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A B S T R A C T   

Introduction: The objective of this study was to assess seven configurations of six convolutional deep neural 
network architectures for classification of chest X-rays (CXRs) as COVID-19 positive or negative. 
Methods: The primary dataset consisted of 294 COVID-19 positive and 294 COVID-19 negative CXRs, the latter 
comprising roughly equally many pneumonia, emphysema, fibrosis, and healthy images. We used six common 
convolutional neural network architectures, VGG16, DenseNet121, DenseNet201, MobileNet, NasNetMobile and 
InceptionV3. We studied six models (one for each architecture) which were pre-trained on a vast repository of 
generic (non-CXR) images, as well as a seventh DenseNet121 model, which was pre-trained on a repository of 
CXR images. For each model, we replaced the output layers with custom fully connected layers for the task of 
binary classification of images as COVID-19 positive or negative. Performance metrics were calculated on a hold- 
out test set with CXRs from patients who were not included in the training/validation set. 
Results: When pre-trained on generic images, the VGG16, DenseNet121, DenseNet201, MobileNet, NasNetMobile, 
and InceptionV3 architectures respectively produced hold-out test set areas under the receiver operating char-
acteristic (AUROCs) of 0.98, 0.95, 0.97, 0.95, 0.99, and 0.96 for the COVID-19 classification of CXRs. The X-ray 
pre-trained DenseNet121 model, in comparison, had a test set AUROC of 0.87. 
Discussion: Common convolutional neural network architectures with parameters pre-trained on generic images 
yield high-performance and well-calibrated COVID-19 CXR classification.   

1. Introduction 

In December 2019, a cluster of pneumonia with unknown etiology 
emerged, rapidly evolving into a world-wide health crisis with signifi-
cant social, health, and financial consequences.1 Given the rapid spread 
of infection,2 the continued concern that asymptomatic carriers are 
contributing to community transmission,3–7 the depletion of hospital 
resources due to high influxes of patients,8 and the current absence of 
specific therapeutic drugs and widely available vaccines for treatment of 
COVID-19 infection,1,9 it is essential to detect onset at its early stages. 

Radiological examinations play an important role in the diagnosis 
and evaluation of this global health emergency.10–12 Common radio-
logical findings of the infection include multiple ground glass opacity 
and interlobular septal thickening in the lungs, with significant corre-
lations between the degree of pulmonary inflammation and main 

COVID-19 clinical symptoms.10 Although reverse-transcription poly-
merase chain reaction (RT-PCR) remains the standard to diagnose 
COVID-19 infection,11,13,14 issues with limited supply16 of RT-PCR as-
says have hindered prompt diagnosis. Complementary to RT-PCR assays, 
chest radiography can identify early phase lung infection17 and prompt 
larger surveillance efforts.18 

In particular, there has been a flurry of work concerning the use of 
chest X-rays (CXR) to detect COVID-19.12,16,19–24,24–35 All of these 
studies use models based on a number of convolutional neural network 
(CNN) architectures–in most instances, performance comparisons are 
limited to models derived from only one or a few 
architectures.12,24–30,32,34 Other studies have limitations resulting from 
the size or composition of the training or testing datasets, such as the 
absence of examples of differential diagnoses, or overwhelming class 
imbalance.24,28–30 A third drawback of existing work is a widespread 
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lack of calibration. (Several relevant studies are compared in Supple-
mentary Table 1.) In contrast to these studies, we present a more 
comprehensive comparison of the performance and calibration of seven 
models resulting from six different CNN architectures on a balanced 
dataset which includes multiple differential diagnoses (pneumonia, 
fibrosis, and emphysema). While the present study concerns COVID-19 
detection, we mention that other studies use related methods to detect 
and predict the severity of pneumonia among patients already known to 
be COVID-19 positive.36–38 Additionally, a great deal of effort has been 
devoted to the use of computed tomography (CT) for COVID-19 detec-
tion.14,31,34 In the current study, we chose to use CXR images, as they 
are less expensive and more common.32 

