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Podocytes damage and mesangial cells expansion are two important pathological
manifestations of glomerular injury in early diabetes. Telmisartan, as an angiotensin
type 1 (AT1) receptor inhibitor, could improve advanced glycation end (AGE) products
or angiotensin Ⅱ (Ang Ⅱ)-induced podocytes injury including detachment or apoptosis. In
this current paper, we first confirmed the protective effect of telmisartan on early diabetic
kidney injury in type 1 diabetic rats. Telmisartan reduced the loss of podocin and inhibited
the expression of α-SMA, reflecting its protective effect on podocyte injury and mesangial
proliferation, respectively. More interestingly we observed an opposite effect of telmisartan
on the cell viability and apoptosis of podocytes and mesangial cells in a high-glucose
environment in vitro. The anti-apoptotic effect of telmisartan on podocytes might be related
to its inhibition of swiprosin-1 (a protein can mediate high glucose-induced podocyte
apoptosis) expression. While telmisartan induced a high expression of PPARγ in mesangial
cells, and GW9662 (a PPARγ antagonist) partially inhibited telmisartan-induced apoptosis
and reduced viability of mesangial cells. In addition, high glucose-induced PKCβ1/TGFβ1
expression in mesangial cells could be blocked by telmisartan. These data provide a more
precise cellular mechanism for revealing the protective effect of telmisartan in diabetic
kidney injury.
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INTRODUCTION

Diabetic kidney disease (DKD), well known as a chronic kidney disease induced by diabetes mellitus
(DM) type 1 or 2 (Podgórski et al., 2019), could worsen glomerular filtration rate (GFR) decreases
progressively, then eventually develops into end-stage renal disease (Hou et al., 2018; Ruiz-Ortega
et al., 2020; Expert Group of Chinese Society of Nephrology, 2021). There are two mechanisms that
hyperglycemia mediate via on the kidney are podocytes injury and glomerular basement membrane
(GBM) changes induced by mesangial cells expansion or proliferation (Anders et al., 2018).
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Podocytes, are specialized visceral epithelial cells, lining the
external layer of the GBM, which’s foot processes interdigitate
forming an ultimate barrier to prevent urinary protein loss
(Podgórski et al., 2019). The number and/or density of each
glomerulus have been studied in patients with DM
(Papadopoulou-Marketou et al., 2017). Injury to the podocytes
contributes to the loss of their adhesive properties and is a major
cause of DKD development (Podgórski et al., 2019). Another
notable character of podocytes is mature podocytes are limited
proliferative cells (Podgórski et al., 2019), (Griffin et al., 2003).
Losses of podocytes bring about proliferation of the mesangial
cells, nevertheless more substantial losses lead to glomerular
fibrosis and increased proteinuria as subsequent denudation of
the GBM (Fukuda et al., 2012). Poor glycemic control results in
podocytopathy (Anders et al., 2018), morphological changes
characterized by podocytes hypertrophy, podocytes epithelial-
mesenchymal transdifferentiation (Chang et al., 2017), podocytes
detachment (Zhang et al., 2020), podocytes apoptosis (Wang
et al., 2018a) and podocytes loss, which are leading to the
progressive podocytes aberrations result in the detachment of
the GBM with consequent glomerulosclerosis.

Mesangial cells have a significant impact on not only the
adjustment of glomerular and intraglomerular circulation, but
also the conservation of glomeruli, such as the defence of
glomerular endothelial cells and outflow of substances from
serum and fluid from microvessels (Wakisaka et al., 2021).
Thickened GBM and expansed mesangial are noticeable
glomerular impairments in diabetes (Papadopoulou-Marketou
et al., 2017). GBM thickening is an early histopathological in
DKD and is affected by the aberrant income and variation of
extracellular matrix secreted by endothelial cells and podocytes
(Anders et al., 2018). Hyperglycemia excites mesangial cells to
proliferate and fabricate matrix (Kriz et al., 2017) via activation of
transforming growth factor-β (TGFβ), which directly cause the
transcriptional activation of matrix collagens (Ziyadeh et al.,
2000) conducing to the expanding mesangial matrix.

Early intervention with hypoglycemic and antihypertensive
treatment is beneficial to delay the occurrence and development
of DKD (Martins and Norris, 2001). Especially recommended in
normal blood pressure adults with DM and albuminuria is
angiotensin converting enzyme inhibitor (ACEI) or
angiotensin receptor blocker (ARB) (Liew et al., 2020).
Blockade of the renin–angiotensin system ameliorates the
expression of ANGPTL2 and integrin which maintain the
glomerular barrier (Tawfik et al., 2021). The reason
telmisartan was chosen is that it is described more efficient
than other ARB drugs in mitigating proteinuria (Naruse et al.,
2019; Guo et al., 2020). Moreover, telmisartan is able to decrease
cisplatin-induced nephrotoxicity such as podocytes apoptosis and
autophagy-associated protein expression levels (Malik et al.,
2015). Fascinatingly, telmisartan has such characters taking
into account its twin role of AT1 receptor blocking action and
peroxisome proliferator-activated receptor gamma (PPARγ)
partial agonistic property (Balakumar et al., 2012). The goal of
this paper was to examine the protective influence of telmisartan
on podocytes injury and mesangial expansion at the early stage of
type 1 DM, respectively.

