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Abstract

pathways of damage recovery upon toxic exposure.

maintenance.

Background: A myriad of new chemicals has been introduced into our environment and exposure to these
agents can damage cells and induce cytotoxicity through different mechanisms, including damaging DNA directly.
Analysis of global transcriptional and phenotypic responses in the yeast S. cerevisiae provides means to identify

Results: Here we present a phenotypic screen of S. cerevisiae in liquid culture in a microtiter format. Detailed
growth measurements were analyzed to reveal effects on ~5,500 different haploid strains that have either non-
essential genes deleted or essential genes modified to generate unstable transcripts. The pattern of yeast mutants
that are growth-inhibited (compared to WT cells) reveals the mechanisms ordinarily used to recover after damage.
In addition to identifying previously-described DNA repair and cell cycle checkpoint deficient strains, we also
identified new functional groups that profoundly affect MMS sensitivity, including RNA processing and telomere

Conclusions: We present here a data-driven method to reveal modes of toxicity of different agents that impair
cellular growth. The results from this study complement previous genomic phenotyping studies as we have
expanded the data to include essential genes and to provide detailed mutant growth analysis for each individual
strain. This eukaryotic testing system could potentially be used to screen compounds for toxicity, to identify
mechanisms of toxicity, and to reduce the need for animal testing.

Introduction

The DNA damage response in budding yeast S. cerevi-
siae is well characterized, especially regarding its
response to the alkylating agent methyl methanesulfo-
nate (MMS) [1-8]. In addition to the ~150 yeast pro-
teins directly involved in DNA repair [9], a plethora of
proteins with other biological functions are necessary
for recovery after damage [1,2]. The mechanistic rele-
vance of many of these proteins in cellular recovery is
still not fully understood. Yeast, as a eukaryotic model
system, serves as an eminent tool to develop new meth-
ods to unravel pathways for modulating the toxicity of
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agents, especially those agents with unknown modes of
action. Several tests, such as the Ames test or the
RAD54-GFP Greenscreen [10], exist to determine the
genotoxicity of compounds. However, these tests do not
always reveal the agents’ modes of genotoxicity or the
consequential cellular responses elicited by the interac-
tions between the agent and cellular components other
than DNA. In addition, these tests are notorious for
false positives in predicting the toxicity of an agent for
mammalian cells, as revealed later by animal testing. To
decipher the mode of toxicity by different toxicants,
powerful tools such as genomic phenotyping have been
developed [1,2,11-16]. Such methodology is used to
determine growth under various conditions for an entire
panel of 4,852 yeast strains with single non-essential
genes deleted. Of the estimated 6,000 genes in S. cerevi-
siae, 80% are non-essential for growth in rich media; the
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remaining are essential genes that cannot be deleted and
are thus more difficult to study. The subset of essential
genes is more highly conserved between species [17]
and may therefore be of more relevance in understand-
ing how humans react to toxicants. Essential genes can
be studied in hemizygous diploid strains [18] and in
haploid strains with either conditional expression of
genes or with decreased levels of transcripts [19,20]. We
have queried the essential genes in the Decreased Abun-
dance by mRNA Perturbation (DAmP) library of haploid
strains [19,21]; transcript levels in the DAmP library
were reduced by tagging the 3° UTR of the transcripts
with a sequence that elicits nonsense-mediated decay
[22].

By using arrayed assays of growing liquid cultures in a
microtiter format, sensitive detection of toxicity is
achieved. Previous studies using liquid assays in microti-
ter plates were not high throughput enough to allow
screening of the entire yeast genome [23], and although
high throughput analysis has been achieved by others,
that was only by pooling strains tagged with a specific
DNA sequence ‘bar-code’. That method detects differ-
ences in fast-growing strains, but slow-growing strains
are depleted from the pool and are thus quantified with
less precision. However, this obstacle may be overcome
by deep sequencing of the ‘bar-codes’ instead of the
more common detection by microarrays [24,25].

Here we present a sensitive yet robust and highly
automated liquid culture method that we have used as a
screen to reveal modes of damage recovery in a eukar-
yotic system. By combining our data with protein-pro-
tein interaction maps, and using databases of functional
categories, we have discovered novel biological pathways
important for the recovery of cells in response to toxi-
cants. Importantly, the screen has the potential to
increase our understanding of toxicity modulating path-
ways for many different agents. The eukaryotic testing
system we present here could be used to screen novel
compounds for toxicity and thus reduce the need for
animal testing.

