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Abstract

Aim: The aim of this study was to compare the validity of different machine learning

algorithms to develop and validate predictive models for periodontitis.

Materials and Methods: Using national survey data from Taiwan (n = 3453) and the

United States (n = 3685), predictors of periodontitis were extracted from the datasets and

pre-processed, and then 10 machine learning algorithms were trained to develop predic-

tive models. The models were validated both internally (bootstrap sampling) and externally

(alternative country's dataset). The algorithms were compared across six performance met-

rics ([i] area under the curve for the receiver operating characteristic [AUC], [ii] accuracy,

[iii] sensitivity, [iv] specificity, [v] positive predictive value, and [vi] negative predictive

value) and two methods of data pre-processing ([i] machine-learning-based feature selec-

tion and [ii] dimensionality reduction into principal components).

Results: Many algorithms showed extremely strong performance during internal vali-

dation (AUC > 0.95, accuracy > 95%). However, this was not replicated in external

validation, where predictive performance of all algorithms dropped off drastically.

Furthermore, predictive performance differed according to data pre-processing

methodology and the cohort on which they were trained.

Conclusions: Larger sample sizes and more complex predictors of periodontitis are

required before machine learning can be leveraged to its full potential.
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Clinical Relevance

Scientific rationale for study: Machine learning is an exponentially growing field, with techniques

being implemented across all disciplines, including periodontology. There is no current consen-

sus on the best methods or algorithms to utilize for modelling periodontitis.

Principal findings: The performance of various algorithms differs depending upon which cohort

of participants they are trained on, how the predictors are pre-processed, and whether they are

validated internally or externally.

Practical implications: Until suitably large and complex datasets are readily available, the general-

izability of more computationally intensive algorithms is not well established, and further

research is required into exactly which predictors are required for accurate modelling.
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1 | INTRODUCTION

Machine learning is an exponentially growing field, which is being

implemented across a wide range of fields, including periodontology,

due to the excitement surrounding its potential to make predictions

that are not readily identifiable by humans (Sidey-Gibbons & Sidey-

Gibbons, 2019; Farook et al., 2021). Algorithms of ever-increasing

complexity are being developed and have been successfully leveraged

across a huge range of disciplines, with seemingly “magical” predictive
capabilities, in some cases (Mnih et al., 2015; He et al., 2016). There-

fore, one might assume that machine learning may solve our lack of

success in being able to predict those who may have periodontitis,

with a high enough accuracy that such models can be utilized globally

in day-to-day clinical practice.

However, the issue comes in identifying exactly how and where

machine learning may offer benefits for the challenge of diagnosing

periodontal disease. High-performance algorithms are typically

designed with big datasets in mind (i.e., hundreds of thousands or mil-

lions of observations) and the predictors often have a highly complex

and difficult-to-entangle relationship with the disease at hand

(Vabalas et al., 2019; Thomas et al., 2020). However, in periodontol-

ogy, it is extremely rare for clinical studies to reach even 1000 partici-

pants, let alone hundreds of thousands or millions. In addition, our

predictors of periodontitis are often crude, such as socio-demographic

status and self-reported oral health measures, which do not capture

the true biological and inflammatory state of participants (Du

et al., 2018). Furthermore, predictive models often lack external vali-

dation and, therefore, we do not know whether these algorithms gen-

eralize to other heterogeneous populations. Therefore, it is important

for those working in the field to be aware that we may not yet be in a

position to fully exploit machine learning methods, despite all of the

advances being made.

The aim of this study is to utilize datasets that are “typical” of

what may be expected in periodontology; moderate-sized, observa-

tional data, with predictors including socio-demographics, health

behaviours, metabolic health, and self-reported oral health. We will

develop and validate multivariate predictive models for periodontal

diagnosis and assess whether more complex algorithms do appear to

provide any substantial benefits under such conditions.

2 | MATERIALS AND METHODS

This study was designed according to Transparent Reporting of a Mul-

tivariable Prediction Model for Individual Prognosis or Diagnosis

(TRIPOD) guidelines (Collins et al., 2015).

