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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:The replicability of research results has been a cause of increasing concern to the scientific

community. The long-held belief that experimental standardization begets replicability has

also been recently challenged, with the observation that the reduction of variability within

studies can lead to idiosyncratic, lab-specific results that cannot be replicated. An alternative

approach is to, instead, deliberately introduce heterogeneity, known as “heterogenization”

of experimental design. Here, we explore a novel perspective in the heterogenization pro-

gram in a meta-analysis of variability in observed phenotypic outcomes in both control and

experimental animal models of ischemic stroke. First, by quantifying interindividual variabil-

ity across control groups, we illustrate that the amount of heterogeneity in disease state

(infarct volume) differs according to methodological approach, for example, in disease

induction methods and disease models. We argue that such methods may improve replica-

bility by creating diverse and representative distribution of baseline disease state in the ref-

erence group, against which treatment efficacy is assessed. Second, we illustrate how

meta-analysis can be used to simultaneously assess efficacy and stability (i.e., mean effect

and among-individual variability). We identify treatments that have efficacy and are general-

izable to the population level (i.e., low interindividual variability), as well as those where

there is high interindividual variability in response; for these, latter treatments translation to

a clinical setting may require nuance. We argue that by embracing rather than seeking to

minimize variability in phenotypic outcomes, we can motivate the shift toward heterogeniza-

tion and improve both the replicability and generalizability of preclinical research.
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Introduction

Replicability of research findings—“obtaining the same results from the conduct of an inde-

pendent study whose procedures are as closely matched to the original experiment as possi-

ble,” otherwise known as “Results reproducibility” [1]—is integral to scientific progress.

Compelling evidence, however, suggests that non-replicability pervades basic and preclinical

research [1–5]. Moreover, animal studies motivate the development of novel treatments to be

tested in clinical studies, but failure to observe effects in humans which have been reported in

animal studies is commonplace [6,7]. The conventional approach to preclinical experimental

design has been to minimize heterogeneity in experimental conditions within studies to reduce

the variability between animals in the observed outcomes [8]. Such rigorous standardization

procedures have long been endorsed as the way to improve the replicability of studies by

reducing within-study variability and increasing statistical power to detect treatment effects, as

well as reducing the number of animals required [8,9]. This well-established notion that stan-

dardization begets replicability, however, has recently been challenged.

An inadvertent consequence of standardization is that an increase in internal validity may

come at the expense of external validity [10]. By reducing within-study variability, standardiza-

tion may inflate between-study variability as outcomes become idiosyncratic to the particular

conditions of a study, ultimately becoming only representative of local truths [10–12]. For

example, in animal studies, the interaction between an organism’s genotype and its local envi-

ronment (i.e., phenotypic plasticity due to gene-by-environment interactions) can result in

variable and discordant outcomes across laboratories using otherwise concordant methodol-

ogy [13–16]. Such inconsistent outcomes may result from distinct plastic responses of animals

to seemingly irrelevant and minor, unmeasured differences in environmental conditions and

experimental procedures [13–18]. Through amplifying the effects of these unmeasured vari-

ables, standardization may thus weaken, rather than strengthen, replicability in preclinical

studies.

A potential counter to this “standardization fallacy” [10] then is to improve replicability by

embracing, rather than minimizing, heterogeneity [10–12]. Practical solutions to enhance

external validity include conducting studies across multiple laboratories to deliberately

account for differences in within-lab variability [19–21], and perhaps more radically, to sys-

tematically introduce variability into experimental designs within studies [12,22,23]. Both sim-

ulation [11,14,20,21] and empirical studies [19,22,24,25] show that deliberate inclusion of

more heterogeneous study samples and experimental conditions (i.e., “heterogenization”)

improve external validity, and hence replicability, by increasing within-study (or within-lab)

variability and minimizing among-study (or among-lab) variability.

Despite the promise of heterogenization, standardization remains the conventional

approach in preclinical studies [26–28]. This has been partly fuelled by Russel and Birch’s [29]

injunction to a “reduction in the numbers of animals used to obtain information of a given

amount and precision.” Consequently, within-study variability is typically treated as a biologi-

cal inconvenience that is to be minimized, rather than an outcome of interest in its own right.

Embracing and quantifying heterogeneity, however, may benefit preclinical science in at least

2 ways. First, through comparative analyses of the variability associated with experimental pro-

cedures, we may identify methodologies that introduce variation. As discussed above, by using

methods that induce variation, one may design a deliberately heterogeneous study with greater

replicability [10–12]. Second, by explicitly investigating interindividual heterogeneity in the

response to drug/intervention outcomes, we may quantify the generalizability of a treatment

and its translational potential. That is, a treatment with low interindividual variation in efficacy

despite heterogenization is more generalizable, while a treatment with high interindividual
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variation indicates the effect may be individual specific. This may be relevant in the context of

personalized medicine: A treatment associated with interindividual variation in outcomes may

require tailoring in its clinical use [30]. Taking these 2 points together, one could argue that an

ideal trial would use a technical design that typically generated variation in disease state, which

was then attenuated by a treatment of interest that might consistently (in all animals) or selec-

tively (in some animals) improve outcome.

An illustrative case where the issues of replicability and lack of translation have been

highlighted repeatedly is that of animal models of ischemic stroke [31–33]. Several systematic

reviews [34,35] and meta-analyses [36–38] have questioned the propriety of experimental

design and the choice of experimental procedures in stroke animal studies. The consequent

recommendation for improving replicability in the field has usually been to adopt methodo-

logical procedures that minimize heterogeneity (and/or mitigate sources of bias) in phenotypic

outcomes (e.g., in infarct volume or neurobehavioral outcomes) [34–38]. Furthermore, while

potentially beneficial treatments have been identified in individual trials at the preclinical

stage, intravenous thrombolysis remains the only regulatory-approved treatment for ischemic

stroke [33,39,40]. This lack of transferable results from the preclinical to clinical stage high-

lights a major shortcoming for the generalizability of stroke animal models and is emblematic

of translation failures generally across preclinical studies [6,7,33,34].

Using the case of rat animal models of stroke as a guiding example, we highlight how

recently developed methods for the meta-analysis of variation can be used to better understand

biological heterogeneity. First, through analysis of variability using the log coefficient of varia-

tion (lnCV; CV representing variance relative to the mean) in control groups, we identify

methodological procedures that increase variability in outcomes. Second, we show how,

through the concurrent meta-analysis of mean and variance in treatment effects using the log

response ratio (lnRR; i.e., ratio of means) and log coefficient of variation ratio (lnCVR), one

gains additional information about the generalizability of an intervention at the individual

level. Overall, we argue that the quantification of heterogeneity in phenotypic outcomes can be

exploited to improve both the replicability and translation of animal studies.

Results

Dataset

We obtained data for rat animal models of ischemic stroke from the Collaborative Approach

to Meta-Analysis and Review of Animal Data from Experimental Studies (CAMARADES)

database [41], focusing our meta-analysis on animal models that reported outcomes in infarct

volume (see Materials and methods for inclusion criteria of studies). We extracted data for

infarct volume from 1,318 control group cohorts from 778 studies for our analyses, investigat-

ing the effects of methodology and variability. We extracted data for the effect of treatment on

infarct volume from 1,803 treatment/control group cohort pairs from 791 studies for our anal-

yses, investigating the effects of drug treatment on interindividual variability (see Data Avail-

ability Statement section for full data and code).

