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Classification of Thyroid Nodules
in Ultrasound Images Using Direction-
Independent Features Extracted
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Abstract
In recent years, several computer-aided diagnosis systems emerged for the diagnosis of thyroid gland disorders using ultrasound
imaging. These systems based on machine learning algorithms may offer a second opinion to radiologists by evaluating a malignancy risk
of thyroid tissue, thus increasing the overall diagnostic accuracy of ultrasound imaging. Although current computer-aided diagnosis
systems exhibit promising results, their use in clinical practice is limited. One of the main limitations is that the majority of them use
direction-dependent features. Our intention has been to design a computer-aided diagnosis system, which will use only direction-
independent features, that is, it will not be dependent on the orientation and the inclination angle of the ultrasound probe when
acquiring the image. We have, therefore, applied histogram analysis and segmentation-based fractal texture analysis algorithm, which
calculates direction-independent features only. In our study, 40 thyroid nodules (20 malignant and 20 benign) were used to extract
several features, such as histogram parameters, fractal dimension, and mean brightness value in different grayscale bands (obtained by
2-threshold binary decomposition). The features were then used in support vector machine and random forests classifiers to dif-
ferentiate nodules into malignant and benign classes. Using leave-one-out cross-validation method, the overall accuracy was 92.42% for
random forests and 94.64% for support vector machine. Results show that both methods are useful in practice; however, support
vector machine provides better results for this application. Proposed computer-aided diagnosis system can provide support to
radiologists in their current diagnosis of thyroid nodules, whereby it can optimize the overall accuracy of ultrasound imaging.
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Introduction

Thyroid nodules can be defined as abnormal cell growth in the

thyroid gland and can be either benign or malignant. Palpable

thyroid nodules are a common clinical finding with a long-term

prevalence of 5% in women and 1% in men in developed parts

of the world.1,2 In fact, the prevalence of nodules in the thyroid

gland is much higher, as it is often an asymptomatic disease and

nodules may not always be palpable. In randomly selected

1 Institute of Biophysics and Informatics, 1st Faculty of Medicine, Charles

University, Prague, Czech Republic
2 International Clinical Research Center, St. Anne’s University Hospital, Brno,

Czech Republic
3 Third Department of Medicine, General University Hospital and 1st Faculty of

Medicine, Charles University, Prague, Czech Republic

Corresponding Author:

Antonin Prochazka, MSc, Institute of Biophysics and Informatics, 1st Faculty of

Medicine, Charles University, Prague, Czech Republic.

Email: antonin.prochazka@lf1.cuni.cz

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License
(http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission
provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Technology in Cancer Research &
Treatment
Volume 18: 1-8
ª The Author(s) 2019
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1533033819830748
journals.sagepub.com/home/tct

https://orcid.org/0000-0002-6660-833X
https://orcid.org/0000-0002-6660-833X
https://orcid.org/0000-0003-4098-0659
https://orcid.org/0000-0003-4098-0659
mailto:antonin.prochazka@lf1.cuni.cz
http://www.creativecommons.org/licenses/by-nc/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://sagepub.com/journals-permissions
https://doi.org/10.1177/1533033819830748
http://journals.sagepub.com/home/tct


individuals, thyroid nodules were detected by high-frequency

ultrasound (US) in 19% to 68% of the cases, with more frequent

occurrence in women and the elderly individuals.3,4 When

compared with benign nodules in the thyroid gland, malig-

nancy occurs in approximately 5% of cases depending on age,

gender, family history, history of radiation from natural or

artificial sources, and other factors.5-7 The relatively high inci-

dence that continues to grow makes thyroid cancer one of the

most common endocrine malignancies worldwide, currently

listed as seventh most common cancer in women and fifteenth

most common cancer in men.6,8 Its rising incidence results in

the constant demand for the maximal diagnostic benefit of US

imaging since US imaging has been marked as cost-effective,

noninvasive, and risk-free—which cannot be said about the

other diagnostic methods, cytology (fine-needle aspiration

biopsy [FNAB]), or histology (surgical excision). Hence, there

has been significant research in evaluating and ranking of US

features used by radiologists to predict the malignant potential

of thyroid nodules. Some US features have been reported in

association with increased risk of malignity, whereas some are

associated with benignity.6 Over 12 500 nodules from 54 obser-

vational studies were included in a systematic review and meta-

analysis by Remonti et al9 and a total number of 18 288 nodules

in another meta-analysis by Brito et al.10 Based on these 2

meta-analyses, calcifications, taller than wide shape, irregular

margins, absence of elasticity, hypoechogenicity, increased

blood flow, absence of halo, and/or nodule size are all risk

factors for malignity. Both studies, however, concluded that

any of these US features in isolation is not an accurate predictor

of thyroid cancer and does not provide reliable enough infor-

mation to select nodules that should have FNAB performed.