2.1 | Data source: Taiwan

The Taiwanese data for this study were derived from a cross-sectional

study conducted in Taiwan, which aimed to take a sample of partici-

pants from the Taiwanese population aged 18 years or older (Lai

et al., 2015). The study adhered to the tenets of the Declaration of

Helsinki and institutional review board approval was obtained

(TMUJIRB No. 201207011). The sampling method for this study

involved Taiwan being divided into four geographical areas and, due

to population size varying by area, a probabilities-proportional-to-size

method was used to randomly sample participants of different age

groups from each area (Lohr, 2019). Each area was assessed by

community-based integrated screening (CIS), incorporating periodon-

tal examination into the examination protocol (Chen et al., 2004). In

brief, the CIS is an adult disease screening programme implemented in

several counties in Taiwan, which primarily aims to screen for cancers

and metabolic syndrome. The periodontal status was assessed

through the community periodontal index (CPI), and the examination

consisted of CPI scores in five categories: healthy, gingival bleeding,

calculus, shallow pocketing (4–5 mm), and deep pocketing (≥6 mm)

(Ainamo et al., 1982; World Health, 1997). A total of 99 periodontal

surveys were conducted from 2007 to 2008. Examiners used a WHO

probe demarcated according to corresponding CPI scores. From the

distal surfaces of the four canines, the entire dentition was divided into

sextants, comprising two anterior and four posterior sextants. The first

and second premolars were used as the index teeth for each posterior

sextant, the right central incisor for the upper anterior sextant, and the

left central incisor for the lower anterior sextant. Each index tooth was

assessed at six sites (mesiobuccal, mid-buccal, distobuccal, mesiolingual,

mid-lingual, and distolingual), and the CPI scores were recorded in a

hierarchical manner, such that the highest score recorded for any site in

a given sextant was taken to be representative for that sextant. The

highest score across the six sextants was then taken to be representa-

tive of that participant. Participants were defined as having a positive

diagnosis of periodontitis if they had a CPI ≥3.

2.2 | Data source: United States

The American data for this study were derived from the 2011 to 2012

National Health and Nutritional Examination Survey (NHANES), which

is a cross-sectional study conducted by the National Center for Health

Statistics, a division of the Centers for Disease Control and Preven-

tion. The study adhered to the tents of the Declaration of Helsinki

and institutional review board approval was obtained (NCHS Protocol

#2011-17). The sampling method for this study was a multistage, clus-

tered approach where participants were first interviewed at home and

then invited to a mobile examination centre for further investigations,

examination, and tests. These further tests included an oral examina-

tion conducted by state-licensed dental practitioners, during which

the dentition was charted, and a six-point periodontal pocketing chart

recorded. This involved all teeth except for third molars being exam-

ined, and the periodontal probing depth, recession, and clinical attach-

ment loss were recorded at six sites (mesiobuccal, mid-buccal,

distobuccal, mesiolingual, mid-lingual, and distolingual). For NHANES,

participants were assessed according to the CDC-AAP case defini-

tions for population-based surveillance of periodontitis, where individ-

uals are classified as having no, mild, moderate, or severe periodontitis
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(Eke et al., 2012). For this study, individuals who did not fall into the

“no” category were diagnosed as having periodontitis.

2.3 | Predictors

Potential predictors of periodontitis, which were common between the

two datasets, were extracted, which were broadly classified into the cat-

egories of demographics, health behaviours, metabolic health, and oral

health. Demographic variables included age (years), sex (male/female),

and education (less than high school/high school graduate or above).

Health behaviours included smoking status (never/former or current)

and alcohol consumption (never/former or current). Metabolic health

variables included body mass index (in kilogram per square metre), waist

circumference (in centimetre), systolic and diastolic blood pressure

(in millimetre of mercury), fasting plasma glucose (in milligrams per deci-

litre), serum triglycerides (in milligrams per decilitre), and high-density

lipoprotein (HDL) cholesterol (in milligrams per decilitre). Oral health var-

iables included whether participants had visited a dentist within the past

year, whether they had noticed any mobile teeth, and whether they

used floss. For this study, we included participants who were at least

30 years of age without any missing periodontal data, and other missing

data were imputed using multivariate imputation.

2.4 | Data pre-processing

Prior to model development, predictors are often transformed or spe-

cifically selected in such a way that aims to maximize the predictive

validity of the fitted models (Mishra et al., 2011; Hira & Gillies, 2015).

