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Abstract

For standard clinical applications, ASL images are typically acquired with 4–8 mm thick

slices and 3–4 mm in-plane resolution. However, in this paper we demonstrate that high-res-

olution continuous arterial spin labeling (CASL) perfusion images can be acquired in a clini-

cally relevant scan time using current MRI technology. CASL was implemented with a

separate neck coil for labeling the arterial blood on a 4.7T MRI using standard axial 2D GE-

EPI. Typical-resolution to high-resolution (voxels of 95, 60, 45, 27, or 7 mm3) images were

compared for qualitative and quantitative cerebral blood flow analysis (CBF) in nine healthy

volunteers (ages: 24–32 years). The highest resolution (1.5x1.5x3 = 7 mm3) CASL imple-

mentation yielded perfusion images with improved cortex depiction and increased cortical

CBF measurements (53 ± 8 ml/100g/min), consistent with reduced partial volume averag-

ing. The 7 mm3 voxel images were acquired with 6 cm brain coverage in a clinically relevant

scan of 6 minutes. Improved spatial resolution facilitates CBF measurement with reduced

partial volume averaging and may be valuable for the detection of perfusion deficits in small

lesions and perfusion measurement in small brain regions.

Introduction

Arterial spin labeling (ASL) measures cerebral perfusion using radiofrequency tagged blood as

an endogenous contrast agent, and offers comparable perfusion deficit detection to intra-

venous Gd bolus tracking in acute stroke [1–3]. In an effort to standardize ASL measurements

for clinical applications, an ASL “white paper” [4] recommends 4–8 mm thick slices and 3–4

mm in-plane resolution yielding voxel volumes from 36 mm3 to 128 mm3 in 4 minutes maxi-

mum scan time (see Table 2 in Reference [4]). While ASL protocols of this sort may be effec-

tive for large lesions, they are likely inadequate for the detection of smaller regions of

perfusion deficit as may be expected in transient ischemic attack or minor stroke [5]. They are

also likely inadequate for the assessment of perfusion in small brain structures [6]. The need

for higher spatial resolution has been recognized in two recent ASL stroke studies at 3T that

used smaller voxels of 27 mm3 (i.e. 3 mm isotropic) and 23 mm3 [7,8].

Stronger magnetic fields yield greater SNR and longer lasting arterial tags which facilitate

higher spatial resolution imaging. A pseudo-continuous ASL study at 7T acquired 1.5x1.5x3�
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7 mm3 voxels in 7 min [9], and a pulsed ASL study at 9.4T acquired 1x1x2 = 2 mm3 voxels in

12 min [10]. Both showed more accurate depiction of the cortex over multiple axial slices in

healthy subjects. Feasibility of ~7 mm3 Turbo-FLASH pCASL was also demonstrated in a

study at 7T [11]. However, Implementation of pulsed or pseudo-continuous ASL (i.e. PASL,

pCASL) at high field can be challenging due to B1 inhomogeneity, off-resonance effects, and

specific absorption rate (SAR) constraints [10,12]. This is particularly the case when head RF

coils without neck irradiating elements are used for B1 transmit. In this case the creation of

efficient arterial spin labeling can lead to excessive power deposition in the head. A ‘SAR-

friendly’ alternative, which is also potentially insensitive to off-resonance effects, is to use a

separate neck coil for labeling in combination with continuous low-power RF irradiation

(CASL) [13–17]. The purpose of this work was to show that good quality high spatial resolu-

tion perfusion images are feasible in clinically relevant scan times with the use of CASL and a

neck labeling coil at 4.7T.

Materials and methods

The review board of our institution approved this study, and written informed consent was

obtained from all volunteers who participated. Perfusion imaging was performed on a 4.7T

scanner (Varian, Walnut Creek, CA) using a butterfly neck coil for continuous arterial spin

labeling with housing dimensions: length 110 mm, width 150 mm, and height 75 mm (Fig 1)

(Rapid Biomedical, Rimpar, Germany). This coil weighed 350 g and was designed to handle a

maximum mean power of 5W. Active decoupling enabled isolation from the transmit coil and

receive-array during imaging. A dedicated amplifier (Communication Power Corporation,

Hauppauge, New York, USA) capable of operation in continuous-wave mode provided RF

power. The RF coil used for head excitation was a 16-leg detunable quadrature birdcage design

with a 27 cm diameter and 25 cm leg lengths (XL-Resonance, London, Ontario, Canada) [18].