2. Materials and methods 

2.1. Description of data 

Studies performed on de-identified patient data constitute non- 
human subjects research, and this study has been determined by the 
Pearl Institutional Review Board to be Exempt according to FDA 21 CFR 
56.104 and 45CFR46.104(b) (4): (4) Secondary Research Uses of Data or 
Specimens under study number 20-DASC-119. We used two datasets. 
The first, which we will simply refer to as the COVID-19 dataset, is a 
publicly accessible repository of chest radiographs from COVID-19 pa-
tients compiled by Cohen et al. (2020).40 New chest X-rays are uploaded 
to the collection on a rolling basis, as new papers containing such images 
are made public. For our experiments, we used 294 CXR images from the 
COVID-19 dataset, which were taken from 188 individuals diagnosed 
with COVID-19, as our COVID-19 positive images. Image metadata in 
the COVID-19 dataset indicates that data were collected from patients 
admitted to hospitals in the United States, Italy, China, Vietnam, 
Taiwan, Korea, Sweden, Israel and Australia from January 1, 2020 to 
March 16, 2020. The second dataset, named ChestX-ray14, is a much 
larger collection of 112,120 chest X-ray images acquired from 30,805 
unique patients at the clinical Picture Archiving and Communication 
System (PACS) database at the National Institutes of Health Clinical 
Center.41,42 It contains 14 disease image labels including atelectasis, 
cardiomegaly, effusion, infiltration, mass, nodule, pneumonia, pneu-
mothorax, consolidation, edema, emphysema, fibrosis, pleural thick-
ening and hernia.19 We note that, while we reference the ImageNet 
dataset,43 we used the parameters for the six CNN architectures which 
were already derived from training on ImageNet. 

2.2. Data preprocessing and labeling 

Both datasets contained data obtained from single posteroanterior 
(or “front-on”) X-rays as well as from CT scans composed of multiple 
concerted X-rays. We chose to exclusively use single CXR images, as they 
are less expensive and more common than CT systems.32 Due to the 
relative scarcity of COVID-19 positive images, we used all available 

images (294 images), despite the potential bias introduced by using 
multiple images from the same individual. For convenience, we selected 
from ChestX-ray14 as many (294 images) COVID-19 negative images as 
COVID-19 positive images from the COVID-19 dataset. We chose 
approximately equally many pneumonia, emphysema, fibrosis, and 
healthy images. We selected these conditions on the basis of shortness of 
breath and cough, which overlap with primary symptoms of COVID- 
1944,45 and may therefore motivate a clinician to order a chest radio-
graph to determine COVID-19 status in those patients. We tabulated the 
two demographic pieces of information, sex and age, which were 
available for most of the 588 images and were used as inputs to the 
algorithm (Table 1). 

The size of all images was standardized to 224 × 224. We selected 
220 COVID-19 positive images from 143 unique patients to the training 
set as well as 220 of the COVID-19 negative images from ChestX-ray14 
from 153 unique patients. The final training set consisted of 220 COVID- 
19 positive, 55 healthy, 55 pneumonia, 55 emphysema, and 55 cystic 
fibrosis images for a total of 440 chest radiograph images (roughly 75% 
of all images) on which we trained and validated the classifiers. The 
remaining 148 images, 74 COVID-19 positive and 74 COVID-19 nega-
tive, were allocated to a hold-out test set. The images for the hold-out 
test set were selected such that no images from patients in the hold- 
out test set were seen by the models during training. The prevalence 
of COVID-19 positive images in the training and testing sets were similar 
to that reported in another imaging analysis study for COVID-19 
screening.46 

2.3. Model development 

Our machine learning models were built from standard building 
blocks to create seven models that we found to be effective for this task 
of classification. We selected six of the most common configurations of 
CNN architectures: VGG16 (named for the Visual Geometry Group at the 
University of Oxford),47 DenseNet121 and DenseNet201,48 Incep-
tionV3,49 MobileNet50 and NasNetMobile.51 We chose these six archi-
tectures due to their popularity and the accessibility of ImageNet pre- 
trained parameters (available in the Python Keras library), as well as 
their contrasting depth and number of parameters. Among the six ar-
chitectures, VGG16 has the highest number of parameters while Mobi-
leNet has the lowest. In terms of topological depth (including activation 
layers, normalization layers and so on) DenseNet201 is the deepest and 
VGG16 is the shallowest. We adapted each of the six CNN architectures 
that were pre-trained using the ImageNet dataset by removing the 
classifier blocks and adding a custom classifier block to each model. The 
final layer in the custom classifier blocks were designed with a softmax 
output for the two categorical outputs: covid and non-covid. We call 
these six models “off the shelf” (OTS) to indicate that they were pre- 
trained using ImageNet data. 

For the seventh model, we prepared a second configuration of the 
DenseNet121 network. This model was pre-trained on the full ChestX- 

Table 1 
COVID-19 and ChestX-ray14 (NIH) dataset patient demographics   

COVID-19 dataset (COVID-19 patients) NIH dataset (non-COVID-19 patients) 

Total number of X-ray images represented in dataset  294 294 
Total number of unique patients represented in dataset  188 204  

Demographic overview Characteristic Number of X-ray images Percentage Number of X-ray images Percentage 
Sex Female  98  33.33%  136  46.26% 

Male  165  56.12%  158  53.74% 
Age <29  13  4.42%  23  7.82%  

30–39  29  9.86%  31  10.54% 
40–49  40  13.61%  35  11.90% 
50–59  39  13.27%  65  22.11% 
60–69  56  19.05%  64  21.77% 
70–79  67  22.79%  62  21.09% 
80+ 18  6.12%  14  4.76%  
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ray14 dataset for the multi-class classification of all 14 conditions; a 
characterization of the network trained in this fashion was previously 
reported by Rajpurkar et al.42 This X-ray trained (XRT) DenseNet121 
was fine-tuned on our training set to compare the OTS models trained on 
generic (non-CXR, ImageNet) images with one trained exclusively on 
CXRs. The output layer of this third model was replaced with a custom 
classifier block consisting of fully connected layers, and an output layer 
similar to the OTS models. 