Here, we tested two different methods of data pre-processing:

1. Recursive feature elimination with cross-validation (RFECV): All of the

predictors were min–max normalized on a scale of 0–1 and then the

best predictors were selected using an RFECV algorithm. The RFECV

algorithm was applied to a gradient boosting machine (GBM) in order

to identify the most suitable predictors (Natekin & Knoll, 2013). In brief,

the GBM algorithm iteratively selected 80% of the cohort to develop

decision trees to assess which variables best predicted periodontitis

and in what combination. This was averaged across 60 decision trees

where each tree cast a vote on the optimal predictors. The RFECV algo-

rithm implemented this GBM by iteratively adding additional predictors

until the maximum was reached (maximum was equal to the square

root of the total number of predictors). The combination of selected

features was assessed by the GBM through 10-fold cross-validation.

2. Dimensionality reduction: All of the predictors were scaled and

projected into a lower-dimensional space using principal compo-

nents analysis (PCA). In brief, PCA generates synthetic variables

(synthetic variables are linear combinations of the original vari-

ables) that maximize variance and minimize information loss, in

essence trying to represent the data in the smallest number of

dimensions possible (Jolliffe & Cadima, 2016). We selected the

optimal number of principal components to represent the data by

Minka's maximum likelihood estimation (MLE), which has been

shown to be more optimal than cross-validation (Minka, 2001).

Minka's MLE involves interpreting PCA as a density estimation

problem and then uses Bayesian model selection to identify the

optimal number of principal components.

2.5 | Model training

Ten machine learning classifiers were trained on the cohort data to pre-

dict the presence of periodontitis: (i) AdaBoost; (ii) artificial neural net-

works (ANNs); (iii) decision trees; (iv) a Gaussian process (GP); (v) K-

nearest neighbours (KNN); (vi) linear support vector classification (SVC);

(vii) linear discriminant analysis (LDA); (viii) logistic regression; (ix) random

forests (RF); and (x) Naïve Bayes. A description of the algorithms and the

underlying methodology is presented in Table 1. Where algorithms had

tuning parameters, these were optimized using grid-search 10-fold cross-

validation (Bergstra & Bengio, 2012). In brief, this meant that anytime an

algorithm took tuning parameters, it was provided a set of feasible values.

Any time this algorithm was then trained, it was trained using all permuta-

tions of the feasible tuning parameter values. The optimal value for each

tuning parameter was then identified through 10-fold cross-validation.

2.6 | Model validation

We tested two methods for validating the fitted models

1. Internal validation: This was done by bootstrap sampling the train-

ing cohort with replacement, to create a validation sample equal in

size to the training sample. The fitted models were then used to

predict the periodontal diagnosis of the individuals in this boot-

strap validation sample.

2. External validation: The model was developed by training the algo-

rithm on the cohort from one country and then using the fitted model

to predict the periodontal diagnosis for the individuals in the other

country's cohort (i.e., an algorithm was trained on the data from the

Taiwanese cohort and then this trained algorithm was used to predict

the periodontal status of the individuals in the US cohort).

The predictive validity of each model was assessed using six met-

rics: (i) area under the curve for the receiver operating characteristic

(AUC); (ii) accuracy; (iii) sensitivity; (iv) specificity; (v) positive predic-

tive value; and (vi) negative predictive value. All analyses were pro-

grammed in Python version 3.9.7.

3 | RESULTS

3.1 | Population description

The full description of the included cohorts is presented in Table 2. In

brief, the Taiwanese sample comprised 3453 participants, and the
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prevalence of periodontitis was 61.3% (no participant was excluded

due to missing periodontal data). Participants with periodontitis

were more likely to be older, male, have a lower educational attain-

ment, be a former or current smoker, be non-drinkers, have a higher

body mass index, waist circumference, systolic and diastolic blood

pressure, fasting plasma glucose, serum triglycerides and HDL lipo-

proteins, have not visited the dentist in the last year, have noticed

mobile teeth, and not use floss. The American sample comprised

3685 participants and the prevalence of periodontitis was 48.7%

(881 out of 4566 participants aged 30 or older were excluded due

to missing periodontal data). Participants with periodontitis were

more likely to be older, male, have a lower educational attainment,

be a former or current smoker, be non-drinkers, have a higher body

mass index, waist circumference, systolic blood pressure, fasting

plasma glucose, serum triglycerides, lower HDL lipoproteins, have

not visited the dentist in the last year, have noticed mobile teeth,

and not use floss. A heatmap for the Spearman rank correlation

between each of the variables across the two cohorts is presented

in Figure 1.