Methodology and variability

To identify methodological procedures that generated variability in disease state, we first

meta-analyzed variability in infarct volume for control group animals. We quantify variability

as the lnCV rather than the log of standard deviation because we found that our data showed a

linear log mean–variance relationship (i.e., Taylor’s law, where the variance increases with an

increase in the mean [42]; S1 Fig). Overall, the coefficient of variation (CV) in infarct volume

across control groups was around 23.6% of the mean (lnCV = −1.444, CI = −1.546 to −1.342,
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τ2 = 0.565; Fig 1). We found large differences in variability of infarct volume (I2total = 93.7%),

suggesting that sampling variance alone cannot account for differences in the reported vari-

ability across control groups (Table 1). The I2 attributable to study was 49.6%, suggesting that

methodological differences across studies explained some of this heterogeneity, although a

moderate amount (42.9%) of I2 remained unexplained (Table 1).

Fig 1. The effects of methodological parameters on variability (CV) in infarct volume across control groups. Mean

estimates of unconditional (marginalized), group-specific coefficients of variation (%) are indicated as gray circles,

while the overall estimate is indicated as a gray diamond. Moreover, 95% CIs are shown as gray lines and are

asymmetric due to back-transformation of log coefficient of variation (lnCV) to the natural scale. Spontaneous

occlusion generated the highest estimate of variability as indicated by the arrowhead. The overall and group-specific

estimates were obtained from MLMA and MLMR models, respectively. The data underlying this figure can be found at

https://doi.org/10.6084/m9.figshare.14527317.v4. CI, credible interval; CAU : AbbreviationlistshavebeencompiledforthoseusedthroughoutFigs1 � 3andTable1:Pleaseverifythatallentriesarecorrect:V, coefficient of variation; lnCV, log

coefficient of variation; MLMA, multilevel meta-analysis; MLMR, multilevel meta-regression.

https://doi.org/10.1371/journal.pbio.3001009.g001

Table 1. Heterogeneity (I2) estimates for analyses of methodology on variability (lnCV) and drug treatment on

mean (lnRR) and variance (lnCVR) in rat infarct volume.

Model Total Study Strain Residual (within-study)

lnCV
MLMA 93.7% 49.6% 1.3% 42.9%

MLMR 93.3% 46.3% 1.7% 45.3%

lnRR
MLMA 95.7% 54.5% 1.7% 39.5%

MLMR 94.9% 46.3% 2.2% 46.4%

lnCVR
MLMA 71.2% 38.8% 0.9% 31.6%

MLMR 70.3% 36.1% 1.2% 33.1%

Estimates (%) are shown for MLMAs and MLMR models.

lnCV, log coefficient of variation; lnCVR, log coefficient of variation ratio; lnRR, log response ratio; MLMA,

multilevel meta-analysis; MLMR, multilevel meta-regression.

https://doi.org/10.1371/journal.pbio.3001009.t001
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We detected statistically significant differences in variability of infarct volume between

various methodological approaches (Fig 1; see S1 and S2 Tables for unconditional and con-

ditional model coefficients, respectively). Among occlusion methods, models with sponta-

neous occlusion produced the greatest variability in infarct volume (CV = 52.5%; lnCV =

−0.644, −1.633 to 0.345), while filamental occlusion had lowest variability (CV = 17.9%;

lnCV = −1.720, −2.195 to −1.244). Studies using temporary models of ischemia had higher

variability in infarct volume (CV = 25.2%; lnCV = −1.377, −1.500 to −1.255) compared with

permanent models. Variability was slightly but significantly lower with longer time of dam-

age assessment (lnCV = −1.404, −1.521 to −1.288) and greater median weight of the control

group cohort (lnCV = −1.366, −1.486 to −1.245).

Drug treatment effects and interindividual variation

To quantify generalizability in drug treatment outcomes, we meta-analyzed the mean and the

CV in infarct volume for the effects observed in control/experimental contrasts. We quantified

the mean and interindividual variability as the lnRR and lnCVR, respectively. Overall, mean

infarct volume in experimental groups was around 33.1%, smaller than in control groups

(lnRR = −0.402, −0.461 to −0.343; Fig 2A), while the CV in experimental groups was around

32.4% higher than in control groups (lnCVR = 0.280, 0.210 to 0.351; Fig 2B). Overall, heteroge-

neity in lnRR was very high, while that for lnCVR was moderate, and moderate amounts of

heterogeneity were partitioned into the study level for both (Table 1).

Both the mean and variability in infarct volume differed significantly across drug treatment

groups (Fig 2; see S3 and S4 Tables for unconditional and conditional model coefficients,

respectively). Treatment with hypothermia resulted in the largest reduction of mean infarct

volume in experimental groups relative to controls (around 49.7% lower in experimental

groups than controls; lnRR = −0.687, −0.775 to −0.599). However, hypothermia also had the

most variable and inconsistent effect (i.e., intersubject variation) in reducing infarct volume,

with the largest ratio of CV between experimental and control groups (interindividual variabil-

ity around 60.0% higher in experimental groups compared with controls; lnCVR = 0.470,

0.349 to 0.591). In contrast, environmental treatments were the least effective in reducing

mean infarct volume (around 7.3% greater in experimental groups than controls;

lnRR = 0.071, −0.166 to 0.308). Hyperbaric oxygen therapy (HBOT) has the least variable and

most consistent effect on infarct volume (variability around 45.3% less in experimental groups

relative to controls; lnCVR = −0.603, −1.483 to 0.277).

Thrombolytics, which include the only regulatory-approved treatment (i.e., tissue plasmin-

ogen activator; tPA [33]), reduced mean infarct volume by around 29.6% in experimental rela-

tive to control groups (lnRR = −0.351, −0.446 to −0.256). The CV across experimental groups

for thrombolytics was around 17.4% higher than control groups (lnCVR = 0.160, 0.031 to

0.289), but it is notable that this increased intersubject variability is much less than that seen

with hypothermia. Through quantifying variability in drug treatment outcomes, we propose

that treatments be considered generalizable if they reduced mean infarct volume and concur-

rently show low interindividual variability (i.e., negative lnRR and lnCVR estimates; Fig 3).

Drug treatments that on average reduced infarct volume but had variable and inconsistent

effects (i.e., had negative lnRR and positive lnCVR estimates; Fig 3) are ungeneralizable but

might be appropriate for clinical exploitation in selected patients [30,43]. Conversely, the least

successful treatments can be identified as those that consistently do not reduce mean infarct

volume (i.e., positive lnRR and lnCVR estimates; Fig 3). We explored whether the sex of

groups used in experiments affected lnRR or lnCVR (see Materials and methods for multilevel

meta-regression [MLMR] model parameters), but differences in mean or variability of infarct
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volume did not vary significantly between female and male cohorts (see S5 and S6 Tables for

contrast model estimates for sex effects).