It also possessed an integral RF shield with 35.5 cm diameter. The RF coil used for reception

had 4 detunable elements closely fitting the average adult head, and each element was con-

nected to a low impedance, low noise-figure preamplifier (Pulsteq Ltd, Guildford, Surrey,

UK). The irradiation range of the labeling coil was tested to be outside the brain and the trans-

mit and receive coils were detuned during the labeling period. Thus, magnetization transfer

effects in brain were avoided, a known advantage of separate labeling coils [16,17,19].

For arterial spin labeling, RF irradiation (1.4 W) was applied to the neck coil in the presence

of a GZ = 2.5 mT/m gradient. A frequency offset of ~18 kHz (depending on the volunteer)

localized the flow driven adiabatic blood excitation around the centre of the neck coil. The

labeling duration was τ = 3 seconds, and the post labeling delay was PLD = 1500 ms [20]. Note

that these parameters were selected according to previous CASL studies [13–16,21] and inter-

nal optimization. The effective volume irradiated by the neck coil was measured to be ~200

mL (from B1 mapping experiment on three volunteers) and thus the 1.4W tagging power

resulted in a local time-averaged SAR in the neck of ~5 W/kg, well below the 10W/kg local

SAR regulations.

For ‘control’ images no RF power was applied to the neck coil, but the gradient was left on

during the tagging period to minimize changes between the tag and control sequences. Images

were acquired sequentially from superior to inferior as arterial transit times are longer in the

occipital lobe [22]. To measure the labeling efficiency (α), 1.5x1.5x5 mm3 images were

acquired 5 cm above the neck coil centre from 3 healthy young volunteers. The change in sig-

nal intensity (ΔSI) between control (SIcontrol) and tag (SItag) images was then used to calculate

α = ΔSI/(2SIcontrol) in the carotid arteries.
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For this study, 5 different CASL images with different resolutions were acquired in the

same scan session from five healthy female and four healthy male volunteers (ages 24–32

years) with 2D single-shot GE-EPI, GRAPPA R = 2, partial-Fourier 0.7, and FOV of 204x216

mm2. The perfusion sequences tested were: (1) 3.5x3.4x8 = 95 mm3, TR 4.6 seconds, TE 6.2

ms; (2) 3.5x3.4x5 = 60 mm3, TR 4.6 seconds, TE 6.2 ms; (3) 3x3x5 = 45 mm3, TR 4.6 seconds,

TE 8 ms; (4) 3x3x3 = 27 mm3, TR 4.6 seconds, TE 8 ms; and (5) 1.5x1.5x3 = 7 mm3, TR 4.7 sec-

onds, TE 13.2 ms. Each scan was 5 minutes for 30 tag and 30 control interleaves, and five axial

slices were acquired in each case. A 4 mm inter-slice gap was chosen to minimize the cross-

talk effect for the thickest 8 mm slices, and this (more than necessary with respect to cross-

talk) gap retained for the scans with thinner slices to approximately match regions of brain

imaged between scans. Note that due to time limitations low-resolution images (95 mm3 and

60 mm3) were not acquired from two male volunteers.

Image processing and analysis first involved motion correction across all averages using

rigid body transformation (in-house software in Matlab). For each scan averaged tag images

were then subtracted from the averaged control images to obtain the difference images reflect-

ing perfusion. The change in signal intensity (ΔSI) was measured in the cortical gray matter

and white matter over all five slices using masks that were manually drawn on the control

acquisitions (note that separate anatomical images for tissue segmentation were not acquired

due to scan-time constraints). Finally, high-resolution (1.5x1.5x3 = 7 mm3, TR 5.1 seconds, TE

13.2 ms) images were acquired from 6 healthy volunteers (ages: 24–39 years) in 6 minutes with

15 slices and 1 mm inter-slice gap to test the acquisition of a reasonable 6 cm brain coverage.

CBF was quantified using Buxton’s General Kinetic Model [23] as recommended by [4]

using the following parameters: labeling duration (τ) = 3 s, labeling efficiency (α) = 0.83,

blood-brain partition coefficient (λ) = 0.9 mL/g [24], PLD = 1.5 s (plus an additional delay for

each subsequent slice), T1blood at 4.7T = 2004 ms [25], and T1tissue at 4.7T = 1630 ms [26] (Eq

1).