Results

Experimental system to query genotoxic agents

To systematically characterize biological responses to
toxic agents, we set up a system where yeast strains
were exposed to increasing doses of the alkylating agent
MMS. Mutations in 5,528 S. cerevisiae genes, represent-
ing ~ 92% of the S. cerevisiae genome [26], are now
available as individual haploid yeast strains; each strain
carries either a complete gene deletion or an insertion
in the 3’ UTR of a gene to destabilize its transcript, thus
reducing its steady state level [19,21]. The yeast strains
were grown in 96 well plates to stationary phase and
then diluted into MMS-containing media (0, 0.004,
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0.008, 0.012 and 0.016% MMS). Growth kinetics were
recorded in the presence of the DNA damaging agent
by optical density measurements at room temperature
every 4 hours between 12 and 48 h after transfer to
MMS-containing medium (Figure 1), and every strain
was queried in at least three independent experiments.
Three control strains with known MMS sensitivity were
present in every plate: rad14A, reviA and maglA were
present at three known locations, and WT was present
at three other locations (Figure 1, 2A). The dose
response for each strain was calculated by determination
of the area under the growth curve at each dose (see
Methods section for details). In this study, the dose
response was required to behave in a close-to linear
manner to be considered valid, such that only when the
dose response of a strain could be fitted to a straight
line (R*>0.7) were the data included (Figure 2B). For
89.3% of the deletion strains, and 76.9% of the DAmP
strains, two or more experiments fulfilled this criterion,
resulting in 87.3% coverage of the tested 5,528 yeast
strains.

For each strain, the dose that gave 50% growth inhibi-
tion (GI5p) was calculated based on a total of a median
of 150 measurements (10 time points x 5 doses x 2-4
replicates). Only replicates that passed the quality criter-
ion above of R*>0.7 were included in the calculations.
The Glso for WT haploid yeast was determined as 0.01
+ 0.002% MMS (average + s.e.m.). The GIlsq for the
three control strains were 0.008 + 0.001%, 0.006 +
0.0005%, and 0.003 + 0.0007% for radi14A, reviA, and
maglA respectively (Figure 2B). The reproducibility
between experiments was high (the average R” for the
Gl5, between replicates was 0.88 + 0.03). To make a
quantitative comparison of the tested strains to previous
studies, all strains were categorized as showing severe,
intermediate, and slight or no sensitivity to MMS. This
categorization was based on the comparison between
GlI;q values of the tested strains, WT and the three con-
trol strains used as standards to indicate the thresholds
for slight (rad14A4), intermediate (reviA) and severe
(maglA) sensitivity (Figure 2C).

In total, 258 (6%) of the 4,331 deletion strains that
passed the quality criterion were determined to be more
sensitive to MMS than WT; among these strains 18
(7.0%) showed severe, 87 (33.7%) showed intermediate,
and 153 (59.3%) showed slight MMS sensitivity (Figure
2D, Table S1, Additional file 1). A much higher fraction
of the DAmP strains with hypomorphic mutations in
essential genes demonstrated sensitivity to MMS com-
pared to the deletion strains. Among the 675 DAmP
strains that passed the quality criterion, 222 (33%) were
MMS sensitive; among these strains 13 (5.9%) showed
severe, 69 (31.1%) showed intermediate, and 140 (63.1%)
showed slight MMS sensitivity (Figure 2D, Table S1,
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Figure 1 Schematic of the experimental procedure. (1) Cells are kept at -80°C from where they are pin-replicated and (2) grown to stationary
phase in a master plate. (3) Once in stationary phase, the cultures are robotically diluted in YPD media (using a Hydra liquid handler) containing
increasing doses of MMS (0-0.016% final concentration). (4) After incubation at 25°C for 12 hours, optical densities of all cultures are measured
every 4 h until 48 h post-treatment. Growth curves are plotted and data is analyzed. As an example, plate 1 from the DAmP library is shown
with the name of gene deleted in each strain given above the growth curves. Every plate contains control strains (in bold), WT (B11, D3, F5),
rad14A (B12), reviA (D4) and maglA (G5), as well as at least two empty wells, containing media only.

empty BET2 | snUtT4] AOST

Tempty MAKTIG | BRENT POLE Ex084 oMo TiFG CoLf PEST USOf HTST % A
N A A IA T Vi
‘.o TRPO2T SN TR SLUT TAFTZ RS5C3 YT TAHTE | RFPT3 TFB4 WT RAD14 B
R YA AT Y 7 /J/ﬁf/f/ﬁf / /j
9 MNUGT Ialishi RPN SREA4 Sy POPT |¥YPROS5 CCAT RPNMTTL SMC2 |YBRT1GO RiM2
E T s i / f/ é% F C
I.f:) YT MICO8 WT REV1 RET? HENATS Ofef ALG2 HSFT MPS2 | SRPE4 USET
o T / D
D W A7) 71/ ﬁ._gﬁlﬁ—‘é fﬁmf
-C.-ﬁ' T LSGT FREZ PRFP43 FHLT CcOG4 | PRFP38 ESFPT YTHT SFPTE NATZ R‘PN? MTRZ E
0 ﬁjﬂ/ﬁfﬁ/ﬂjﬁf Vz Z i
o T RPC40 MEDT PisT S047 WT BRFT st SAM3s | NMD3 RRFY I¥YPR14200 RFB3
A A A A A AT 1 F
RHEPTE STHT MAGT G2 DSNT 5QTY EET3 NOoCd MNLIT2 JiP5
I &
f H
0

2/
=

N
B
N
s
15
N

Additional file 1). The environmental stress response
(ESR) genes [27] only modestly overlap with the genes
deleted in the MMS sensitive strains; the ESR genes make
up 19% of the genes deleted in sensitive strains, whereas
the ESR comprises 16% of the entire genome (p = 0.002).
Further, the WT used here was a modified version of