3.2 | Internal validation

The full results for the predictive validity of the algorithms trained and

internally validated on the Taiwanese and American data are pre-

sented in Tables 3 and 4, respectively.

For the Taiwanese data, the strongest performing algorithms fol-

lowing RFECV feature selection were RF (AUC: 0.97, accuracy:

97.5%), followed by decision trees (AUC: 0.89, accuracy: 89.3%). All

other algorithms were roughly similar, with AUC in the 0.55–0.65

range and accuracy approximately in the 60%–70% range. The stron-

gest performing algorithms following PCA were RF (AUC: 0.99, accu-

racy: 99.3%), followed by decision trees (AUC: 0.97, accuracy: 96.8%)

and GP (AUC: 0.79, accuracy: 80.7%). All other algorithms were

roughly similar, with AUC in the 0.55–0.65 range and accuracy

approximately in the 60%–70% range.

For the American data, the strongest performing algorithms fol-

lowing RFECV feature selection were KNN (AUC: 1.00, accuracy:

100.0%), followed by RF (AUC: 0.98, accuracy: 98.1%) and decision

trees (AUC: 0.86, accuracy: 86.2%). All other algorithms were roughly

similar, with AUC in the 0.60–0.70 range and accuracy approximately

in the 60%–70% range. The strongest performing algorithms following

PCA were KNN (AUC: 1.00, accuracy: 100.0%), followed by RF (AUC:

0.98, accuracy: 98.1%), decision trees (AUC: 0.94, accuracy: 94.1%),

and GP (AUC: 0.95, accuracy: 92.0%). All other algorithms were

roughly similar, with AUC in the 0.60–0.70 range and accuracy

approximately in the 60%–70% range.

3.3 | External validation

The full results for the predictive validity of all algorithms trained on

the Taiwanese data and then externally validated on the American

data are presented in Table 5. The results for the algorithms trained

on the American data and then externally validated on the Taiwanese

data are presented in Table 6.

For the models trained on Taiwanese data and validated on Amer-

ican data, all algorithms saw a drastic drop-off in predictive perfor-

mance, as compared with the results from the internal validation.

Regardless of the method of data pre-processing, all algorithms

TABLE 1 Summary of the tested algorithms

Algorithm name Algorithm type Algorithm function

AdaBoost Ensemble method Fits iterations of weak learners and assigns weights to these learners, in order to

make a consensus-based classification of observations.

Artificial

neural network

Neural network Multi-layer perceptron with each neuron acting as a linear regression undergoing a

non-linear transformation.

Decision tree Classification and

regression trees

Non-parametric tree-based classifier, which continues to split all internal nodes

until all of the derived leaves are pure.

Gaussian process Laplace approximation Probabilistic classification with a logistic link function to approximate a non-

Gaussian posterior.

K-nearest neighbours Non-parametric

classification

Non-parametric instance-based learning algorithm, where votes from neighbouring

data points are used to classify each data point.

Linear support vector

classification

Support vector machine Fits a linear kernel, minimizing the squared hinge loss function, in order for efficient

classification.

Linear discriminant

analysis

Decision surface Class conditional densities are fit using Bayes' rule, and a linear boundary between

observations is identified.

Logistic

regression

Generalized linear model An extension of the linear model, which implements a logit link function to allow for

binary classification.

Random forests Ensemble method Multiple decision trees are fit on subsamples of the data and predictions are

averaged across the trees in a consensus-based manner to classify observations.

Naïve Bayes Bayesian classification Implements Bayes' theorem under the “naïve” assumption of conditional

independence between all predictors, given the class to which they belong.
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showed similar performance, with AUC typically in the 0.50–0.55

range and accuracy approximately in the 50%–60% range.

For the models trained on American data and validated on

Taiwanese data, all algorithms saw a drastic drop-off in predictive per-

formance, as compared with the results from the internal validation.

Regardless of the method of data pre-processing, all algorithms

showed similar performance, with AUC typically in the 0.50–0.60

range and accuracy approximately in the 50%–60% range.

4 | DISCUSSION

In this study, we develop and validate predictive models for periodon-

titis on national survey data from Taiwan and United States, using six

different metrics to compare two methods of data pre-processing,

10 machine learning algorithms, and two methods of model validation.

