; finally, the BD and BC conformations were
considered.
The CD procedure was first applied on the compounds of

the training set5 to verify the accuracy and the reproducibility of
the method. DA values were greater than those obtained from

redocking procedures, reaching DA values ranging from 67% to
80% (see Table 2). Because of the greater DA values in both
RCRD and RCCD, with the latter being much more accurate,
the RCCD using the BC conformation was adopted as a SB
tool in the VS screening herein. Note that a DA reduction is
obtained when RC is used in place of EC. This could be the
reflection that the reproducibility of any docking methods
depends on the starting conformation; however, in a VS
application, the EC is unknown and this is, of course, a source
of error that is likely related to the lack of the complementary
protein conformation.
Ordered water molecules play an important role in protein−

ligand recognition, either being displaced on ligand binding or
bridging groups to stabilize the complex. In the common
practice and also in the herein application, water molecules are
ignored during the docking simulations to reduce the time-
consuming calculations. The inclusion of experimental water
molecules in the Hsp90 inhibitors binding site could have a
significant impact only in the case of a redocking procedure. In
fact, simulating a real application, the redocking of 1UY6 (not
included in the training set) with experimental complexed
water molecules, within 5 Ǻ around the ligand, improved the
DA by decreasing the RMSD value from 2.7 (without waters)
to 0.75. On the other hand, cross-docking the 1UY6 ligand into
the 15 training set Hsp90 binding sites led to a RMSD value of
1.7 thus demonstrating the improvement of accuracy through
the application of cross-docking protocol. A cross-docking
protocol is not applicable if the experimental water molecules
are retained, preventing the correct docking of different scaffold
compounds.

Virtual Screening (VS). Based on AA and DA values,
RCCA and RCCD (considering BC conformations) procedures
were applied on the 1785 molecules containing the NCI
Diversity Set to obtain two conformations for each compound.
Therefore, two external prediction sets (herein called
Autodock/3-D QSAR and Surflex/3-D QSAR, respectively;
see Table S2 in the Supporting Information) were obtained and
predicted by the selected 3-D QSAR models: A, N, OA, and
MP.5 For both Autodock/and Surflex/3-D QSAR prediction
sets, a score was derived by listing the average predicted pIC50
values obtained from the four selected 3-D QSAR models.
These scores were then used, together with the corresponding
predicted free binding energy from the AutoDock4 docking,7 to
compose a hit parade. Considering these three factors,
according to rank-by-rank strategy,14 the top 80 compounds
(see Table S2 in the Supporting Information) were selected
and tested. Biological activities of selected compounds were
determined by applying a previously described procedure.15

The preliminary data yielded nine compounds with
detectable inhibitory activity (see Table S3 in the Supporting
Information): four of these compounds (NCI23128,
NCI23128, NCI117285, and NCI170578) showed IC50 values
between 18 μM and 63 μM (see Table 3). The activity values
are not comparable to those of the training set; they could
reflect the effects of a limited covered chemical space that
characterize the NCI Diversity Set. As a matter of fact, all of the
results of the applied strategy were quite consistent to disclose
new Hsp90 inhibitors.

Binding Mode Analysis of New Hsp90 Inhibitors. The
binding mode analysis of the four most active compounds (see
Table 3 and Figure 2) was conducted to define the crucial
interactions within the Hsp90 binding site and point out
potential molecular transformations to increase inhibitory
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activity. Among the most active screened compounds, attention
was focused on NCI610930, NCI170578, and NCI117285,
which exhibit possible interesting new scaffolds for Hsp90
inhibition. By using the newly introduced activity contribution
prediction feature5 on the prediction set molecules, it is
possible to represent how the quantitative models predict the
effects of prediction set molecules three dimensionally. It is
interesting to note that, starting from the most active
compound to the least active, a positive predicted activity
contribution area (green surface, Figure 2), in the proximity of
LYS58, ILE96, and GLY97, decreases in magnitude jointly with
the biological response, while the results considering
NCI170578 and NCI117285 (the least active compounds)
near LEU48, VAL186, THR 184, ASP93, SER 52, and LEU48
appear to be unchanged, confirming the importance of these
two residues’ series, as previously reported.5 Moreover,
NCI610930 and NCI170578 are, respectively, dibenzofur-
andione and dibenzothiophene derivatives that could be
ascribed to the tricyclic series of Hsp90 inhibitors recently
identified and also characterized by X-ray.16 From these, a
ternary complex (PDB code 2YK2) that exhibits two binding
subpockets into the Hsp90 N-domain was reported.16 As
shown in Figure 3A, the docked pose of NCI610930 occupies
both the binding areas of Hit 116 and Hit 2,16 suggesting that
this characteristic, together with the interactions with LYS58,
ILE96, and GLY97 (Figure 2), could determine its greater
inhibitory activity than NCI170578 and NCI117285 (see
Figures 3B and 3C). This argument is also supported by
considering the higher inhibitory potency of Hit 8 (PDB code
2YKI),16 which is a compound specifically designed, as
reported,16 to occupy both areas. By overlapping the binding
poses of NCI610930 and Hit 816 (see Figure 4), it is possible
to recognize that the latter extends its two 3H-imidazo[4,5-
c]pyridinil groups in two areas, the first characterized by
PHE170, TRP162, LEU107, and GLN23, and the second
characterized by ASP93, SER52, ASN51, THR184, LEU48, and
VAL186, respectively uncovered and partially overlapped by
NCI610930. On the other hand, NCI610930 can establish, with
the 2,4-dihydroxy-6-methylanilyl moiety, stronger interactions
with LYS58, ASP54, ILE96, GLY97, and ALA55. Although they
have these differences, each compound can be seen as the
“volumetric extension” of the other, suggesting that the
integration of the characteristics of the two molecules could
improve the overall inhibitory activity.

■ CONCLUSION

The structure-based 3-D QSAR model for Hsp90 inhibitors was
successfully coupled with both ligand-based (LB) and structure-
based (SB) validated alignment methods. The protocol was
extensively assessed for both alignment and predictive ability. A
virtual screening (VS) application using the NCI Diversity Set
led to the discovery of new Hsp90 inhibitors compounds with
activity in the micromolar range. Two of the active compounds,
NCI610930 and NCI170578, are characterized by a tricyclic
ring, similar to an already-recognized interesting scaffold for
Hsp90 inhibitors. Further molecular modeling studies, such as a
focused VS approach on NCI610930, are on due course for
lead optimization to discover new and more-potent Hsp90
inhibitors.
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