BY4741 (with a plasmid conferring G418 resistance). This
strain was confirmed as being slightly more sensitive than
the original BY4741 (p-value < 0.01, t-test). The assay has
its most sensitive range in detecting strains with Glsq
between 0.002 and 0.008, where the data points to calcu-
late the Glso cover the entire range from control growth
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Figure 2 Determination of sensitivity phenotype of the tested strains. A) Growth curves of the controls - WT and the sensitive strains
rad144, revi/, and magiA - during 12-48 h after insult with increasing doses of alkylating agent MMS. A few data points at 32 h were
undersampled and showed large variation. These points were omitted from the graphs. B) The area under the growth curves were plotted
against the dose to calculate the dose that result in 50% growth inhibition (Glsp). The data for the four control strains are shown. Error bars
represents the s.e.m. C) Histograms of showing the distribution of Glsy from the entire tested panel (both deletion and DAmMP strains), with the
Glsg of the four control strains forming the limits between severe, intermediate and slight sensitivity to MMS. The WT strain has been transfected
with a plasmid conferring G418 resistance that alters the sensitivity of the strain slightly. D) Pie charts of sensitivities of the strains lacking (left)
non-essential genes (deletion strains) and (right) essential genes (DAMP strains).
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(100%) to no growth (0%). The confidence in calculating
the Gl of resistant strains decreases, as the growth is not
as inhibited by the tested doses. However, we also identi-
fied 152 strains from both libraries (145 deletion strains, 7
DAmP strains) that showed some resistance to MMS
compared to WT (Figure S1, Additional file 2). The criter-
ion for resistance is described in the Methods section. No
GO term was significantly enriched (FDR<0.05) among
the genes that conferred resistance when deleted. As in
previous studies, this method has been unable to reprodu-
cibly identify resistant strains [1,2].

The data was also used to calculate the time required for
the cultures to demonstrate visible growth (lag time) and
the MMS dependency of the lag time (Figure S2, Addi-
tional file 2). Most strains, including the four control
strains had a lag time 10-0 h. “Slow-growers” were defined
as having a lag time exceeding 20 h. A large fraction (40%)
of the “slow-growers” came from the relatively small
DAmP library. Among the sensitive strains, a significant
proportion (26.0%) were “slow-growers”, which is signifi-
cantly higher (p < 10™*7) than in the entire collection
(6.7%). This observation was further confirmed by a com-
parison with other “slow-growers” identified elsewhere
[28]. In this set 18.6% of the sensitive strains were identi-
fied as “slow-growers”, again significantly higher (p < 10)
than in the entire collection (8.6%). The MMS dependency
of the lag time represents an alternative measure of MMS
sensitivity (Figure S2C, Additional file 2).
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The MMS sensitivities and the lag times of the indivi-
dual strains in this liquid assay are listed in Table S1
and S2 (Additional file 1).

Functional enrichment

To determine the biological functions involved in the
recovery after being exposed to the DNA damaging
agents MMS, we sought enrichment among gene
ontology (GO) functional categories (see Methods) in
the selection of genes deleted in the MMS sensitive
strains compared to the entire genome. Among the
functions that are highly enriched in the MMS sensi-
tive strains are, as expected, DNA repair, cell cycle and
transcription, but in addition the unexpected categories
of telomere maintenance and RNA processing are also
very highly enriched in the MMS sensitive strains
(abstracted data in Table 1 complete data in Table S3,
Additional file 1). Previous genomic phenotyping on
solid agar did not find ‘telomere maintenance’ enriched
among MMS sensitive strains [2]. However, re-analysis
of the previous data with updated gene annotations
revealed that this function and related GO categories
are in fact among the most significantly enriched
terms in that data set (Table S4, Additional file 1).
Moreover, the RNA processing functions revealed in
the current study derive primarily from screening the
essential genes, which was not possible at the time of
the previous study [2].

Table 1 Enriched GO terms among the toxicity-modulating genes

GO IDDescription P-value Adjusted P-value x/X* (%) n/N** (%)
6974 response to DNA damage stimulus 6.8E-19 2.1E-16 15.3 4.8
6259 DNA metabolic process 3.0E-16 4.7E-14 19.0 76
6281 DNA repair 2.9E-16 47E-14 128 39
22402 cell cycle process 6.6E-12 54E-10 174 79
6394 RNA processing 2.5E-09 1.5E-07 16.0 79
7001 chromosome organization and biogenesis 44E-09 2A4E-07 144 6.8
6365 rRNA processing 1.3E-08 6.4E-07 9.2 35
6260 DNA replication 1.4E-08 6.5E-07 7.8 27
278 mitotic cell cycle 2.2E-08 9.3E-07 114 5.1
6351 transcription, DNA-dependent 24E-08 9.8E-07 11.2 49
6302 double-strand break repair 2.5E-08 9.8E-07 43 1.0
34470 ncRNA processing 34E-08 1.3E-06 1.2 50
65004 protein-DNA complex assembly 1.1E-07 3.7E-06 59 1.9
723 telomere maintenance 2.0E-05 3.7E-04 34 1.0
6395 RNA splicing 24E-05 44E-04 57 24
7059 chromosome segregation 4.0E-04 50E-03 53 25
51656 establishment of organelle localization 39E-03 34E-02 2.5 1.0
7127 meiosis | 44E-03 3.8E-02 30 13