Additionally, they conclude that 2 features, cystic content and

spongiform appearance, might predict benign nodules.

Alongside research in US diagnostics based on the visual

inspection of images by radiologists, several computer-aided

diagnosis (CAD) systems have been introduced to assist radi-

ologists in diagnosing lesions and avoiding unnecessary biop-

sies.11 Computer-aided diagnosis systems using US images are

supposed to facilitate accurate and fast classification of benign

and malignant thyroid nodules. Computer analysis of the US

images, especially a texture analysis, provides a different per-

spective to radiologists. Texture-based CAD system does not

evaluate the sonographic features already discussed, such as

irregular margins, or taller-than-wide shape, but they provide

quantitative information about image patterns, which, in com-

bination with a visual inspection by radiologists, can provide

high-level diagnostic performance.

Acharya et al12 and lately Sollini et al13 presented an over-

view of previously published CAD systems for the thyroid

gland based on various image feature extraction and classifi-

cation methods. The most commonly used magnitude for eval-

uating classifier efficiency is either accuracy (number of

correctly classified cases/number of all cases), or area under

the receiver operating characteristic (ROC) curve. Below, we

briefly review the most crucial studies on thyroid US CAD

systems. Savelonas et al14 used an US image for the

classification of healthy and nodular thyroid glands and then

for the classification of malignant and benign nodules in the

thyroid gland on data from 66 patients. The authors focused on

the directional patterns of the image they extracted using radon

transformation, achieving maximal classification accuracy of

89.4% using the support vector machine (SVM) classifier. Ding

et al15 used 125 thyroid nodules from 56 malignant and 69

benign patients to extract statistical and textural attributes from

elastographic images and using the SVM classifier, achieved

93.6% classification accuracy in solid nodules (cysts and pseu-

docysts were excluded from the study). Acharya et al used

contrast-enhanced ultrasonography (CEUS)16 to display thyr-

oid nodules in 20 patients (10 malignant and 10 benign), the

acquired US images were then used to differentiate between

benign and malignant nodules based on textural parameters

(energy and entropy) and the attributes obtained by discrete

wavelet transform. The authors used the kNN (k-nearest neigh-

bor) classifier with resultant accuracy of 98%. In addition, the

authors proposed a malignancy risk index, which can be cal-

culated from the US image itself, expressing the risk of malig-

nancy of the examined nodule. Acharya et al also published

another study,17 in which again, they used features based on

wavelet transformation and directional textures for classifica-

tion from B-mode US images. As in their previous study, 10

malignant and 10 benign nodules were used, this time in com-

bination with Adaboost classifier, achieving ROC area under

the curve of 1 and classification accuracy of 100%. In another

study, Acharya et al18 had calculated a large number of attri-

butes such as Fourier descriptors, local binary patterns, fractal

dimensions, or law’s textural energies, both from the CEUS

image and classic B-mode. The obtained data were then used

to diagnose 10 malignant and 10 benign patients using the

Gausian mix model classifier, achieving accuracy of 98.1%.

Chang et al19 used both axial and longitudinal US images (30

malignant and 29 benign) to extract a large number of textural

attributes (74 in total), such as histogram parameters mean,

standard deviation, skewness, brightness in the nodule and in

the surrounding tissue, co-occurrence matrix, and the so-called

gray-run-length matrix. The authors also introduced their own

segmentation algorithm, capable of marking the border of the

nodule in the thyroid gland with significant accuracy (correctly

marked more than 90% of the nodule in majority of images).