We find that the performance of the various algorithms differs

depending upon which cohort of participants they are trained on, how

TABLE 2 Characteristics of the included cohorts

Characteristic

Taiwan (n = 3453) NHANES (n = 3685)

Healthy
(n = 1338 [38.7%])

Periodontitis
(n = 2115 [61.3%])

Healthy
(n = 1892 [51.3%])

Periodontitis
(n = 1793 [48.7%])

Demographics

Age (years), mean (SD) 45.6 (11.3) 50.4 (11.8) 51.8 (15.6) 55.3 (13.8)

Sex, n (%)

Male 438 (32.7) 977 (46.2) 794 (42.0) 1034 (57.7)

Female 900 (67.3) 1138 (53.8) 1098 (58.0) 759 (42.3)

Education, n (%)

Less than high school 481 (35.9) 857 (64.1) 402 (21.2) 528 (29.4)

High school or above 1056 (49.9) 1059 (50.1) 1490 (78.8) 1265 (70.6)

Health behaviours

Smoking status, n (%)

Never 1123 (83.9) 1553 (73.4) 1127 (59.6) 896 (50.0)

Former or current 215 (16.1) 562 (26.6) 765 (40.4) 897 (50.0)

Alcohol consumption, n (%)

Never 1030 (77.0) 1648 (77.9) 243 (12.8) 261 (14.6)

Former or current 308 (23.0) 467 (22.1) 1649 (87.2) 1532 (85.4)

Metabolic health

Body mass index (kg/m2), mean (SD) 24.2 (5.0) 27.0 (73.0) 28.7 (6.5) 29.3 (6.4)

Waist circumference (cm), mean (SD) 78.1 (10.7) 80.1 (11.3) 98.4 (15.2) 100.8 (15.2)

Systolic blood pressure (mmHg), mean (SD) 122.9 (30.0) 127.6 (26.8) 123.2 (17.5) 126.8 (17.7)

Diastolic blood pressure (mmHg), mean (SD) 79.9 (27.7) 81.0 (12.1) 71.3 (11.7) 71.3 (12.4)

Fasting plasma glucose (mg/dl), mean (SD) 94.2 (24.5) 98.3 (29.0) 108.1 (22.6) 114.0 (29.3)

Serum triglycerides (mg/dl), mean (SD) 117.1 (108.0) 131.2 (130.1) 130.4 (62.8) 138.4 (75.7)

High-density lipoprotein (mg/dl), mean (SD) 55.5 (20.1) 56.2 (24.3) 53.3 (14.6) 52.0 (14.9)

Oral health

Dental visit in last year, n (%)

No 515 (38.5) 921 (43.5) 785 (41.5) 915 (51.0)

Yes 823 (61.5) 1194 (56.5) 1107 (58.5) 878 (49.0)

Mobile teeth, n (%)

No 1209 (90.4) 1725 (81.6) 1653 (87.4) 1359 (75.8)

Yes 129 (9.6) 390 (18.4) 239 (12.6) 434 (24.2)

Uses floss, n (%)

No 460 (34.4) 921 (43.5) 714 (37.7) 713 (39.8)

Yes 878 (65.6) 1194 (56.5) 1178 (62.3) 1080 (60.2)

Abbreviation: NHANES, National Health and Nutritional Examination Survey.
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the predictors are pre-processed, and whether they are validated

internally or externally.

One of the most pertinent findings of this study is that the

extremely strong predictive performance of many of the algorithms

during internal validation (perfect predictive performance with KNN

and near-perfect predictive performance with RF and decision trees)

could not be replicated during external validation. This can be

explained by a number of reasons, the first of which is model overfit-

ting. This is the process by which the machine learning algorithms

learn patterns in the training data that are specific to only that cohort

and not replicated across other cohorts of individuals, and such pat-

terns may arise solely by chance (i.e., noise), rather than due to a true

causal relationship. This means that when the algorithms were vali-

dated in other cohorts, where these same relationships are not

observed, the predictive performance drops off drastically; readers

can refer to mathematical literature on the bias-variance trade-off to

learn more about this phenomenon (Hastie et al., 2009). Secondly, our

variables are crude and may only act as surrogate markers for the

underlying inflammatory nature of the condition in individuals, mean-

ing they are not powerful predictors of whether an individual does

have periodontitis. Finally, the causes and risk factors of diseases may

differ from population to population, meaning the features that are

strong predictors of periodontitis in one population do not appear to

be in another population. This is critical because it means that we can-

not assume that just because a model works effectively in one group

of individuals, it will then generalize to other cohorts who are hetero-

geneous to the cohort of individuals on which the model was origi-

nally trained (as we have seen in this present study).