CBF ¼
6000 � λ � ðSIcontrol � SItagÞ � e

PLD
T1blood

2 � α � T1;blood �
SIcontrol

1� e
� TR

T1tissue
� ð1 � e�

τ
T1bloodÞ

ml
100g

min
Eq 1

Fig 1. CASL neck labeling coil setup at 4.7T. a) The CASL labeling coil is placed on the neck. b) This figure shows the

carotid arteries where the inflowing blood is tagged. c) The yellow area in the sagittal image shows the readout volume.

https://doi.org/10.1371/journal.pone.0215998.g001
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Results

The labeling efficiency of arterial blood tagging at 4.7T with the butterfly neck coil and contin-

uously applied RF was measured to be 0.83, 0.81, and 0.85 in the carotid arteries of 3

volunteers.

Base 2D GE-EPI images, qualitative perfusion images (|SIcontrol−SItag|), and CBF maps at

4.7T are shown for a slice of one healthy volunteer (age 25 years) at five different resolutions:

3.5x3.4x8 = 95 mm3, 3.5x3.4x5 = 60 mm3, 3x3x5 = 45 mm3, 3x3x3 = 27 mm3, and

1.5x1.5x3 = 7 mm3 (Fig 2). As expected, the cortex is much better depicted in the high-resolu-

tion scans. The advantage of high-resolution is also evident over multiple slices from another

volunteer (Fig 3), and excellent perfusion depiction in the cortex was consistently observed for

the other seven healthy volunteers as well (Fig 4).

The proportional change in signal intensity between tag and control scans (ΔSI/SIcontrol) in

gray matter falls in a narrow range (from 0.8% of control image intensity for low resolution to

1.2% for high resolution) and is clearly greater than in white matter (~0.3% of control image

intensity across image resolutions) (Table 1). Calculated mean CBF in cortical gray matter

(GM) was 45±7 ml/100g/min on the typical resolution scans (95 mm3). This CBF value

increased by 20% to 53±8 ml/100g/min on the highest resolution (7 mm3) scans (Table 1).

The GM/WM CBF ratios increased consistently from 2.7 to 3.5 as the resolution improved.

Representative high-resolution (1.5x1.5x3 mm3) perfusion images with a clinically relevant

slab coverage (6 cm with 15 3 mm slices and 1 mm gap) were acquired in 6 min. These images

show particularly good quality in superior slices (Fig 5). Recall that the slices were acquired

superior to inferior, and loss of the arterial tag with time leads to reduced image quality in the

inferior slices. Note the higher perfusion visible in small deep gray matter structures such as

the caudate.

Fig 2. Example raw control images (a-e), perfusion (|SIcontrol−SItag|) (f-j) and CBF maps (k-o) for one slice in a 25

year old healthy female at five different resolutions: (a, f, k) 3.5x3.4x8 = 95 mm3, (b, g, l) 3.5x3.4x5 = 60 mm3, (c,

h, m) 3x3x5 = 45 mm3, (d, i, n) 3x3x3 = 27 mm3, and (e, j, o) 1.5x1.5x3 = 7 mm3. Increased spatial resolution yields

improved perfusion depiction as well as increased CBF values in the cortex. Note that the qualitative perfusion images

(f-j) are biased by coil sensitivity, but the CBF maps (k-o) which include division by SIcontrol have this bias removed.

https://doi.org/10.1371/journal.pone.0215998.g002
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Discussion

Continuous arterial spin labeling with a separate neck coil facilitates the acquisition of high-

resolution CBF images due to high perfusion contrast [29], good labeling efficiency and low

SAR which is particularly important for high fields. In this study, we demonstrate that

(1.5x1.5x3 mm3) images of cerebral blood flow are feasible in a 6 minute scan time at 4.7T.

These higher-resolution images reduce partial volume effect and facilitate improved cortex

depiction.

The highest resolution images in our study (7 mm3) yielded GM CBF values of 53±8 ml/

100g/min, ~20% greater than the standard resolution images (95 mm3). This GM CBF increase

was also shown in a previous study which compared ~19 mm3 with ~169 mm3 voxel CBF mea-

surements [30]. This reflects lower partial volume averaging in the better-defined cortex. Note

that CBF values varying from 40–100 ml/100g/min are considered normal in gray matter [4].

In healthy young adults a GM CBF of 51±7 (91 mm3 voxels) has been measured with CASL

[31], and a GM CBF of 74 ± 11 ml/100g/min (90 mm3 voxels) measured with pCASL [32]. The

values of GM CBF (45–53 ml/100g/min) reported in our work fit within the literature range.