The segmented boundaries were further used to fit the ellipse in

the nodule, and parameters of the ellipse were used to deter-

mine whether the nodule has taller than wide shape, one of the

risk factors evaluated by radiologists. In addition to the textural

analysis, the authors evaluated 12 radiological parameters (6 of

the axial and 6 of the longitudinal image) that corresponded to

the risk factors according to Moon et al.20,21 The study resulted

in 98.3% accuracy of the CAD system using the SVM classifier

versus 98.7% accuracy of visual inspection by radiologists,

with no statistically significant difference (t test, P < .05)

observed between the 2 results. The most important features

of the CAD system were rotation of the ellipse (ie, the evalua-

tion of whether the nodule is taller than the wide) and the

maximum probability, calculated from the co-occurrence
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matrix, both in the axial and longitudinal images. In another

study, Acharya et al22 used Gabor’s transformation to extract

about 3800 features, which were further reduced by locality

sensitive discriminating analysis. The authors used images

from a total of 242 patients, of which 211 were benign and

31 malignant. Given that the binary classifiers based on

machine learning algorithms can lead to unrepresentative

results when the data are imbalanced,23 authors adjusted data

using oversampling. The authors probably chose oversampling

to avoid losing the information contained in a large number of

benign images. This is a recognized solution for dealing with

imbalanced data; however, we must keep in mind that infor-

mation about malignant nodules is duplicated, thereby the

resulting classifier may not be able to generalize enough for

malignant nodules. Still, this is a study that has used the largest

number of nodules so far. The authors compared several clas-

sifiers (SVM, decision trees, kNN, multilayer perceptron),

achieving the highest accuracy of 94.3% using the C4.5 deci-

sion tree classifier. A review table of latest works in the field of

automated diagnosis of thyroid nodules is provided in Table 1.

From a clinical point of view, most of the articles discussed

have 2 main limitations. Firstly, the majority use images from

only 1 device (notable exception is22). The second limitation is

that they are based on directional features. It means that the

results of those studies are strongly dependent on the US device

used for data acquisition, as well as on the position of the probe

during the examination. To counter these drawbacks, we used

data from 2 different device models and limited features that

are dependent upon direction. This approach brings new

perspectives to image analysis when evaluating grayscale

properties of the nodules. We did not use the popular gray-

level co-occurrence matrix (used for instance in17,19,24,25) nor

gray-level-run-length matrix (used in19) for grayscale-level

evaluation. We did, however, employ segmentation-based frac-

tal texture analysis (SFTA) method proposed by Costa et al,26

dividing the image into a set of binary images corresponding to

different gray-level bands (stacks), upon which the nondirec-

tional textural features were calculated in each stack. As far as

we know, SFTA has not yet been applied to thyroid cancer

diagnosis.

Materials and Methods

Data Acquisition

Axial US images of 40 patients were collected from the database

system of our clinic (name of institution blinded for purpose of

review) during a 2-year period. Patients were clinically confirmed

to have benign or malignant thyroid nodules, either by cytology

(FNAB) or histology (surgical excision). Of these nodules,

20 were malignant and 20 were benign; 29 female and 11 male

patients, with a mean age of 51 in the malignant group and

60 pertaining to the benign group. Images were obtained using

2 US devices: 10 malignant and 10 benign using Logiq S8, made

by GE Healthcare Inc (Chicago, Illinois), linear probe ML6-15-D

(50 mm, 4-13 MHz), and 10 malignant and 10 benign using

Philips Healthcare Inc (Amsterdam, Netherlands) EnVisor

M2540A, linear probe L12-5. No preprocessing of captured

images was done, except a common brightness modification for

images from the Philips device. Segmentation-based fractal

texture analysis algorithm is based on Otsu method,27 which cal-

culates optimal thresholds individually for each image based on

histogram analysis and thus helps to overcome important chal-

lenges in US imaging such as noise and potentially inconsistent

exposure when acquiring images. Feature extraction and classi-

fication of the images obtained were run on a computer with Intel

(Intel Corp, Santa Clara, California) i3, 2.1 GHz dual-core pro-

cessor, using 8 GB of RAM, running Windows 7 Professional

(Microsoft Corp, Redmond, Washington). Image examples used

in the study are seen in Figure 1. All procedures in the study

involving human participants were in accordance with the ethical

standards of the institutional and/or national research committee

and with the 1964 Helsinki Declaration, including all amend-

ments or comparable ethical standards and frameworks. Our

study was approved by Ethics Committee of General University

Hospital, Prague, under approval number 116/12. All patients

involved in our study provided written informed consent.

Feature Extraction

In this work, histogram parameters and features obtained by

SFTA were used. All feature extraction was implemented in

Matlab 7.12.0 (MathWorks Inc, Natick, Massachusetts).

Table 1. Comparison of Most Recently Published Studies With Our Study.