* number of toxicity-modulating genes with GO term/number of toxicity-modulating genes x 100

** number of genes with GO term/number of genes x 100

Table only shows non-redundant GO terms containing between 50 and 500 genes, with FDR adjusted p-value <0.05 and an enrichment of at least 2. For

complete table, see supplemental table S3 (Additional file 1).
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Protein-protein interaction networks

To interpret the results in a wider biological context, the
protein products of all toxicity-modulating genes were
mapped onto the S. cerevisiae protein-protein interac-
tion network [29]. One large interconnected network
with several well-defined sub-networks were identified
(Figure 3A). As previously assumed [2], non-essential
and essential toxicity-modulating gene products were
present in the same biological networks. The networks
were highly connected as each protein had an average
number of 2.2 protein-protein interactions (p < 0.001,
permutation test). In a random sample of equal size,
each protein had on average 1.2 protein-protein interac-
tions. The identified sub-networks are discussed below.
DNA repair and replication

As expected, many strains deficient in DNA repair pro-
teins are identified as MMS sensitive. In concordance
with previous results [1,2], this set of toxicity-modulat-
ing genes include members of the RADS2 epistasis
group, such as RAD50, RAD51, RAD52, RAD59, RAD54
and RADS57. Together with XRS2, these gene products
are required for homologous recombination repair of
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DNA double-strand breaks (reviewed in [30]). Other
DNA repair pathways that were important for cellular
recovery after MMS include both the base excision
repair pathway (MAGI, APNI) and the nucleotide exci-
sion repair pathway (RADI4, SSL1, TFB1, RAD26),
including associated factors (RAD9, RAD24, DEFI).
Rad14p is the yeast homolog of damage binding protein
XPA [31], and Ssllp and Tfblp are subunits of the
TFIIH complex essential for NER [32,33]. Rad9p and
Rad24p are checkpoint proteins required for NER [34].
A branch of NER, transcription coupled repair (TCR), is
effective on the transcribed strand of DNA. This path-
way is represented by RAD26 and DEFI. Rad26p is the
yeast homolog of CSB, a DNA dependent ATPase [35]
and Deflp is required for the ubiquitination and subse-
quent proteolytic degradation of RNA pol II [36,37].
The involvement of transcription coupled repair for
DNA methylation damage is surprising in light of pre-
vious reports stating that TCR does not act on methy-
lated DNA bases in mammalian cells [38]. The post-
replication repair error-free prone pathway was also
represented in our dataset, albeit by mutants that
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showed only slight MMS sensitivity (POL32, MMS2,
RAD6, UBC13, RADS52, RADS, RADIS).

We also identified three essential genes that encode
three subunits of the Replication Factor C (RFC),
namely RFCS, RFCI and RFC3, as being important for
MMS-induced damage recovery. The RFC complex is
involved in both DNA repair and DNA replication, act-
ing as a “clamp loader” to load Pol30p (the yeast homo-
log of PCNA) onto DNA; RFC is also thought to
contribute to the maintenance of a DNA replication
checkpoint during S phase [39].

Telomere maintenance

DNA damaging agents can induce gross chromosomal
rearrangements and MMS is known to induce chromoso-
mal aberrations in the form of telomere additions and
translocations [40]. In the last few years, various genome-
wide screens have shown that more than 350 genes affect
the regulation of telomere length [41-43]. The RADS2
epistasis group provides a telomerase-independent
mechanism of telomere maintenance, and is heavily repre-
sented among the toxicity-modulating proteins, as men-
tioned above. Besides the RADS52 epistasis group, deletion
of other non-essential genes involved in telomere mainte-
nance also results in MMS sensitivity. For instance, severe
MMS sensitivity results upon deletion of SGSI encoding a
DNA helicase of the RecQ family that is required for
recombination-mediated telomere lengthening [44,45].
The Sgslp N-terminal physically interacts with Top3p
[46] and Rmilp [47], two other proteins that when lacking
cause severe cellular sensitivity to MMS. Intermediate sen-
sitivity results from deletion of EST1, encoding a protein
associated with the telomere template RNA sequence
(TLCI RNA) used to add TG-repeats to form telomeric
DNA that is part of the telomerase complex, and is essen-
tial for effective telomerase function [43,48]. Deletion of
YKUS80 also results in intermediate MMS sensitivity; this
gene encodes a subunit of the Ku heterodimer, a DNA
repair complex that also binds 7LCI1 RNA [40].

DAmP mutations in three essential genes related with
‘telomere maintenance’ were also found to result in a
MMS sensitive phenotype. These essential genes were as
follows: RAPI, encoding a protein that caps chromo-
some ends to prevent telomere fusion [49,50]; TEL2,
encoding a protein that binds specifically to single-
stranded telomeric DNA repeats and is required for tel-
omere length regulation and telomere position effect
[51]; DDC2, encoding a protein that interacts directly
with Meclp and Mec3p that are part of the essential
component of the telomere checkpoint pathway, acti-
vated in the presence of DNA damage to induce a delay
in cell cycle progression [52].