2.4. Cross validation, training and testing 

After determining the network structures of the three models, the 
custom dense layers of each model were trained using 5-fold stratified 
cross-validation. The training set of 440 X-ray images were used for the 
5-fold cross-validation, every fold using a random train-validation split 
of 80% - 20%, with splitting performed by image. The final models were 
trained and validated using the full training set of 440 images before 
being tested on the hold-out test set with 148 X-ray images. Since the 

dataset used for training was small, cross validation was implemented to 
reduce the chances of overfitting. We also selected images for the hold- 
out test so that no images from patients in the training set were included 
in the hold-out test set. The performance metrics reported in this study 
were obtained on the hold-out test set. During training, all the pre- 
trained layers were frozen (i.e. model parameters were held fixed) and 
only the newly added densely connected layers were trained. An initial 
learning rate of 0.001 with a decay in the order of a tenth of the learning 
rate was set. Binary cross entropy was chosen as the loss function. Each 
of the models were trained with the same batch size and Adam opti-
mization algorithm. Average training time for a single epoch for the OTS 
VGG16 model, which had the highest number of parameters was 
approximately 11 s, while for the OTS MobileNet model, with the lower 
number of parameters, it was approximately 5 s on a linux machine with 
Intel(R) Xeon(R) Platinum 8175 M CPU @ 2.50GHz hosted on Amazon 
Web Services (AWS). We also report representative confusion matrices 
and area under the reciever operating characteristic (AUROC) curve 
values obtained on the hold-out test set. 

2.5. Computing setup 

Experiments were conducted using the AWS cloud infrastructure. 
Model classifiers were constructed using the Python Keras (https:// 
keras.io) and Tensorflow https://www.tensorflow.org) deep learning 
libraries. Pandas https://pandas.pydata.org), NumPy (https://numpy. 
org), OpenCV (https://opencv.org) and Scikit-learn (https://scikit- 
learn.org) libraries were used for data preparation and model 
evaluation. 

Table 2 
Performance metrics of the fine-tuned models on the hold-out test set. Abbre-
viations: AUROC, area under the reciever operating characteristic; OTS, off-the- 
shelf; PPV, positive predictive value; XRT, X-ray trained.  

Model AUROC F1 Score PPV Sensitivity Specificity 

OTS VGG16  0.98  0.93  0.96  0.91  0.96 
OTS DenseNet121  0.95  0.89  0.87  0.91  0.87 
OTS DenseNet201  0.97  0.95  0.95  0.95  0.95 
OTS Inception  0.95  0.88  0.86  0.91  0.85 
OTS MobileNet  0.99  0.94  0.99  0.91  0.99 
OTS NasNetMobile  0.96  0.88  0.85  0.91  0.84 
XRT DenseNet121  0.87  0.83  0.76  0.93  0.70  

Fig. 1. Performance of the seven models on the hold-out test set. Abbreviations: AUROC, area under the reciever operating characteristic; OTS, off-the-shelf; XRT, X- 
ray trained. 
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3. Results 

Basic demographic characteristics of the patients associated with the 
294 COVID-19 positive class and the 294 COVID-19 negative class im-
ages are reported in Table 1. The majority of images represented in the 
COVID-19 and NIH datasets are associated with male individuals who 
were above 50 years of age. Few images in the combined dataset are 
associated with individuals younger than 29 years of age. We note that, 
because information about sex and age was not associated to all images 
in the COVID-19 dataset, the corresponding percentages do not sum to 
100%. 

Each of the seven models had high performance in terms of AUROC 
values, among which OTS MobileNet had the highest AUROC of 0.99 
while XRT DenseNet121 had the lowest AUROC of 0.87 on the hold-out 
test set (Table 2). The metrics associated with particular operating 
points varied more between the models. 

The AUROC curves obtained by all models on the hold-out test set are 
presented in Fig. 1. The curves reflect the comparably sound validation 
performance across the models and a small decrease in test set perfor-
mance relative to the validation average. This performance is not ob-
tained at the expense of calibration, which we address using 
temperature scaling.52 As demonstrated in Supplementary Figs. 1 and 2, 
after temperature scaling, the expected difference between the accuracy 
and confidence of OTS VGG16 model classifications is small, indicating 
good calibration. Grad-CAM29 heat maps roughly localize the regions of 
the X-rays which had greatest relevance to OTS VGG16 classifications 
(see supplementary methods, Supplementary Fig. 3). 