Discussion

We propose that the current failures in replicability and translation of preclinical trials may be

due, at least in part, to the way studies are designed and assessed, which is to minimize within-

study variation and ignore heterogeneity in outcomes [8,9,26–28]. Here, we have illustrated

the potential utility of embracing such heterogeneity, through meta-analyzing variability (rela-

tive variance or CV) in outcomes for rat animal models of stroke. First, by estimating the vari-

ability generated by different methodological designs applied to control animal groups, we

have identified procedures that generate variability in disease states (Fig 1). Second, we have,

for the first time, quantified both the efficacy and stability (i.e., changes in the mean and

Fig 2. The effects of drug treatments on the difference in (a) mean (lnRR); and (b) variability (lnCVR) in infarct volume across control and

experimental rat groups. Mean estimates of unconditional (marginalized), group-specific effects are shown as gray circles, while the overall

estimate is indicated by the gray diamonds. Moreover, 95% CIs are shown as gray lines. Negative lnRR estimates indicate that mean infarct volume

is smaller in experimental versus control rats. Negative lnCVR estimates show that interindividual variability in infarct volume is smaller in

experimental versus control rats (e.g., HBOT indicated by left-pointing arrowhead), while positive lnCVR estimates show that variability in infarct

volume is greater in experimental versus control rats (e.g., ARBs indicated by right-pointing arrowhead). The overall and group-specific estimates

were obtained from MLMA and MLMR models, respectively. The data underlying this figure can be found at https://doi.org/10.6084/m9.figshare.

14527317.v4. ARB, angiotensin receptor blocker; CI, credible interval; HBOT, hyperbaric oxygen therapy; HMG-CoA, β-Hydroxy β-

methylglutaryl-CoA; lnCVR, log coefficient of variation ratio; lnRR, log response ratio; MLMA, multilevel meta-analysis; MLMR, multilevel meta-

regression; NO, nitric oxide; NOS, nitric oxide synthase; PPAR, peroxisome proliferator–activated receptor.

https://doi.org/10.1371/journal.pbio.3001009.g002

PLOS BIOLOGY Embrace heterogeneity to improve replicability

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001009 May 19, 2021 6 / 20

https://doi.org/10.6084/m9.figshare.14527317.v4
https://doi.org/10.6084/m9.figshare.14527317.v4
https://doi.org/10.1371/journal.pbio.3001009.g002
https://doi.org/10.1371/journal.pbio.3001009


variance, respectively) of stroke treatments applied to the experimental animal models (Figs 2

and 3), identifying potential treatments that may be generalizable versus those that require tai-

loring. We further discuss these results below in the context of their implications for improv-

ing the replicability (also defined as “Results reproducibility” [1]) and generalizability of

preclinical studies.

Generate variability through methodology

Among stroke animal models, studies may differ in the design of a number of parameters,

including the genetic composition of animals (e.g., the sex and strain of rats used [32,44]) as

well as laboratory and operational environments (e.g., methods for stroke induction, the dura-

tion of ischemia, and the type of anesthesia used [37,38,45]). However, an impediment to het-

erogenization is that we have not previously had reliable estimates for which methodological

parameters may be most successful in generating variability in phenotypic outcomes [15]. Our

results therefore quantify heterogeneity and rank the experimental factors that can generate

variability in disease state into animal models so that we can most efficiently capture heteroge-

neity in experimental design.

Fig 3. Categorization of treatment effects based on mean efficacy (lnRR) and interindividual variability in efficacy

(lnCVR). Estimates (circles) represent unconditional (marginalized), treatment-specific means (lnRR), variability

(lnCVR), and their 95% CIs (solid lines) obtained from MLMR models. Treatments that significantly reduce infarct

volume (negative lnRR) without significantly affecting the variation are highlighted green, with citicoline indicated by

a diamond as the only treatment to significantly reduce infarct volume and also have a negative point estimate of

lnCVR. Treatments that significantly reduce infarct volume and increase interindividual variability (positive lnCVR)

are highlighted blue. The effects of hypothermia (most negative and positive mean and variability estimates,

respectively) and thrombolytics (which include the only regulatory-approved treatment) are highlighted in pink.

Histograms show the relationship of the mean and variance in infarct volume between control (orange) and treatment

(blue) groups in each quadrant of the graph. The data underlying this figure can be found at https://doi.org/10.6084/

m9.figshare.14527317.v4. CI, credible interval; lnCVR, log coefficient of variation ratio; lnRR, log response ratio;

MLMR, multilevel meta-regression.

https://doi.org/10.1371/journal.pbio.3001009.g003
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Our analyses of operational factors reveal that heterogeneity in outcomes may be induced

by incorporating spontaneous (CV = 52.5%), embolic (CV = 32.3%), and endothelin

(CV = 27.8%) methods of occlusion. Temporary models of occlusion also generate signifi-

cantly more variability in disease state than permanent models (CV = 25.2% and 20.5%,

respectively). Where choices permit, we suggest that these operational design considerations

are a valuable approach for introducing variability into animal models, in conjunction with

more familiar proposals to diversify the laboratory environment (e.g., through differences in

animal housing conditions and feeding regimens [16,19]). Depending on the type and purpose

of study, such operational and laboratory design considerations that increase heterogeneity in

outcomes through environmental effects may be especially valuable when variability cannot be

introduced through the animal’s genetic composition (e.g., for studies that are interested in

sex-specific [46,47] or strain-specific outcomes [44,48]).

Considering genetic factors, proposals to include more heterogeneous study samples rec-

ommend the inclusion of both sexes over just male or female animals [49–51], as well as the

use of multiple strains of inbred mice and rats (or even, multiple species) [52,53]. Recent

meta-analyses of variability in male and female rodents show that males may be as or more

variable than females in their phenotypic response [54,55]. We also find that male

(CV = 23.5%) and female (CV = 23.9%) rats generate quantitatively equal amounts of variabil-

ity. Counterintuitively, however, we find that studies that used both sexes produce the most

consistent outcomes (CV = 17.3%; see S1 Table for full, unconditional model coefficients). We

caution that a moderate amount of the total heterogeneity remained unexplained (i.e., residual

variation; Table 1). Thus, these outcomes of sex on estimates of variability may be due to con-

founding effects of unaccounted for differences in experimental design. We therefore empha-

size the importance of considering both genetic and environmental parameters for effective

heterogenization of studies [56,57].

An alternative approach to heterogenization of experimental designs within studies is to

introduce variability by conducting experiments across multiple research laboratories (i.e.,

multi-laboratory approach) [20,24,58]. Importantly, such an approach inherently captures

“unaccounted” sources of variability in experimental conditions that are difficult to systemati-

cally manipulate within a single-center study [16,19]. We argue that, especially where logistical

constraints may hinder multi-laboratory approaches (e.g., for earlier, basic, and exploratory

studies), introducing heterogeneity within studies may provide the most practical alternative

[23]. Indeed, by meta-analyzing the variability introduced by differences in experimental

methodology across studies, we can begin to find ways in which to heterogenize single studies

in order to best capture the variation that exist across laboratories and studies [16,20].