Fig 3. Comparison between the low (95 mm3, a) and high resolution (7 mm3, b) perfusion images of 5 axial slices

in a female volunteer (age 29). The cortex is better depicted in the higher voxel resolution scans, which has been

improved ~ 14 times relative to the conventional ASL resolution. High-resolution raw control images (c) are provided

as a reference for anatomical structures.

https://doi.org/10.1371/journal.pone.0215998.g003

Fig 4. Comparison between “typical” (upper row, 60 mm3) and high resolution (lower row, 7 mm3) perfusion images

of a similar slice in the other 7 healthy subjects, showing the reproducibility of CASL with a separate neck coil.

https://doi.org/10.1371/journal.pone.0215998.g004
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The ASL literature also reports GM/WM CBF ratios that vary from 1.6 [33] (31 mm3 voxels)

to 3.2 [34] (51 mm3 voxels), acquired with pCASL 2D spin-echo spiral and PASL 3D-GRASE,

respectively. The GM/WM CBF ratios measured in our work increase with improving resolu-

tion from 2.7 to 3.5 as a result of reduced partial volume averaging. The oxygen uptake rate is 6

ml/100g/min in the cortex and 2 ml/100g/min in white matter [35–36], and thus the GM/WM

oxygen uptake ratio agrees with our cerebral blood flow ratios. Note, however, that WM CBF

values are difficult to measure due to longer arterial transit times and low SNR.

CBF measurements vary across labeling techniques (e.g. different labeling efficiencies),

acquisition methods (e.g. 2D or 3D), and assumptions or measurements for quantification

(e.g. T1-maps). A high resolution 1.5x1.5x1.5 mm3 isotropic CASL study at 3T on rhesus mon-

keys showed variability in tagging efficiency based on differences in anatomy and tagging coil

placement [37]. As our study primarily concerned investigation of relative intra-volunteer

Fig 5. Perfusion images over 15 slices acquired with 1.5x1.5x3 mm3 voxels in 6 min in a healthy volunteer (age: 28

years). These high-resolution ASL images show detail in the cortical gray matter gyri. The signal becomes less in

inferior slices with loss of arterial tag as the slices are acquired in order of superior (post-labelling delay, PLD 1.5 s) to

inferior (PLD 2.3 s). Hyperintensities in the frontal and bilateral occipital lobes are normal findings in young and

middle aged patients [27]. Hypointensity on the lower slices in the middle cerebral artery territory may be the result of

tag loss, as arterial transit times are known to be shorter in this region [28] and the inferior slices are acquired last.

Note that the qualitative perfusion images shown will also be biased by coil sensitivity.

https://doi.org/10.1371/journal.pone.0215998.g005

Table 1. CBF and ΔSI/SIcontrol in cortical gray matter and white matter at five different resolutions in 9 healthy volunteers (mean +/- SD).

Resolution

(mm3)

CBF GM

(ml/100g/min)

CBF WM

(ml/100g/min)

CBF

(GM/WM)

ΔSI/SIcontrol

GM (%)

ΔSI/SIcontrol

WM (%)

3.5x3.4x8 = 95 45 ± 7 16 ± 3 2.7 0.97 ± 0.17 0.38 ± 0.07

3.5x3.4x5 = 60 47 ± 6 16 ± 2 3.0 1.03 ± 0.15 0.37 ± 0.05

3 x 3 x 5 = 45 49 ± 7 17 ± 2 2.9 1.04 ± 0.20 0.36 ± 0.05

3 x 3 x 3 = 27 49 ± 6 16 ± 2 3.1 1.04 ± 0.19 0.35 ± 0.06

1.5x1.5x3 = 7 53 ± 8� 15 ± 4 3.5 1.11 ± 0.22 0.32 ± 0.08

CBF = cerebral blood flow; GM = Gray Matter; WM = White Matter, ΔM = proportional change of magnetization between tag/control scans; Mcontrol = magnetization

in control scans.

� The GM CBF at 7 mm3 was significantly greater than at 27 mm3 (p = 0.0003, one-tail paired T-tests).

https://doi.org/10.1371/journal.pone.0215998.t001
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differences between low and high-resolution CASL imaging at 4.7T, labeling efficiency was not

measured during the perfusion imaging scanning sessions. Rather an average value of α = 0.83

was used for CBF quantification. For each volunteer and imaging setup (e.g. neck coil place-

ment) the labeling efficiency will vary, and thus the CBF values presented in this work will be

biased by lack of inexact knowledge of α. However, for each volunteer the labeling efficiency

remains constant and does not affect relative differences in measured CBF between imaging

resolutions. Any variation in actual labeling efficiency will yield an inversely proportional

error in CBF (Eq 1). T1 was assumed constant, as T1 maps were not acquired in our protocol.