The confusion matrices in Fig. 2 exhibit the performance of the final 

models on the hold-out test set. Here, label 1 corresponds to COVID-19 
positive images. The support for the two classes (COVID and non- 
COVID) in the test set is 74 images per class. 

4. Discussion 

There is a bank of infectious disease literature focused on deep 
learning-based detection of COVID-19 from chest 
radiographs.24,24–29,31,31–34,36,56–58 

Our results join the growing body of evidence that a variety of CNN 
architecture based models trained on CXR images can be successfully 
used to distinguish COVID-19 infection from conditions with similar 
clinical presentation (Table 2, Figs. 1 and 2)33,42,43,57 and also demon-
strate that the performance need not come at the expense of calibration 
(Supplementary Figs. 1 and 2). To better understand the regions of CXR 
images giving rise to a particular classification, rough localization can be 
performed using a standard tool like Grad-CAM (Supplementary Fig. 3). 
In many cases, these architectures were not designed for COVID-19 
detection in CXR and benefitted from pre-training on generic (non- 
CXR) image data instead of CXR data (likely due to the relative dearth of 
CXR data). This observation is reflected by the disparity in performance 
between the OTS DenseNet121 model and its XRT counterpart (Table 2). 
Moreover, strong performance can apparently be achieved with rela-
tively few COVID-19 positive examples. Previous works have applied 
machine learning models to COVID-19 identification with CXR images, 
but in the absence of differential diagnoses (e.g. COVID-19 positive vs. 
healthy or no-finding patients)14,25,59 or only from pneumonia 
patients.60–62 Additionally, many studies applying machine learning to 

Fig. 2. Confusion matrices. (A) OTS VGG16 model (B) OTS DenseNet121 model(C) OTS DenseNet201 model (D) OTS Inception Model (E) OTS MobileNet model (F) 
OTS NasNetMobile model and (G) XRT DenseNet121 model. Abbreviations: OTS, off-the-self; XRT, X-ray trained. 
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evaluate X-ray images for COVID-19 diagnosis only examined small or 
private datasets, or datasets with large class imbalances24,28,29,58 (Sup-
plementary Table 1). 

In a 2020 study by Rubin et al.63 the authors noted that imaging had 
the potential to help rapidly triage patients in resource-scarce settings in 
which PCR testing was not widely available, or to provide additional 
information in cases where an apparently symptomatic patient receives 
a negative PCR test result. X-rays, in particular, are well suited to use in 
resource-scarce settings as they can be deployed rapidly for suspected 
COVID-19 patients. Further portable radiography units can be easily 
cleaned between each imaging patient, and do not require patients to 
enter a designated radiography room.39 

The models described in this study may offer improved lead time in 
COVID-19 identification as compared to RT-PCR assay reference stan-
dards, and these models perform favorably in the context of recent 
related work. Prospective validation during which the MLA is used in 
live settings will allow us to further demonstrate the ability of this 
technology to identify COVID-19 using X-rays and would benefit from 
collaboration with a multidisciplinary team, which may include a 
radiologist to label test images for comparison with the image classifi-
cation made by the MLA. We are unable to claim that the models 
described in this study are the best possible among models resulting 
from deep learning architectures, as the comparison of architectures is 
not exhaustive and there are variants of these architectures (e.g., those 
with attention mechanisms) that we do not address. (For a recent review 
of architectures applied in this context, see Santosh et al., 2020.64) As we 
focus entirely on models based on deep learning, we do not directly 
compare with approaches for analyzing X-rays which use more tradi-
tional approaches, such as multiresolution methods.65 Additionally, we 
cannot determine from this retrospective study what impact the use of 
such an algorithm may have on clinicians and their provision of care in 
live clinical settings. Indeed, due to limited availability of COVID-19 
chest radiographs, algorithm performance is assessed on a limited 
number of positive COVID-19 cases, which may not be reflective of 
general populations of patients with COVID-19. This limits the gener-
alizability of our results to other patient populations and care settings. 
Such issues will be remedied as more COVID-19 image data become 
available. 

5. Conclusion 

In the wake of COVID-19, it has become clear that it is not merely 
disease itself that can contribute to death. It can also be attributed to the 
finite amount of medical supplies for testing and treatment of the dis-
ease, the challenge of identifying the disease course with very little 
known about its presentation in humans, and limited therapeutic 
treatment. This research joins the growing body of evidence which 
suggests that a variety of CNN architectures, pre-trained on generic 
image data, produce high performing and well calibrated models for 
COVID-19 detection using CXR images. These results support future 
prospective validation for continued optimization of ML and X-rays for 
COVID-19 diagnosis. 
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