Systematically introducing variability into a system comes at the cost of reduced statistical

sensitivity [8,9] and necessitates larger studies [8,26,29]. While in the long-term increased rep-

licability may reduce waste and outweigh the initial costs, these economic and ethical costs

must, of course, be minimized. This can be done by identifying from a spectrum of all available

methodological choices the most efficient means of introducing heterogeneity within experi-

ments (Fig 1, S1 Table). FAU : PleasecheckwhethertheeditstothesentenceForsomemethodologicalaspectssuch:::arecorrect; andprovidecorrectwordingifnecessary:or some methodological aspects such as operational factors, this will

mean replacing current methodologies with choices that induce greater variability in baseline

and control group outcomes (e.g., by changing methods of occlusion). For other design

parameters that may traditionally be standardized such as genetic or lab environmental factors,

this will mean deliberately incorporating these types of heterogeneity in a systematic manner,

by including levels of these categorical (e.g., strain) or continuous (e.g., time of assessment)

variables using a randomized block or fully factorial design (i.e., “controlled heterogenization”

[59]). Regardless of the manner in which heterogeneity is incorporated, however, it is neces-

sary to quantify the amount of variability that different experimental designs introduce, with

PLOS BIOLOGY Embrace heterogeneity to improve replicability

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001009 May 19, 2021 8 / 20

https://doi.org/10.1371/journal.pbio.3001009


the aim that researchers can then make informed decisions about how to most efficiently

incorporate heterogeneity into study design [14–16,20]. Identifying sources of variability

through meta-analysis of variance in existing animal data as we have done here is the most

practical and economic way of establishing this much needed knowledge base.

Our analysis is not the first to assess the effects of experimental methodology on variation

in disease state in rodent models of stroke [37 38]. Ström and colleagues [37] investigated simi-

lar components of experimental design on variation in infarct volume in rats. There are a

number of methodological differences between their analyses and ours (e.g., differences in size

of dataset and use of formal meta-analytic models). Despite these differences, our quantitative

results are largely concordant. Where we differ substantially is in the interpretation of what is

a desirable outcome. For example, Ström and colleagues [37] concluded that intraluminal fila-

ment procedures provide optimal occlusion methods as they generate minimal variation in

disease outcome and maximize statistical power. Our analyses also identify that filament meth-

ods have low variation (CV = 17.9%); however, we argue that these gains in statistical power

come at the cost of reduced replicability.

We attempted to provide formal statistical support for the hypothesis that heterogeneous

methods result in more repeatable treatment effects. We used a second-order meta-regression

to assess whether the amount of variation (lnCV) in disease states induced by occlusion meth-

odology predicts heterogeneity in effect sizes for drug treatments using those methods (quanti-

fied as lnH [60]). As predicted, there is a negative relationship (slope = −0.876, −2.047 to 0.295;

P = 0.142; S2 Fig), suggesting that methodologies that induce greater variability in baseline dis-

ease states are associated with more consistent treatment outcomes. We note, however, that

our slope estimate is statistically nonsignificant and that our analysis was based on a small

number of methodological groups (N = 7) with an unbalanced distribution of drugs/rat strains

across those groups (see S7 Table for analysis details and full model results). Nonetheless, our

results are encouraging, and we are excited to see further studies formally quantify the rela-

tionship between variability induced by methodological procedures and replicability in

reported outcomes. Meta-analyses that quantify both variability in control and treatment out-

comes, as done here, provide a useful approach for quantifying the relationship between meth-

odological heterogenization and replicable outcomes.

Quantify variability to improve drug translation

Our second approach of simultaneously assessing both the mean and variation in treatment

outcomes allows us to place potentially useful treatments into 2 distinct categories for further

exploration: (1) beneficial and generalizable interventions, which are those that consistently

reduce infarct volume across individuals; and (2) beneficial but non-generalizable interven-

tions, which on average reduce infarct volume but result in large interindividual heterogeneity

in outcomes. This latter group could even include treatments that do not necessarily reduce

mean state, but have a large enough variance response to be beneficial to some [30,43,61].

Overall, we find that the stroke treatments in our dataset are usually effective, reducing

infarct volume on average by 33.1% compared with controls. Out of these effective treatments,

we identify 4 treatments that significantly reduced infarct volume but did not induce signifi-

cant differences in the CV across experimental and control groups (green highlights in Fig 3).

Nootropic treatments reduced infarct volume on average by 40.8%, while citicoline, antibiotic,

and exercise treatments reduced infarct volume by around 27.5% to 28.8% compared with

control groups. None of these treatments were estimated to significantly affect the CV,

although estimated effects ranged from 5.7% smaller in experimental relative to controls for

citicoline (highlighted with a triangle symbol in Fig 3) to 21.3% to 31.9% greater for the other
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treatments. We emphasize that these treatments may potentially be more generalizable in that

the outcomes of these treatments are on average favorable and are relatively consistent at the

individual level [33,34].

Second, we identify a handful of effective treatments that on average reduce infarct vol-

ume, but also generate significant amounts of variability in experimental groups (blue high-

lights in Fig 3; see S3 Table for rank order of unconditional estimates in mean and CV

across treatments). Of particular interest to note is that while thrombolytics significantly

increase variability in experimental groups relative to controls, they are still relatively con-

sistent in reducing mean infarct volume (on average reducing infarct volume by 29.6%,

while the CV in experimental groups is only 17.4% greater than controls). Out of treatments

that significantly reduce mean infarct volume, thrombolytics rank second in terms of its

consistency in effect, with overlapping confidence intervals in their effects on the CV with

those of citicoline (Fig 3).

On the other hand, hypothermia is much more effective in reducing infarct volume (on

average reducing infarct volume by 49.7%) but is the least consistent in doing so, estimating

the greatest CV (60.0% greater in hypothermia treated groups than concurrent controls).

Interestingly, efforts to exploit hypothermia for stroke in clinical trials have so far failed to

identify a patient group who might reliably benefit [62]. Other treatments that greatly reduce

average infarct volume while increasing the variation include, for example, omega-3, rho

GTPase inhibitors, and estrogen treatments. As such, while these treatments confer a mean

beneficial effect, this effect may not be generalizable across animals. Any future translation

into clinical trials would require tailoring with effort put in to predicting response at the indi-

vidual level [30]. To our knowledge, such tailoring has not been attempted because a treatment

with high variability (inconsistency) is less likely to be statistically significant and pass the pre-

clinical stage (even if it does improve a disease state) [30,43,61,63]. Our study represents the

first meta-analyses to quantify both the efficacy and consistency of treatment effects in animal

models. We believe that this approach will forge new opportunities for improving the gener-

alizability and translation of preclinical trials by embracing both the mean and variability in

outcomes.