Study Subjects Included Features Classifier Accuracy (%)

15 69 benign, 56 malignant Statistical and textural features SVM 93.6
16 10 benign, 10 malignant Texture and DWT features form CEUS images kNN 98.9
17 10 benign, 10 malignant Texture and DWT features AdaBoost 100
18 10 benign, 10 malignant Fractal dimension, Fourier spectrum descriptor,

local binary patterns, Laws texture energy

form 3-D HRUS and CEUS images

Gaussian mixture model,

Fuzzy, SVM

98.1-100

19 29 benign, 30 malignant Texture features SVM 98.3
22 211 benign, 31 malignant Texture features with safe-level SMOTE C4.5 94.3

Our study 20 benign, 20 malignant Histogram features, SFTA SVM, RF 94.64

Abbreviations: CEUS, contrast-enhanced ultrasonography; DWT, discrete wavelet transform; HRUS, high-resolution ultrasound; kNN, k-nearest neighbor; RF,

random forests; SFTA, segmentation-based fractal texture analysis; SMOTE, Synthetic Minority Oversampling Technique; SVM, support vector machine.
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Histogram Parameters

Histogram parameters consisted of mean (HistMean), standard

deviation (HistStdDev), skewness (HistSkew), and kurtosis

(HistKurt). Mean is defined as the average pixel brightness

within the whole region of interest (ROI). Standard deviation

(SD) is the SD of pixel brightness in the whole ROI. Skewness

is an indicator of asymmetry based on the mean (negative

values indicate data skewed left, positive values data skewed

right, equals 0 for symmetric distribution). Kurtosis is an indi-

cator of histogram peakedness (negative values indicate flat

distribution; positive values indicate spiked distribution).

Segmentation-Based Fractal Texture Analysis

Segmentation-based fractal texture analysis (SFTA) was orig-

inally published in 2012.26 The algorithm decomposes a grays-

cale image on a series of binary images using 2-threshold

binary decomposition, based on a previously published method

named binary stack decomposition.28

Segmentation-based fractal texture analysis first calculates

n thresholds for a grayscale image using the multilevel Otsu

method,27,29 which calculates optimal thresholds between

background and foreground based on histogram analysis. These

thresholds are then used for simple thresholding to obtain n

binary images. Other n � 1 binary images are obtained using

2 neighboring thresholds, where output is a binary image in the

band between the 2 thresholds. Example of decomposed image

is shown in Figure 2.

The SFTA algorithm then calculates 3 features in each bin-

ary image obtained by the decomposition described above.

These features are fractal dimension (FracDim), total number

of pixels (PxCount), and mean brightness value (Mean). The

FracDim quantifies the shape of objects in the binary image

after thresholding. Segmentation-based fractal texture analysis

algorithm determines FracDim by calculating a 2-dimensional

(2-D) approximation of Hausdorff dimension Dh. Considering

an object that possesses Euclidean dimension E, Dh can be

calculated by following equation:

Dh ¼ lim
eh!0

logNðEhÞ
logeh�1

� �
;

where N(Eh) is the counting of hypercubes that fill the object,

having dimension E and length Eh. Since the object in SFTA is

composed of pixels in a binary image, box counting method30

is used to obtain a 2-D approximation for Dh as follows: First,

the image is divided into a grid of squares of size E� E, then the

number of squares N(E) that contain at least 1 pixel of the object

are counted. The counting is repeated for various values of E
and then a log N(E)/log E�1 curve is plotted. The curve is