RNA processing
One of the major categories of cellular functions for
essential genes is RNA processing. Approximately 10%
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of the entire S. cerevisiae genome is involved in one of
various RNA-related processes [53], including mRNA
splicing and export, tRNA modification, translation,
rRNA processing, and RNA degradation. By screening
the essential genes in the DAmP library, we found the
GO term ‘RNA processing’ highly enriched among the
toxicity-modulating proteins. A total of 61 strains sensi-
tive to MMS had defects in proteins associated with this
biological process; these are integrated within 2 subnet-
works (Figure 3B). One network comprised of 20 essen-
tial proteins is primarily involved in rRNA processing
and ribosome biogenesis (Figure 3B). Among this set
there are two proteins that convey severe sensitivity to
MMS when levels are reduced, namely Rntlp and
Prp43p. Rntlp is an RNA endonuclease and Prp43p is
an RNA helicase; both are involved in cleavage of the
3’-end of pre-rRNAs [54-56]. Prp43p is also involved in
the release of lariat-introns from the spliceosome pro-
cessing of pre-mRNAs [57]. As described below, many
more proteins involved in mRNA splicing were shown
to affect the recovery of cells from MMS-induced
damage.

mRNA splicing

Seventeen proteins in the sub-networks are involved in
nuclear mRNA splicing via the spliceosome (Figure 3B).
mRNA splicing is a complex reaction involving dozens
of proteins, and consisting of two consecutive catalytic
reactions divided into three coordinated stages [58].
Toxicity-modulating genes were found to be involved in
each of the three stages as follows: in the assembly and
activation of the spliceosome (CDC40, BRR2, CLF1,
LSM4, LSMS8, PRP40, SMX3, PRP39); in the catalysis
stage (PRP4, MSLS, PRP2, PRP24, DIB, SNUS56, YHCI);
and in the release, disassembly and snRNP recycling
stage (PRP43 and PRP22).

In addition to mRNA splicing, MMS sensitivity was
produced upon reduced expression of genes involved in
other kinds of RNA splicing, such as snoRNA splicing
(CWC24) and tRNA splicing (PTA1, NUP116, NUP49,
SEN1S, SEN2, POPI1, POP6, POP4, RPR2, SPBI). The
surprising finding that RNA splicing of all kinds is
required for cellular survival after damage with MMS
could be a reflection of the need for spliced gene pro-
ducts to help cells recover. In S. cerevisiae only ~ 280
genes contain introns (5% of all genes). Twenty of the
506 toxicity-modulating genes have introns (table 2),
corresponding to ~ 4%, indicating no significant enrich-
ment for intron-containing genes among the toxicity-
modulating genes. While most intron-containing genes
are implicated in the ribosomal machinery, and some
are involved in meiosis [59], there was no significant
enrichment of any biological process among the 20 toxi-
city-modulating intron-containing genes. However, it
should be noted that three of these 20 gene products
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Table 2 Toxicity-modulating genes containing introns

ORF Common name Glso (%9MMS)
YGLO87C* MMS2 0.004
YDR367W 0.005
YDRO92W* UBC13 0.005

YNLO96C** RPS7B 0.005
YNLO38W GPI15 0.006
YNLT12W DBP2 0.006
YLLO50C COF1 0.006

YDLO75W* RPL31A 0.007
YFRO45W* 0.007
YBLO18C POP8 0.007

YJL191W** RPS14B 0.007
YMR0O33W ARP9 0.008

YKRO94C** RPL40B 0.008
YMRO79W SEC14 0.008

YMR116C* ASC1 0.008

YNL162W** RPL42A 0.008
YLRO78C BOS1 0.008
YHRO41C* SRB2 0.008

YMLO94W* GIM5 0.008

YMR201C* RAD14 0.008

* Sensitive in Begley et al 2004.
** Not sensitive in Begley et al 2004.

have well-described roles in DNA repair (Mms2p,
Ubc13p and Radl4p), suggesting a highly specific role of
these particular spliced gene products after DNA
damage. Yeast strains with any one of these three genes
deleted are sensitive to a number of genotoxic agents,
including MMS, 4-NQO and UV [2]. Exactly why so
many different kinds of RNA processing are important
for the recovery of cell growth after exposure to MMS
is not yet clear, but the extent to which the RNA-pro-
cessing deficient mutants are sensitive and the fact that
so many kinds of RNA are involved points to a funda-
mentally important biological mechanism. We are cur-
rently investigating why deficient RNA processing of
various types renders cells so sensitive to DNA dama-
ging agents.