Conclusions

We have demonstrated how researchers can quantitatively embrace heterogeneity in pheno-

typic outcomes with the aim of improving both the replicability and generalizability of animal

models. Prior to experimentation, researchers may design their experiments by deliberately

selecting methodologies that generate variability in disease state, creating a heterogenous, but

broadly representative backdrop of disease states against which treatment efficacy can be

assessed [10–12]. Since the magnitude and direction of phenotypic expression and outcomes

are determined by the interaction of genetic and environmental contexts within studies [14–

16], both of these methodological factors require heterogenization in order to avoid context-

specific and non-replicable outcomes across studies [16]. Post-experimentation, studies may

further incorporate analyses that estimate the magnitude and direction of variability generated

by treatments to identify potentially generalizable versus non-generalizable approaches. Recent

meta-analyses of variability in phenotypic outcomes of animal models are beginning to illumi-

nate the potential use of embracing different types of heterogeneities for improving replicabil-

ity, generalizability, and translation [60–62]. We offer that comparative analyses of variability

in both control and treatment groups has the potential to inform experimental design and lead

to changes in both the approach and direction of follow-up studies, ultimately leading to a

more successful program of replicability, drug discovery, and translation.
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Materials and methods

Data collection and imputation

We identified studies of rat animal models for stroke from the CAMARADES electronic data-

base (see S3 Fig for database query and selection). For our analysis, we only included experi-

mental studies that reported mean infarct volume (and their associated sample size and

standard deviation or standard error) in both control and experimental groups. Where neces-

sary, we calculated the standard deviation from the standard error multiplied by the square

root of (n– 1), where n is the sample size of the control or experimental group. Furthermore,

when a study used multiple treatment groups for a control group (28% of identified studies),

we divided the sample size of the control group equally among the treatment groups, which

dealt with correlated errors and prevented sampling (error) variances being overly small [64].

Before calculating the effect sizes, we excluded data where (i) the standard error was reported

as 0; or (ii) the sample size of the control group when divided was equal to or less than 1. We

also excluded categorical predictors that were represented by fewer than 5 data points. Overall,

2.9% and 1.2% of all identified studies were excluded for methodological and drug treatment

analyses, respectively (S3 Fig).

For meta-analysis of variance across methodological parameters, we focused on control

groups with sufficient group-level information on the methodology of the experiment. Specifi-

cally, we collected and coded methodological predictors as closely as possible to the predictors

used by Ström and colleagues [37] to produce a comparable meta-analysis (see full model

parameters in S1 Table). For meta-analysis of variance across drug treatment, we included

data from studies with sufficient group-level information on the drug group, rat strain, and sex

of experimental/control groups (see full model parameters in S3 Table). For all analyses, we

dealt with missing data via multiple imputation [65,66] using the package mice [67] as follows:

We first generated multiple, simulated datasets (m = 20) by replacing missing values with pos-

sible values under the assumption that data are missing at random (MAR) [68,69]. After impu-

tation, meta-analyses were performed on each imputed dataset (as described in the Statistical

analysis section), and model estimates were then pooled across analyses into a single set of esti-

mates and errors.

Calculating effect sizes

For meta-analyzing variance across methodological predictors, we calculated the lnCV and its

associated sampling variance (s2lnCV) for each control group. Since many biological systems

appear to exhibit a relationship between the mean and the variance on the natural scale (i.e.,

Taylor’s law; [42,70]), an increase in the mean may correspond to an increase in variance. Our

data indeed appears to exhibit a positive and linear relationship between log standard variation

(lnSD) and log mean infarct volume (S1 Fig). When such a relationship holds in data, it may

be most preferable to use an effect size such as lnCV, which estimates variance accounting for

the mean, and this is the approach we have taken.

For meta-analyzing variance across drug treatments, we calculated the log coefficient of var-

iance (lnCVR) and its associated sampling variance (s2lnCVR) as given in equations (11) and

(12) in Nakagawa and colleagues [69] (S8 Table). When meta-analyzing variance in the pres-

ence of Taylor’s law as it appears in our dataset, it may be most preferable to use lnCVR (over

the log variance ratio, lnVR), which gives the variance of a contrast group accounting for dif-

ferences in the mean. We therefore report all results using lnCVR in the manuscript. We note

that both lnCV and lnCVR assume a linear relationship between log mean and log variance

with the slope coefficient of 1 on the log scale. When slope estimates are closer to 0 or
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nonlinearities are present in the mean–variance relationship, other metrics of variability such

as log variability ratio (lnVR) or an approach that directly estimates the strength of association

between log mean and log variance (i.e., an arm-based meta-analysis [69]) based on log SD

may be more appropriate (for an example of an arm-based approach, see S9 Table and S4 Fig

for galaxy plot of lnRR on lnSD). We advise that future analyses of heterogeneity pick the most

appropriate statistic and model of variability based on the mean–variance relationships present

in their dataset [71]. In addition to assessing the effects of treatments on variance, we further

quantified differences in mean infarct volume by calculating the lnRR of the mean for each

control/experimental group within a study (lnRR) and its associated sampling variance

(s2lnRR). For both lnRR and lnCVR, we calculated effect sizes so that positive values corre-

sponded to a larger mean or variance in the experimental group.

Statistical analysis

We implemented multilevel meta-analytic models in a likelihood-based package using the

function “rma.mv” in the metafor package [72] as described in Eq 1:

yij ¼ mþ bxij þ sj þ tj þ eij þmij; ð1Þ

where yij (the ith effect size of variability or mean infarct volume from a set of n effect sizes

(i = 1,2,. . .,n) in the jth study from a set of k studies j = 1,2,. . .,k) is given by the grand mean

(μ), the effects of fixed predictors (βxij), and random effects due to study (sj), strain (tj), residual

(eij), and measurement error (mij) for the ith effect size in the jth study. Since variability in

observed effects may be explained by measurement error (mij in Eq 1), we present total I2 (the

percentage of variance that cannot be explained by measurement error) and study I2 (the per-

centage of variance explained by study-effects) to estimate the true variance in observed effects

(i.e., meta-analytic heterogeneity) [60]. We interpreted I2 of 25%, 50%, and 75% as small,

medium, and large variance, respectively [60].

To estimate variance (lnCV) in outcome as a function of methodology in control groups,

we constructed 2 meta-analytic models. First, we fitted a multilevel meta-analysis (MLMA)

with the objective of estimating the overall average variability in infarct volume across studies.

MLMA included a fixed intercept and random effects described in Eq 1. Second, we fitted a

MLMR with the objective of estimating effects of methodological predictors on variability in

infarct volume, by fitting the following fixed predictors: (i) method of occlusion; (ii) sex of ani-

mal cohort; (iii) type of ischemic model; (iv) type of anesthetic; (v) whether experiments were

temperature controlled; (vi) whether rats were physiologically monitored; (vii) mean cohort

weight; and (viii) time for evaluation of damage after focal ischemia (S1 Table). Mean cohort

weight and time for evaluation were z-transformed prior to model fitting. We similarly con-

structed MLMA and MLMR models for lnRR and lnCVR (fitting each effect size as the

response in separate models) to estimate the mean and variance in outcome as a function of

drug treatment in our control/experimental groups, respectively. For these MLMR models, we

included (i) drug treatment group, and (ii) sex of animal cohort as fixed predictors (S3 Table).

Fixed effects were deemed statistically significant where their 95% credible intervals (CIs) did

not span zero. For interpretation of results, we back-transformed model estimates from the log

to the natural scale.