subsequently approximated by virtue of linear regression line

and FracDim is defined as a scalar corresponding to the slope of

this line. The second feature, PxCount is simply a count of

white pixels in the binary image after thresholding. Third fea-

ture, Mean, corresponds to mean brightness value of the pixels

in the original image, which, in turn, positionally correspond to

pixels in the binary image. Using SFTA algorithm, we gain 3

times 2n � 1 features; so, for instance, when the number of

thresholds n ¼ 4, we get 7 � 3 ¼ 21 features in total. Detailed

theory behind SFTA features is found in study by Costa et al.26

Classification

Two classification methods were implemented: random forests

(RF)31 and SVM.32,33 The decision made when selecting these

2 classifiers from the potential list of machine learning methods

was based on the most up-to-date review on thyroid gland

CAD.13 It is clear from the review that though decision trees

have been used several times for accurate classification of

thyroid nodules, their modification in the form of RF has not

yet been used successfully for this problem, even though RF is

held in high esteem when it comes to solving the complex

problems faced by all classifiers of today.34 On the other hand,

SVM can be considered as a standard for this problem since

SVM has a long history in thyroid gland applications and—

based on Sollini et al review,13 it is one of the most commonly

used methods for thyroid classification (used, eg,

in15,18,19,22,35). Henceforth, we decided to follow a study design

whereby a new method (RF) is compared with a well-known

and established one (SVM). Both classification methods were

implemented in R 3.3.1 (The R Foundation for Statistical Com-

puting, Wien, Austria) using Caret package.36

Random Forests

Random forests are an ensemble classification method. It works

on a principle that each committee of learners casts a vote for the

final prediction. The learner here is a tree, built using the clas-

sification and regression trees methodology,37 a model that uses

binary splits on variables to predict class. Random forests use

Figure 1. Sample images of benign and malignant nodules. Dimen-

sions of a nodule are marked with crosses. (A) Malignant nodule from

Phillips device; (B) malignant nodule from GE device; (C) benign

nodule from Philips device; (D) benign nodule from GE device.
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2 types of randomness to create multiple decision trees. The first

type of randomness arises since bootstrapped data are used to

grow a tree. The second type of randomness is due to the fact

binary splits are made using the best predictor out of a random

subset of predictors, tested at each node. How many attributes

will be randomly tested and compared on each node of each tree

is controlled by mtry parameter. When mtry is 1, only 1 feature

is randomly chosen at each node; when mtry is 2, 2 features are

randomly chosen at each node; and so on. The optimal value of

mtry can move anywhere between 1 and the total number of

attributes. Random forests have some advantages in comparison

with other classification methods. They can be used when pre-

dictors are correlated and can also determine the importance of

variables in a given model. In addition, RF is able to handle data

in which the number of predictors is much larger than the num-

ber of participants (the so-called curse of dimensionality).38 A

detailed theory behind the RF procedure is found in Breiman’s

artilce.31

Support Vector Machine

Support vector machine classifier generate hyperplanes that

separate features belonging to 2 different classes in the given

feature space. Linear hyperplanes are applied for linear separ-

able data sets, or kernel transformations are applied in the case

of nonlinear separable data sets. Support vector machine can be

optimized using parameter C. Parameter C controls the tradeoff

between the complexity of the decision rules and frequency of

error.32 A small value for C will increase the number of training

errors, while a large C will lead to behavior similar to that of a

hard margin SVM.39 In this work, SVM classifier integrated

with radial basis function is used. The main advantages of SVM

compared to RF are simpler geometric interpretation and its

lower computational cost. Both SVM and RF possess very high

generalization abilities.34

Validation of Classifier

We used the leave-one-out cross-validation (LOOCV) method

to evaluate the model. Leave-one-out cross-validation is a

Figure 2. Output of the SFTA algorithm with the number of Otsu’s thresholds n ¼ 4 (labeled T1-T4). Top left: An example of a benign nodule.

Also in the top row: Output of 2 threshold band decomposition. Bottom row: Result of simple thresholding using T1 to T4. In total, using the

SFTA algorithm, we get 2n � 1 binary images. SFTA indicates segmentation-based fractal texture analysis.

Figure 3. Dependency of total accuracy (evaluated by LOOCV) on

number of thresholds of 2-threshold binary decomposition for both RF

and SVM classifiers. LOOCV indicates leave-one-out cross-

validation; RF, random forests; SVM, support vector machine.
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variation of k-fold cross-validation, where number of fold is

equal to number of participants. This procedure simulates test-

ing on independent data, which limits overfitting to the data

used, increasing the classifier’s capability of generalization.

The accuracy was chosen as the decisive metric for selection

of the final model for both RF and SVM.

Results

Classification of nodules using RF at the best setting (mtry ¼
12) reached accuracy of 92.42% with fold SD of 0.22. Classi-

fication of nodules using SVM at the best setting (C ¼ 8)

reached overall accuracy of 94.64% with fold SD of 0.16.

Overall accuracy of 94.64% is comparable to the results of

previous studies as seen in Table 1. Since only features inde-

pendent of direction have been used, a highly satisfactory result

can be observed.

Two-threshold binary decomposition cuts the image into a

series of binary images, the number of which depends on the

number of thresholds (see Figure 2), which of course affects the

number of features and thus may in turn affect the overall

accuracy. As shown in Figure 3, the highest accuracy for RF

and SVM classifiers was obtained when number of threshold

was 6 or 7. According to the authors of the SFTA algorithm,26

classification accuracy may increase until the number of

thresholds is 8 or 9. The authors describe that a possible expla-

nation for this observation is that, after the number of thresh-

olds is higher than 8 or 9, no additional texture patterns are

identified by 2-threshold binary decomposition.26 Similar

behavior can be seen for our application in the Figure 3.