Reproducing previous data

The results obtained in this liquid culture-based screen
were compared to previous results using an agar-based
colony growth screen [2]; we found reasonable concor-
dance between the datasets for the sensitive strains,
especially for the strains with a sensitivity score higher
than 7, the score of radi4A (R* = 0.4). The strains with
a sensitivity score less than 7 are not reliably detected in
the liquid assay (line fitted to the data with R* = 0.0)
(Figure 4A). In the previous data set, only the non-
essential genes were tested by growing individual yeast
strains on solid agar; each strain was assigned a
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Figure 4 Comparison between results of liquid genomic
phenotyping (this study) and previous results using a solid
agar assay (Begley et al, 2004). A) A boxplot of the previous
dataset (x-axis) where the data ranges from 0 (no sensitivity to
MMS) and 30 (high sensitivity to MMS) and the dataset presented
here. The bold line represents the median, the box contains 50% of
the data, the whiskers extend to 1.5 times the inter-quartile range,
and outliers are represented by dots. Two lines (blue) are fitted with
linear regression to the data, one in the range of sensitivity scores
0-7 and one in the range of sensitivity scores 7-20. B) Venn diagram
showing the overlap in GO terms enriched in sensitive strains from
the liquid assay and the agar assay.

sensitivity score ranging from 0 (no sensitivity) to 30
(highest sensitivity) based on the extent of growth on
MMS-containing agar relative to the WT strain. Com-
pared to the liquid culture screen, the solid agar screen,
which was far more labor-intensive, found many more
strains sensitive to MMS. In the current study we
defined the thresholds of severe, intermediate and slight
sensitivity based on the scores of the three control
strains maglA, reviA and radi4A, respectively. After the
application of these thresholds, the previous study iden-
tified a total 588 out of 4852 deletion strains tested
(12%) as being sensitive to MMS: 30 strains showed
severe sensitivity, 43 strains showed intermediate sensi-
tivity, and 515 strains showed slight sensitivity. The
highest correspondence between the assays is found for
strains that show severe or intermediate sensitivity in at
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least one of the assays. Of the 105 strains with severe/
intermediate sensitivity in the liquid assay, 73% (77/105)
were also associated with severe/intermediate sensitivity
in the agar assay. Among the 73 strains with severe/
intermediate sensitivity in the agar assay, 51% (37/73)
were determined to have severe/intermediate sensitivity
in the liquid assay. Strains with slight MMS sensitivity
in the agar screen were within the variation of the WT
in the liquid assay presented here. Among the 153
slightly sensitive strains in the liquid assay, 97 (63%)
were sensitive in the agar assay, whereof 61 strains
showed intermediate sensitivity and 10 strains showed
severe sensitivity. Despite the fact that the liquid assay
identified fewer sensitive strains than the agar assay
(among the non-essential deletion strains) we found 84
strains that had not shown MMS-sensitivity in the agar
assay. Among these genes, four were classified as result-
ing in severe sensitivity when deleted; these are as fol-
lows: TAT1 (YBR069C), an amino acid transporter;
EMP24 (YGL200C), involved in ER to Golgi transport;
YOR331C encoding a protein of unknown function,
localizing to endosomes [60]; and also the as yet unchar-
acterized YNLOS6W.

Finally, it is very important to note that despite fewer
strains being identified in the liquid assay, most (71%)
of the enriched functional categories (Bonferroni
adjusted p-value<0.0001) in the list of toxicity-modulat-
ing genes resulting from the liquid assay (Table S3,
Additional file 1) were also found in the list resulting
from the reanalysis of previous dataset (Table S4, Addi-
tional file 1) (Figure 4B). The main categories uniquely
present in the liquid assay can be summarized as pro-
cessing of different species of RNA, whereas the liquid
assay results are lacking a significant enrichment for
vesicle transport genes. It should also be noted that
since the mutant libraries were screened under different
growth conditions (liquid versus agar) we expected to
see differences in the pathways detected.

Different modes of toxicity found through growth
patterns

The detailed growth curves obtained in this study allow
further categorization of the sensitive yeast strains. The
sensitivity phenotype was associated with several distinct
growth patterns. The shape of growth curves of each
strain in various MMS doses provides a wealth of infor-
mation (Figure 5). After 0.008% MMS exposure, the
WT strain shows a prolonged lag phase, but then starts
growing exponentially and reaches the plateau at the
same level as the untreated cells (Figure 2A, 5). The
growth data of the sensitive strains after 0.008% MMS
exposure was subjected to self-organizing map (SOM)
analysis to split the data in three classes (Figure 5A).
Other doses were also examined but at higher doses, the
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dynamic range is lost, as many strains do not grow at
all; at the lower dose (0.004% MMYS), less effect is seen,
but the strains still group into similar categories. The
three classes evident at the 0.008% MMS dose show dis-
tinct growth patterns characterized by: (i) lacking a
MMS-induced lag-phase at this dose (n = 184); (ii)
showing slower growth compared to WT (n = 110); and
(iii) showing a very prolonged lag-phase and a slower
recovery rate (n = 186). The average Glj, value calcu-
lated based on all five doses (0-0.016% MMS) were cal-
culated to be 0.0067 + 0.0016, 0.0071 + 0.0010 and
0.0053 + 0.0016% MMS for clusters (i), (ii) and (iii)
respectively (Tables S5-7, Additional file 1). In other
words, all three categories are in fact MMS sensitive
compared to WT despite the fact that at the 0.008%
MMS dose only category (iii) appears to be sensitive,
and category (i) appears to be resistant. This under-
scores the importance of monitoring the effects of a
range of doses, and a range of exposure times.