Since reported outcomes may be prone to within-study biases particularly with regard to

mean estimates, we conducted a sensitivity analysis including publication quality as a random

effect in our MLMR model. Publication quality was determined according to guidelines set

out by the Stroke Academic Industry Roundtable (STAIR), which scored studies based on

whether they implemented strategies to mitigate against both selection and detection bias [73].
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Our sensitivity analysis did not lead to any qualitative changes in our main reported outcomes,

and publication quality accounted for little in terms of differences in mean infarct volume

(I2lnRR = 0.7%; for full sensitivity model estimates, see S5 and S6 Figs and S10–S12 Tables).

Finally, we tested for signs of publication bias (systematic bias in the published data due to the

preferential publication of more significant results) in our data by visual inspection of funnel

plots (S7 Fig) and conducting a type of Egger regression (precision-effect test and precision-

effect estimate with standard errors, PET-PEESE) on lnRR [74]. Egger regression on lnRR sug-

gested a small effect of publication bias in our mean estimate (1.6% difference between bias-

corrected and uncorrected estimates of our meta-analytic mean; see S13 Table for publication

bias test results). Egger regression cannot be used for lnCVR, and further, it is unlikely that

publication bias occurs for lnCVR because such biases are not driven by the difference in stan-

dard deviations between the experimental and control groups [75]. All meta-analyses were

conducted on the statistical programming environment R (v 3.2.2 [76]).

Supporting informationAU : AbbreviationlistshavebeencompiledforthoseusedthroughoutSupportinginformationcaptions:Pleaseverifythatallentriesarecorrect:
S1 Fig. Scatter plot of log mean–variance (log SD) relationship in rat animal data. Point

estimates for control (blue) and treatment (yellow) groups are provided. Slopes and 95% CIs

from linear regressions for control (0.822, 0.791 to 0.854) and treatment (0.758, 0.728 to 0.788)

rat groups, respectively, are shown. The data underlying this figure can be found at https://doi.

org/10.6084/m9.figshare.14527317.v4. CI, credible interval.

(TIF)

S2 Fig. Relationship between variability (lnCV) induced by occlusion methodologies and

consistency (lnH) in drug treatment outcomes. The mean slope of the relationship (slope =

−0.876, −2.047 to 0.295) from the MLMR model is shown by the gray line. Circles represent

estimates for each occlusion method and solid lines their 95% CIs obtained from multilevel

regression (MLMR) models. Each color represents a different occlusion method, and circle

sizes represent the number of effect sizes available to estimate lnH for each occlusion method.

From the highest to lowest lnH estimates: orange = Filament [N = 973]; yellow = Mechanical/

direct [N = 438]; blue = Endothelin injection [N = 76]; turquoise = Emboli/clot [N = 201];

green = Photothrombotic [N = 64]; purple = Collagenase injection [N = 8];

pink = spontaneous [N = 4]. The data underlying this figure can be found at https://doi.org/10.

6084/m9.figshare.14527317.v4. CI, credible interval; lnCV, log coefficient of variation; MLMR,

multilevel meta-regression.

(TIF)

S3 Fig. PRISMA flowchart of database query and study selection process. PRISMA, Pre-

ferred Reporting Items for Systematic Reviews and Meta-Analyses.

(TIF)

S4 Fig. Galaxy plot of treatment effects based on mean efficacy (lnRR) and interindividual

variability in efficacy as obtained from an arm-based meta-analysis of lnSD. Estimates (cir-

cles) represent unconditional (marginalized), treatment-specific means (lnRR), variability

(lnSD), and their 95% CIs (solid lines). We reveal differences in variability across treatment

groups, with treatments that significantly reduce infarct volume and increase interindividual

variability (positive lnSD) highlighted blue. The effects of hypothermia and thrombolytics (the

latter of which include the only regulatory-approved treatment) are highlighted in pink. The

data underlying this figure can be found at https://doi.org/10.6084/m9.figshare.14527317.v4.

CI, credible interval; lnRR, log response ratio; lnSD, log standard variation.

(TIF)
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S5 Fig. Sensitivity model CV estimates from multilevel regression (MLMR) of infarct vol-

ume in control groups. Mean estimates of unconditional (marginalized), group-specific coef-

ficients of variation (%) are indicated as gray circles. Moreover, 95% CIs are shown as gray

lines and are asymmetric due to back-transformation of log coefficient of variation (lnCV) to

the natural scale. The data underlying this figure can be found at https://doi.org/10.6084/m9.

figshare.14527317.v4. CI, credible interval; lnCV, log coefficient of variation; MLMR, multi-

level meta-regression.

(TIF)

S6 Fig. Sensitivity model (a) lnRR and (b) lnCVR estimates from multilevel regression

(MLMR) of infarct volume in treatment/control groups. Mean estimates of unconditional

(marginalized), group-specific effects are shown as gray circles, and 95% CIs are shown as gray

lines. Negative lnRR estimates indicate that mean infarct volume is smaller in experimental

versus control rats. Negative lnCVR estimates show that interindividual variability in infarct

volume is smaller in experimental versus control rats. The data underlying this figure can be

found at https://doi.org/10.6084/m9.figshare.14527317.v4. CI, credible interval; lnCVR, log

coefficient of variation ratio; lnRR, log response ratio; MLMR, multilevel meta-regression.

(TIF)

S7 Fig. Funnel plot for lnRR characterizing differences in mean infarct volume for con-

trol/treatment groups. Raw effect sizes are plotted against their precision (inverse of the

square root of standard error). MLMA model predicted mean effect size (solid vertical line),

and its 95% CI (dashed lines) are shown. The data underlying this figure can be found at

https://doi.org/10.6084/m9.figshare.14527317.v4. CI, credible interval; lnRR, log response

ratio; MLMA, multilevel meta-analysis.

(TIF)

S1 Table. Unconditional (marginalized) estimates and 95% credible intervals for lnCV,

obtained from multilevel regression (MLMR) models of control group infarct volume.

Continuous predictors were Z-transformed prior to model fitting. lnCV, log coefficient of vari-

ation; MLMR, multilevel meta-regression.

(DOCX)

S2 Table. Conditional estimates and 95% credible intervals for lnCV, obtained from multi-

level regression (MLMR) models of control group infarct volume. Continuous predictors

were Z-transformed prior to model fitting. Bold italicized estimates indicate that the 95% cred-

ible intervals do not span zero. lnCV, log coefficient of variation; MLMR, multilevel meta-

regression.

(DOCX)

S3 Table. Unconditional (marginalized) estimates and 95% credible intervals for lnRR and

lnCVR, obtained from multilevel regression (MLMR) models of infarct volume in treat-

ment/control groups. Treatment effects (DrugGroup) are ordered from groups that produce,

on average, the greatest reduction in infarct volume (i.e., the most effective, as indicated by

most negative estimates of lnRR) to groups that are, on average, the least effective. lnCVR, log

coefficient of variation ratio; lnRR, log response ratio; MLMR, multilevel meta-regression.

(DOCX)

S4 Table. Conditional estimates and 95% credible intervals for lnRR and lnCVR, obtained

from multilevel regression (MLMR) models of infarct volume in treatment/control groups.