As seen in Figure 4, histogram parameters (HistSkew, Hist-

Kurt) play a strong role in the classification process. High

importance of the histogram parameters is corroborated by

previously published studies on texture analysis.19,40 In both

studies, histogram features have high accuracy in comparison

with other features, or they are included in a final set of features

that achieves the highest accuracy. However, the authors have

demonstrated that histogram features, in isolation, are not suf-

ficient to distinguish between benign and malignant nodules.

The most important feature obtained by SFTA is fractal dimen-

sion in stack 1, followed by pixel count in stacks 1 and 2,

suggesting that the yield of 2-threshold binary decomposition

features lays mainly in lower stacks, corresponding to areas of

dark pixels in the images. Therefore, the most important prop-

erties of the nodule are how many dark pixels it contains

(PxCount) and the complexity of the shapes formed by these

pixels (FracDim).

On the other hand, features that did not convey significant

information for further classification correspond to the bright-

est stacks from 2-threshold binary decomposition. This is quite

interesting because micro- and/or macro-calcifications, which

have been considered as a risk factor for malignancy,6,9,10

should occur in bright stacks. The results, however, did not

support the hypothesis that there is presence of a significant

feature in bright stacks.

Since the number of individual features is relatively small,

both RF and SVM models are not very demanding for comput-

ing power. Total time for fitting the model was 0.12 second for

RF at optimal setting (6 thresholds, mtry¼ 12) and 0.03 second

for SVM at optimal setting (6 thresholds, C ¼ 8); prediction

time of a single case was less than 0.01 second for both RF and

Figure 4. Graph showing importance of features in random forests classifier when number of thresholds of SFTA is equal to 6. Importance score

for each variable is scaled to have a maximum value of 100. Principle of the importance calculation is as follows: For each tree, the prediction

accuracy of the out-of-bag portion of the data is recorded. The same is then done again after permuting each predictor variable. Importance score

for variable is the difference between the 2 accuracies, averaged over all trees and normalized by the standard error.36 SFTA indicates

segmentation-based fractal texture analysis.
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SVM; and total elapsed time when evaluating a model using

LOOCV was measured 5.32 seconds for RF and 2.25 seconds

for SVM. All time measurements were done using the same

computer as specified above.

Discussion

Our intention has been to design a CAD system that will use

only direction-independent features, that is, it will not be

dependent on the orientation and the inclination angle of the

US probe when acquiring the image. We have, therefore,

applied histogram analysis and SFTA algorithm that calculates

direction-independent features only. The proposed direction-

independent features provide very good results.

Despite the fact that we have used LOOCV method to

evaluate the results, the low number of images remains the

main limitation of this study. In future, our proposed CAD

system should be validated on another set of (prospectively

collected) images to evaluate more thoroughly, the general-

ization ability of proposed CAD system. Another limitation of

this study is that our approach requires manual segmentation

by medical experts trained in neck ultrasonography, which

may lead to inconsistencies among machine operators that

can affect results. There are, as far as we know, only 2 seg-

mentation techniques for thyroid nodules,41,19 both reporting

that the average result of the segmentation covered around

90% of affected areas. The problem faced during the segmen-

tation process could be resolved using the patch-based clas-

sification method, which decomposes a nodule into small

patches, so the analysis is significantly less dependent on the

shape of the nodule. Using patch-based method, we can obtain

a large number of training examples; however, we certainly

lose some information about the nodule as a whole and so the

question is: Can we possibly gain enough information from

patches to sufficiently diagnose nodules? If so, we will be less

dependent on identifying the nodule as a whole, since the

analysis will be more focused on the texture of a nodule, the

main area in which computers can provide support. We, there-

fore, suggest a patch-based approach using our proposed

direction-independent features as the path for the future thyr-

oid nodule CAD.

Random forests were used for the classification of thyroid

nodules and its performance was compared with the SVM

classifier. Results show that both methods are useful in prac-

tice; however, SVM provides better results for this application.

As far as we are aware, RF have not yet been applied to such a

problem. Additionally, a new feature extraction technique

based on 2-threshold binary decomposition was used for clas-

sification of thyroid nodules. These features, especially those in

low brightness levels, were shown to be of high importance in

the RF classifier.

Proposed CAD system can provide support to radiologists in

their current diagnosis of thyroid nodules, whereby the overall

accuracy of US imaging can be greatly increased.
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