There are limitations to this study that must be noted. Firstly, it is

not possible to generalize the findings, which we have derived from

just two datasets, to the broader problem of predicting periodontal

disease across all populations. In these two specific cohorts, using a

specific selection of predictors, we have identified shortcomings in

the generalizability and predictive performance of certain algorithms.

However, this is not to say that in other populations, using different

predictors, the findings would be the same. In fact, this is a key moti-

vator for why any machine learning model should be tested robustly,

using multiple cohorts and a broad spectrum of predictors. It is very

likely that models will need to be tailored in a way that is specific to

the population on which they will be utilized. The second limitation

comes from understanding that optimization of machine learning algo-

rithms is an ongoing, unsolved challenge. The mathematical theory

underlying optimization methods is still being developed, and, in many

cases, it is impossible to prove that certain algorithms have

identified a globally optimum solution, rather than a locally optimum

solution (Zhang, 2004). In addition, there is an infinite combination of

values that can be used for the tuning parameters; therefore, they

must be reduced down to a subspace of plausible values, as is the case

with grid-search cross-validation. The combination of these two fac-

tors means that, for any given algorithm, there may exist a way to

adjust the parameters to produce a more optimal solution (i.e., an

increased predictive validity).

Clearly, an issue we face in periodontology is that the number of

observations typically collected is only in the hundreds or, occasion-

ally, low thousands (Du et al., 2018). There are no studies published

with sample sizes of clinically diagnosed participants in the millions.

This instantly means that many of the more complex algorithms, such

as ANNs or RF, are very unlikely to perform to their full potential in

predicting periodontitis. Furthermore, the nature of the predictors

used means that we are not yet in a position to exploit such powerful

algorithms to their full extent. Conventional predictors such as socio-

demographics, smoking, and self-reported oral health are known to

display some weak-to-moderate correlation with periodontitis, but do

not actually represent the true underlying biological state of the par-

ticipants. Assimilating more complex and valid predictors, such as

genetic or -omics data, which span hundreds of thousands or millions

of participants, is incredibly expensive and resource-intensive. Despite

reductions in the cost required to obtain such data, it is still not

F IGURE 1 Heatmaps showing Spearman correlation coefficients between variables in the Taiwanese and American cohorts
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feasible to do so for the vast number of participants, which we require

to truly maximize the effectiveness of the more computationally

intensive algorithms. The existing evidence indicates that, for clinical

machine learning problems, more complex algorithms do not appear

to provide any significant benefits above and beyond conventional

logistic regression (Christodoulou et al., 2019). Our findings are largely

in agreement with this, and until suitably large and complex datasets

are available, models such as logistic regression may be the preferred

option due to the greater ease with which they can be explained and

interpreted by clinicians.

For future researchers who wish to exploit machine learning in

order to maximize our effectiveness in predicting periodontitis, the

findings of this study essentially have three implications. Firstly, we

require that vastly more data are collected, which is quite easily

facilitated by the swathes of computing power available at most

research institutes and the ability to disseminate big data very eas-

ily. The challenge comes in how we ensure the participants have

received an accurate clinical diagnosis. It is very unlikely that one

institute alone could produce this quantity of data, and we may take

some inspiration from the field of genetic epidemiology, where bio-

banks from various different countries share data and collaborate

with one another in order to harmonize data so that researchers can

work on much larger sample sizes (Palmer et al., 2011). Secondly,

assimilating data on variables that are more likely to represent the

true biological state of individuals will be beneficial. Again, it is

unlikely that this can be implemented on a large scale by a single

institute, so collaboration may be beneficial. Furthermore, if we can

identify which molecular markers we believe to be clinically relevant

in some smaller studies, we can then specifically focus on collecting

large-scale data for these markers only, which could further help

mitigate the costs associated with such efforts. Third, models that

have a strong predictive performance but have only been validated

internally should not be taken at face value. Robust external valida-

tion is required before we can speak to the generalizability of such

algorithms and the real-world impact they may have on identifying

high-risk individuals.

In conclusion, larger sample sizes and more complex predictors of

periodontitis are required before machine learning can be leveraged to its

full potential for the prediction of periodontitis. In addition, any models

that are developed should undergo robust external validation before

claims are made regarding their potential impact on the wider population.
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