However, even with potential labeling efficiency and T1 variation, the CBF values over 9

healthy controls of similar age were quite similar with about a 15% standard deviation. Note

that most clinical ASL studies [4,38–40] do not measure α and assume a constant T1 value as

was done here. The qualitative perfusion (|SIcontrol−SItag|) images shown in Figs 2–5 will be

biased by B1 inhomogeneity. However, the CBF maps in Fig 2 and the CBF values in Table 1

have this bias removed as a result of division by SIcontrol (see Eq 1).

Diffusion and perfusion MRI are important diagnostic imaging methods for acute stroke,

but current low-resolution protocols may be missing brain injury. Two studies in transient

ischemic attack (TIA) patients with low resolution ASL (voxels of 54 and 60 mm3, field

strength 1.5T and 1.5T/3T, respectively) have shown perfusion deficits in approximately half

of the patients where diffusion-weighted imaging (DWI) is negative [41,42]. High resolution

ASL may have identified perfusion anomalies and aided in confirmation of a clinical diagnosis

of stroke in some of the other patients, but this remains to be studied relative to the typical low

resolution ASL. Also, recent ASL studies on different neurological diseases such as epilepsy

[43], glioblastoma multiforme [44], Moyamoya disease [45], and post-traumatic stress disorder

[46] also used low resolution perfusion voxels (98, 45, 46, and 37 mm3, respectively). High-res-

olution ASL images may also benefit the study of small brain structures. A recent study of

major depressive disorder used high-resolution ASL to study CBF in the habenula; however

no differences were measured between major depressive disorder and healthy volunteers [47].

High-resolution ASL may also facilitate examination of perfusion in the hippocampus, where

measurements of CBF are challenging due to its anatomy and physiological aspects [48].

A 2005 review article showed high resolution CASL (1.5x1.5x3 = 7 mm3, 12 slices) with a

labeling RF coil at 3T using a 16-channel reception coil in 10.5 min [21], but clinical protocols

have not adapted these long duration, high-resolution ASL scans. In our research, the SNR

increase of higher magnetic field (4.7T) facilitated CASL with high spatial resolution

(1.5x1.5x3 = 7 mm3) and 6 cm brain coverage (15 slices) in a shorter scan time of 6 min. Com-

pared to previous ~5 min ASL studies at 3T [43,49], voxel resolution has been improved by 13

times with only a small scan time penalty. While 6 cm coverage does not include the full brain

(~14.5 cm) this imaging window can be centered on the ischemic core to better assess local

perfusion deficit in acute stroke. Improved brain coverage and consistent PLD across the brain

may be facilitated by the implementation of improved k-space acquisition strategies such as

3D-GRASE [16,31]. Note that while a PLD of 1500 ms [20] was used in this study, longer val-

ues of 1800 ms– 2000 ms may be more appropriate for elderly adult and clinical populations

[4,20].

A limitation of 2D EPI acquisition is that further increase in brain coverage results in loss

of the arterial tag (for slices acquired last). However, positioning a set of slices around diffu-

sion-visible lesions in the setting of acute stroke is a viable approach to assess the diffusion-per-

fusion mismatch. A practical limitation of CASL is reduced patient comfort given the weight

and positioning of the neck labeling coil. CASL also requires a continuous-wave capable RF

amplifier for the long duration tagging pulse and the capability to appropriately detune/tune

the head and neck coils. Special care must be taken to keep the labeling coil fixed as close as

High resolution continuous ASL of human cerebral perfusion
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possible to the neck, as variation in placement (e.g. tilting) could result in labeling efficiency

variation between arteries. However, by taking advantage of high field and current EPI capa-

bilities, high-resolution CASL could aid in the detection and measurement of CBF changes in

smaller regions that are associated with neurological disease.

Conclusions

High-resolution CASL images (7 mm3) with a separate labeling neck coil were shown to be fea-

sible at 4.7T in 6 minutes with a 6 cm multi-slice coverage. Higher spatial resolution depicted

perfusion in the cortical gray matter much better than in the typical ASL protocols and also

yielded greater CBF values in line with less partial volume effects. High-resolution ASL images

could facilitate improved detection and quantification of small perfusion deficits.
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Supervision: Robert Wayne Stobbe, Christian Beaulieu.

Visualization: Robert Wayne Stobbe.

Writing – original draft: Marı́a Guadalupe Mora Álvarez.
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