Bold italicized estimates indicate that the 95% credible intervals do not span zero. lnCVR, log
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coefficient of variation ratio; lnRR, log response ratio; MLMR, multilevel meta-regression.

(DOCX)

S5 Table. Conditional estimates and 95% credible intervals for lnRR and lnCVR, obtained

from contrast multilevel regression (MLMR) models to assess the effect of sex on infarct

volume. The intercept here represents studies in which “Both” sexes were used. Bold italicized

estimates indicate that the 95% credible intervals do not span zero. lnCVR, log coefficient of

variation ratio; lnRR, log response ratio; MLMR, multilevel meta-regression.

(DOCX)

S6 Table. Conditional estimates and 95% credible intervals for lnRR and lnCVR, obtained

from contrast multilevel regression (MLMR) models to assess the effect of sex on infarct

volume. The intercept here represents studies in which only “Female” sex was used. Bold itali-

cized estimates indicate that the 95% credible intervals do not span zero. lnCVR, log coefficient

of variation ratio; lnRR, log response ratio; MLMR, multilevel meta-regression.

(DOCX)

S7 Table. Consistency in drug treatment outcomes across variability induced by occlusion

methodologies. For our second-order meta-regression, we first separated our rat infarct vol-

ume data by occlusion methods. For each occlusion method data, we conducted a MLMR to

estimate heterogeneity (I2) in lnRR including our original random (study ID, effect size ID,

and strain) and fixed effects (sex + drug treatment group). From our MLMR models, we

extracted total I2 of lnRR and from this calculated the heterogeneity statistic lnH. lnH is a pref-

erable effect size for downstream analyses as it is unbounded and has a relatively well-defined

standard error to act as a measure of its precision [61 in main text]. Using the square of the

standard error of lnH as the sampling variance and lnH as our response variable, we then fit a

second-order meta-regression using the lnCV estimates of each occlusion method as a fixed

predictor and effect size ID as a random effect (σ2
Residual = 0.200). Unconditional estimates of

lnCV were obtained from our MLMR models of methodological variability (S1 Table)

described in our main text. Estimates and 95% credible intervals from this second-order

MLMR model is reported below. Estimates with credible intervals that do not span zero are

considered statistically significant. See S3 Fig for a line plot depicting the relationship between

lnH and lnCV with the model fitted line. lnCV, log coefficient of variation; lnRR, log response

ratio; MLMR, multilevel meta-regression.

(DOCX)

S8 Table. Effect sizes and sampling variances used in meta-analysis of variance (a) across

methodological predictors and (b) across drug treatment groups. Equations and the model

type in which the effect size was used are also given. x and s are the mean and SD of the group

infarct volume, n is the sample size, CV is the coefficient of variation, and ρ is the correlation

between the mean and standard deviation on the log scale (ρ is assumed to be 0�). Subscripts C

and E refer to control and treatment groups, respectively.

(DOCX)

S9 Table. Model estimates (unconditional) and 95% credible intervals for lnRR and lnSD.

Estimates of lnSD were obtained from an arm-based, multilevel regression model (MLMR) of

lnSD in infarct volume for both treatment and control groups. Original fixed (drug treatment

group and sex) and random effects (study ID, effect size ID, and strain) were fit, in addition to

a nested random effect of “Drug treatment group | pairwise ID.” Estimates of lnRR are from

the main analysis of mean drug treatment effects and are the same as in S3 Table. Treatment

effects (DrugGroup) are ordered from groups that produce, on average, the greatest reduction
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in infarct volume (i.e., the most effective, as indicated by most negative estimates of lnRR) to

groups that are, on average, the least effective. lnRR, log response ratio; lnSD, log standard var-

iation; MLMR, multilevel meta-regression.

(DOCX)

S10 Table. Sensitivity model estimates (unconditional) and 95% credible intervals for

lnCV, obtained from multilevel regression (MLMR) models of control group infarct vol-

ume. Continuous predictors were Z-transformed prior to model fitting. lnCV, log coefficient

of variation; MLMR, multilevel meta-regression.

(DOCX)

S11 Table. Sensitivity model estimates (unconditional) and 95% credible intervals for

lnRR and lnCVR, obtained from multilevel regression (MLMR) models of infarct volume

in treatment/control groups. Treatment effects (DrugGroup) are ordered from groups that

produce, on average, the greatest reduction in infarct volume (i.e., the most effective, as indi-

cated by most negative estimates of lnRR) to groups that are, on average, the least effective.

lnCVR, log coefficient of variation ratio; lnRR, log response ratio; MLMR, multilevel meta-

regression.

(DOCX)

S12 Table. Sensitivity model estimates of heterogeneity (I2) for analyses of methodology

on variability (lnCV) and drug treatment on mean (lnRR) and variance (lnCVR) in rat

infarct volume. Estimates (%) are shown for MLMAs and MLMR models. lnCV, log coeffi-

cient of variation; lnCVR, log coefficient of variation ratio; lnRR, log response ratio; MLMA,

multilevel meta-analysis; MLMR, multilevel meta-regression.

(DOCX)

S13 Table. Results from Egger regression (PET-PEESE) on lnRR to test for publication

bias. This procedure fits the square root of sampling variance as a moderator (slope estimate

and 95% credible intervals shown in the first half of the table). If this estimate is significant, we

then fit the sampling variance (second half of the table). The intercept from this latter model

indicates a “potentially” bias-corrected, modified meta-analytic mean. In our case, the biased-

corrected estimate is a 28.0% decline, compared with the original estimate without correction,

which is a 29.6% decline. These values indicate that although this analysis detected a sign of

publication bias, the effect of this bias is very small (1.6% difference). Bold italicized estimates

indicate that the 95% credible intervals do not span zero. lnRR, log response ratio; PEESE, pre-

cision-effect estimate with standard errors; PET, precision-effect test.

(DOCX)
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on design and analysis of mouse knockout phenotyping studies. PLoS ONE. 2014; 9:e111239. https://

doi.org/10.1371/journal.pone.0111239 PMID: 25343444

24. Milcu A, Puga-Freitas R, Ellison AM, Blouin M, Scheu S, Freschet GT, et al. Genotypic variability

enhances the reproducibility of an ecological study. Nat Ecol Evol. 2018; 2:279–287. https://doi.org/10.