Notably, most of the genes (75/110, 68%) mutated in
the class (ii) strains are essential. GO enrichment analy-
sis of the different classes reveals that several functional
categories are enriched (Table S8-10, Additional file 1).
In particular, class (i) is overrepresented by response to
DNA stimulus, DNA repair and DNA replication. The
most prominent groups of enrichment in class (ii) are
RNA processing and cell cycle. Class (iii) has the most
widely distributed functional diversity. The cluster is
enriched (FDR<0.05) for 125 GO categories, represent-
ing most enriched categories found in the entire dataset
of sensitive strains.

The strains in class (iii) are registered by most assays
and these results correlate well with previous datasets
(78% recognized in our previous study, 51/65 non-essen-
tial gene deletion strains). The strains represented in
both class (i) and (ii) are expected to be more difficult
to detect in assays employing just one late time point to
measure sensitivity. However, although class (i) and (ii)
show a smaller overlap with previous data than does
class (iii), 63% of the non-essential genes in class (i) and
66% of the non-essential genes in class (ii) were in fact
detected in the previous dataset that used one late time-
point to assess toxicity [2]. Thus, methods relying on a
single time point have a slightly lower resolution in
detecting the growth patterns of class (i) and (ii). The
dynamics of the growth curves make these clusters easy
to identify using the method described here.

The complete dataset is available as a database with a
web-interface available at http://genomicphenotyping.
mit.edu/svensson/2011 (Figure S3, Additional file 2).

Discussion
In this study, we have measured growth curves after
exposure to the DNA damaging agent MMS for a
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collection of yeast mutant strains deficient in 5,528
essential and non-essential genes. Compared to previous
studies using similar genomic phenotyping [1,2], we
have expanded the data to include essential genes, and
to include detailed growth analysis of each strain;
growth was measured at 10 time-points after treatment
with a toxicant, in biological triplicates. By testing com-
pounds in a eukaryotic system, an estimate of the toxi-
city in eukaryotic cells is given, as well as details
regarding the way the cell responds to the toxicant, in
this case MMS. We show here that genomic phenotyp-
ing is a valuable tool to decipher the modes of toxicity
conferred by a DNA damaging agent. This was demon-
strated by our identification of several novel toxicity-
modulating genes, including those involved in RNA pro-
cessing and telomere maintenance.

The fact that the toxicity-modulating proteins are
found within protein-protein interaction networks of
significantly higher connectivity than expected (p >
0.001) raises our confidence that the novel candidates
are truly needed for cells to recover after MMS-induced
damage. This includes the proteins involved in different
kinds of RNA processing. It was recently shown that
certain tRNA-modifications can influence cell survival
after exposure to DNA damaging agents, in both yeast
and human cells [61,62]. Here we also identify mRNA,
snoRNA and tRNA splicing as being required for survi-
val after DNA damage, even though relatively few yeast
transcripts are spliced [59,63]. From this study, it
remains inconclusive whether RNA splicing in general is
important for helping the cell better handle MMS-
induced damage or whether the processing of a few spe-
cialized transcripts may provide MMS resistance; such
specialized targets include mRNA transcripts from the
MMS2, UBCI13 and RADI4 genes, three DNA repair
genes all of which are spliced in yeast [59]. However
this does not explain why snoRNA and tRNA splicing is
required for MMS-resistance.

In addition to genes encoding mRNA, snoRNA and
tRNA processing proteins, one of the prominent groups
of genes resulting in MMS sensitive strains when
deleted, is involved in the rRNA metabolic process, con-
sisting of ‘rRNA catabolic process’ and TRNA proces-
sing’. Forty-one out of the 262 (16%) genes of this GO
category are toxicity-modulating. The majority of the
toxicity-modulating rRNA-related genes are essential in
yeast (34/41), which is presumably the reason why these
pathways were not identified in previous screens.

Another cellular function highlighted in this study is
telomere maintenance. In yeast, many of the telomere
maintenance proteins also have functions in DNA
damage responses, such as Tellp and Meclp, which are
homologs of the human ATM and ATR kinases that are
activated in response to DNA damage. Yeast telomeres
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are maintained differently than their metozoan counter-
parts. The components of the mammalian shelterin
complex that protects the telomere ends have no direct
homologs in budding yeast, although yeast shelterin-like
proteins have been described [64].

The fact that a substantial proportion of the MMS
sensitive strains have a slow growing phenotype under
normal conditions, could reflect that this subset of the
“sensitive” strains are identified as a consequence of the
accumulated stress exceeding a viability threshold with
the additional DNA damage. However, for the majority
of the sensitive strains, this is not the case.