1038/s41559-017-0434-x PMID: 29335575

25. Llovera G, Hofmann K, Roth S, Salas-Pérdomo A, Ferrer-Ferrer M, Perego C, et al. Results of a preclin-

ical randomized controlled multicenter trial (pRCT): Anti-CD49d treatment for acute brain ischemia. Sci

Transl Med. 2015; 7(299). https://doi.org/10.1126/scitranslmed.aaa9853 PMID: 26246166

26. Festing MF. Refinement and reduction through the control of variation. Altern Lab Anim. 2004; 32:259–

263. https://doi.org/10.1177/026119290403201s43 PMID: 23577470

27. Festing MF. Evidence should trump intuition by preferring inbred strains to outbred stocks in preclinical

research. ILAR J. 2014; 55:399–404. https://doi.org/10.1093/ilar/ilu036 PMID: 25541542

28. Willmann R, De Luca A, Benatar M, Grounds M, Dubach J, Raymackers J-M, et al. Enhancing transla-

tion: guidelines for standard pre-clinical experiments in mdx mice. Neuromuscul Disord. 2012; 22:43–

49. https://doi.org/10.1016/j.nmd.2011.04.012 PMID: 21737275

29. Russell WMS, Burch RL. The principles of humane experimental technique. London: Methuen; 1959.

30. Schork NJ. Personalized medicine: time for one-person trials. Nature. 2015; 520(7549):609–11. https://

doi.org/10.1038/520609a PMID: 25925459

31. Dirnagl U. Bench to bedside: The quest for quality in experimental stroke research. J Cerebr Blood F

Met. 2006; 26(12):1465–1478. https://doi.org/10.1038/sj.jcbfm.9600298 PMID: 16525413

32. Howells DW, Porritt MJ, Rewell SSJ, O’Collins V, Sena ES, Van Der Worp HB, et al. Different strokes

for different folks: The rich diversity of animal models of focal cerebral ischemia. J Cerebr Blood F Met.

2010; 30(8):1412–1431. https://doi.org/10.1038/jcbfm.2010.66 PMID: 20485296

33. O’Collins VE, Macleod MR, Donnan GA, Horky LL, Van Der Worp BH, Howells DW. 1,026 Experimental

treatments in acute stroke. Ann Neurol. 2006; 59(3):467–477. https://doi.org/10.1002/ana.20741 PMID:

16453316

34. Howells DW, Sena ES, O’Collins VE, Macleod MR. Improving the efficiency of the development of

drugs for stroke. Int J Stroke. 2012; 7(5):371–377. https://doi.org/10.1111/j.1747-4949.2012.00805.x

PMID: 22712738

35. Perel P, Roberts I, Sena E, Wheble P, Briscoe C, Sandercock P, et al. Comparison of treatment effects

between animal experiments and clinical trials: Systematic review. Brit Med J. 2007; 334(7586):197–

200. https://doi.org/10.1136/bmj.39048.407928.BE PMID: 17175568

36. Thomas A, Detilleux J, Flecknell P, Sandersen C. Impact of stroke therapy academic industry roundta-

ble (STAIR) guidelines on peri-anesthesia care for rat models of stroke: A meta-analysis comparing the

years 2005 and 2015. PLoS ONE. 2017; 12(1):1–18. https://doi.org/10.1371/journal.pone.0170243

PMID: 28122007

37. Ström JO, Ingberg E, Theodorsson A, Theodorson E. Method parameters’ impact on mortality and vari-

ability in rat stroke experiments: A meta-analysis. BMC Neurosci. 2013; 14:41. https://doi.org/10.1186/

1471-2202-14-41 PMID: 23548160

38. Ingberg E, Dock H, Theodorsson E, Theodorsson A, Ström JO. Method parameters’ impact on mortality

and variability in mouse stroke experiments: A meta-analysis. Sci Rep. 2016; 6. https://doi.org/10.1038/

srep21086 PMID: 26876353

39. Van der Worp HB, Van Gijn J. Clinical practice. Acute ischemic stroke. N Engl J Med. 2007; 357:572–

579. https://doi.org/10.1056/NEJMcp072057 PMID: 17687132

40. Adams HP, Adams RJ, Brott T, Del Zoppo GJ, Furlan A, Goldstein LB. Guidelines for the early manage-

ment of patients with ischemic stroke: A scientific statement from the Stroke Council of the American

Stroke Association. Stroke. 2003; 34(4):1056–1083. https://doi.org/10.1161/01.STR.0000064841.

47697.22 PMID: 12677087

PLOS BIOLOGY Embrace heterogeneity to improve replicability

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001009 May 19, 2021 18 / 20

https://doi.org/10.1371/journal.pbio.2003693
https://doi.org/10.1371/journal.pbio.2003693
http://www.ncbi.nlm.nih.gov/pubmed/29470495
https://doi.org/10.1038/nmeth.4259
http://www.ncbi.nlm.nih.gov/pubmed/28448068
https://doi.org/10.1038/s41598-019-44705-2
http://www.ncbi.nlm.nih.gov/pubmed/31160667
https://doi.org/10.1371/journal.pone.0111239
https://doi.org/10.1371/journal.pone.0111239
http://www.ncbi.nlm.nih.gov/pubmed/25343444
https://doi.org/10.1038/s41559-017-0434-x
https://doi.org/10.1038/s41559-017-0434-x
http://www.ncbi.nlm.nih.gov/pubmed/29335575
https://doi.org/10.1126/scitranslmed.aaa9853
http://www.ncbi.nlm.nih.gov/pubmed/26246166
https://doi.org/10.1177/026119290403201s43
http://www.ncbi.nlm.nih.gov/pubmed/23577470
https://doi.org/10.1093/ilar/ilu036
http://www.ncbi.nlm.nih.gov/pubmed/25541542
https://doi.org/10.1016/j.nmd.2011.04.012
http://www.ncbi.nlm.nih.gov/pubmed/21737275
https://doi.org/10.1038/520609a
https://doi.org/10.1038/520609a
http://www.ncbi.nlm.nih.gov/pubmed/25925459
https://doi.org/10.1038/sj.jcbfm.9600298
http://www.ncbi.nlm.nih.gov/pubmed/16525413
https://doi.org/10.1038/jcbfm.2010.66
http://www.ncbi.nlm.nih.gov/pubmed/20485296
https://doi.org/10.1002/ana.20741
http://www.ncbi.nlm.nih.gov/pubmed/16453316
https://doi.org/10.1111/j.1747-4949.2012.00805.x
http://www.ncbi.nlm.nih.gov/pubmed/22712738
https://doi.org/10.1136/bmj.39048.407928.BE
http://www.ncbi.nlm.nih.gov/pubmed/17175568
https://doi.org/10.1371/journal.pone.0170243
http://www.ncbi.nlm.nih.gov/pubmed/28122007
https://doi.org/10.1186/1471-2202-14-41
https://doi.org/10.1186/1471-2202-14-41
http://www.ncbi.nlm.nih.gov/pubmed/23548160
https://doi.org/10.1038/srep21086
https://doi.org/10.1038/srep21086
http://www.ncbi.nlm.nih.gov/pubmed/26876353
https://doi.org/10.1056/NEJMcp072057
http://www.ncbi.nlm.nih.gov/pubmed/17687132
https://doi.org/10.1161/01.STR.0000064841.47697.22
https://doi.org/10.1161/01.STR.0000064841.47697.22
http://www.ncbi.nlm.nih.gov/pubmed/12677087
https://doi.org/10.1371/journal.pbio.3001009


41. Vesterinen HM, Sena ES, Egan KJ, Hirst TC, Churolov L, Currie GL, et al. Meta-analysis of data from

animal studies: A practical guide. J Neurosci Methods. 2014; 221:92–102. https://doi.org/10.1016/j.

jneumeth.2013.09.010 PMID: 24099992

42. Taylor BLR. Aggregation, variance and the mean. Nature. 1961; 189:732–735.
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