We have further shown that the DAmP strains are
very well suited to studying essential genes in this type
of damage-sensitivity screening. Given the essential role
of these genes, it is not surprising that reduced levels of
the transcripts lead to a reduction in growth rate for
several of the DAmP strains. Compared to the diploid
hemizygous strains [65], the DAmP strains show a
higher proportion of toxicity-modulating genes (data not
shown). This observation is consistent with previous
results using the drug methotrexate [20]. Compared to
previous studies of genomic phenotyping, the informa-
tion provided by this study is richer in data sampling,
thus resulting in the possibility to further dissect the
modes of toxicity and differentiate between patterns of
sensitivity. New modes of sensitivity can be detected
through understanding of the dynamics of the growth.
Types of sensitivities that could go undetected in other
systems can be scored here, as demonstrated by our
self-organizing map analysis. Interestingly, the majority
of the genes (68%) that were present in class (ii), were
essential and primarily members of the relatively small
DAmP library. This pattern of MMS sensitivity that is
only apparent at higher MMS doses may be explained
by the fact that lower levels of transcript expressed in
the DAmP may be able to maintain sufficient protein
levels to handle low levels of cellular damage but then
fail at higher levels of damage.

Conclusions

To conclude, we present here a data-driven method to
reveal modes of toxicity of different agents that impair
cellular growth. This eukaryotic testing system could
potentially be used to screen compounds for toxicity, to
identify mechanisms of toxicity, and to reduce the need
for animal testing.

Methods

Strains

S. cerevisiae strain haploid BY4741, diploid BY4743 were
purchased from Research Genetics. As previously
described [1], strain BY4741 was transformed with plas-
mind pYE13g (American Type Culture Collection)
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which confers G418 resistance. Deletion, DAmP and
hemizygous library were purchased from Open Biosys-
tems. The deletion library consists of a collection of
4,852 haploid strains where each strain has a single ORF
replaced with the KanMX4 module, which confers G-
418 resistance. These strains are in the BY4741 back-
ground (MATa his3A leu2A met15A ura3A ).

Cell culture

96-well master plates containing individual deletion
strains were grown to stationary phase in 150ul YPD
(10 g yeast extract, 20 g peptone, 20 g dextrose/liter),
containing G-418 (Sigma) at 200ug/ml. Three wells of
WT yeast and three control strains with known sensitiv-
ity were added into the plates. Settled cells were resus-
pended and a 1600X dilution of the cell suspension was
inoculated with five doses (0, 0.004, 0.008, 0.012 and
0.016%) of MMS (Sigma) using a 96-pin Hydra (Robins
Scientific). Cells were incubated for 48 h at 30°C. After
12 h, the ODggo was measured every 4 h using a Victor3
(Perkin Elmer). Comparison to cultures grown in bulk
revealed small differences in growth patterns (data not
shown).

Data analysis

Files with raw data were analyzed with in-house devel-
oped scripts in R (http://www.r-project.org). The OD
measurements of empty wells were subtracted from all
wells. Growth curves for the 48 hours after addition of
MMS were drawn for the 5 doses for the individual
yeast strains. The area under the curve (AUC) was cal-
culated for each dose (including the mock-treated sam-
ple). For each strain, the dose-specific AUC was
plotted against the dose. A line was fitted by linear
regression and the goodness-of-fit (R?) was used to
estimate linearity of the response. The slope revealed
by the regression was used to determine the dose lead-
ing to 50% growth inhibition, Glso, by Glso= -0.5/slope
(Figure 1B). R-scripts to regenerate the analysis are
available in supplementary material together with
instructions to access the raw data (Additional file 3).
The visualization of the heat maps was done in R. Self-
organizing maps were implemented through the SOM
package. Functional enrichment was performed in
Bingo 2.0.

Sensitivity thresholds were calculated based on the
average Gl of the three control strains (maglA, reviA,
radl4A ). The resistance threshold was determined as
GISO_average + (GISO_average - GIBO_radléLA)'

The data is available at a searchable database http://
genomicphenotyping.mit.edu/svensson/2011 (Figure S3,
Additional file 2).
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Reducing the number of time-points

To assess how essential it was to measure cell density
every 4 hours between hour 12 and 48 of the 48 h time
course, we determined the loss of information resulting
from removal of the data for several time-points (Figure
S4, Additional file 2). For practical reasons it is impor-
tant to note that removal of several measurements at
intermediate times had only a limited effect on the
reproducibility of the data. The goodness-of fit was 0.97
between the full dataset (with 10 time-points) and a
reduced dataset (with six time-points). The coverage
was determined by the percentage of tested strains that
passed the linearity criterion as R*>0.7 using the
selected time-points only. Using the more practical six
point time-course, the coverage was still 84% versus
89.3% with the full non-essential dataset. On the other
hand, only considering single observations (at 24 or 48
h) had drastic negative effects on the reproducibility of
the data.

Network analysis

Yeast interaction networks were retrieved from [29] and
loaded into Cytoscape v2.6.1 [66]. Functional enrich-
ment was determined by the plug-in Bingo2.0 [67].

Additional material

Additional file 1: Supplementary tables. This file includes 10 additional
tables to supplement the text.

Additional file 2: Supplementary tables. This file includes additional
figures to supplement the text.

Additional file 3: R script. Text file containing the R code to regenerate
the analysis.
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