MATERIALS AND METHODS

Animals
SD male rats were purchased from SLRC Laboratory Animal
Ltd. (Shanghai, China). Rats were housed at a controlled
temperature of 22 ± 2°C, relative humidity of 50–60%, 12-h
light and 12-h dark cycles (light, 08:00–20:00, darkness, 20:
00–08:00), and allowed free access to standard dry diet and tap
water. All animals received humane care, and experimental
protocols were approved by the Animal Care Committee at the
Naval Medical University.

Diabetic Model and Treatment
Weight 180–200 g male rats were treated with STZ (Sigma,
Deisenhofen, Germany) to induce type 1 diabetes. STZ was
dissolved in sterile citrate buffer (pH 4.5) and injected
intraperitoneally (65 mg/kg body weight) within 10 min of
preparation. The non-diabetic rats initially injected with
STZ vehicle served as controls (group Con, n = 10).
Diabetes mellitus was confirmed by measuring glucose
levels tail venous blood using a B-glucose analyzer
(HemoCue, Angelholm, Sweden) 7 days later. Rats with
random blood glucose level >16.7 mmol/L were included in
experiments.

The diabetic rats then received telmisartan (Merck, PHR
1855, 10 mg kg−1·d−1 po, group DM + Tel, n = 10) or vehicle
(group DM, n = 10) by gavage for 4 weeks. Telmisartan used in
this paper was obtained from Sigma-Aldrich Germany, Inc.,
whose purity is 98%+ (HPLC). Periodically, blood glucose and
body weights were measured, and urine samples for
quantitative measurement of albuminuria was collected in
metabolic cages. Rats were sacrificed under anesthesia after
4 weeks, the kidneys were removed and weighed for
histological analysis and protein extraction.

Urinary Albumin
The urine samples were centrifuged at 10,000 rpm for 5 min to
remove insoluble materials. The supernatant was aliquoted
and stored at −80°C until used. ELISA kit for rat urinary
albumin from Chondrex (Redmond, WA) was used
according to the manufacturer’s instructions.

Creatinine Clearance Rate
Creatinine Assay kit (Nanjing Jiancheng, C011-2-1) was used
for the determination of creatinine in blood and urine. Ccr was
calculated according to the formula: Ccr = (urinary
creatinine*24 h urine volume)/(blood
creatinine*24 h*60 min/h)/end weight (kg).

Immunohistochemical and TUNEL Staining
Kidneys were cut in a slicing microtome at 7–8 μm, and fixed
with 4% paraformaldehyde in PBS for 10 min. Blocking has
been performed with buffer (PBS, 2% BSA, 10% FBS) for 1 h
followed by 10 min incubation with a second buffer (PBS, 0.4%
Triton). Primary antibody against α-SMA (Servicebio,
GB13044) or NPHS2 (Abcam, ab229037) has been
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incubated for 3 h at room temperature in a humidified
chamber. After washing, the sections were incubated with
Cy3 goat anti-Mouse IgG (H + L) (Servicebio, GB21301),
HRP conjugated goat anti-Rabbit IgG (H + L) (Servicebio,
GB23303) or immunofluorescent TUNEL (Servicebio, G1501)
reaction in a moist chamber (dark, 37°C, 1 h). The sections
were then counterstained with DAPI (Servicebio, G1012) for
the detection of nuclei. Finally, the stained sections were
embedded in the resistance to fluorescence quenching
sealing liquid and pictured using a fluorescence microscope
(NIKON ECLIPSE C1, Japan).

Cell Culture
Human renal mesangial cells (HRMCs) were obtained from
ScienCell Research Laboratories, Santiago, CA, and cultured in
Mesangial Cell Medium (MsCM, ScienCell Research
Laboratories). HRMCs were plated on a poly-L-lysine
coated flask (2 μg/cm2), and grown at 37°C in a humidified
atmosphere containing 5% CO2. The cells in this experiment
were used within 3–4 passages and were examined to ensure
that they demonstrated the specific characteristics of
mesangial cells. Mouse podocyte cell line MPC-5 was
obtained from ATCC, Maryland, United States. The cells
were grown on type I collagen in RPMI 1640 (10% FBS)
with 50 U/ml IFN-γ at 33°C to 85% confluency and then
transferred to 37°C without IFN-γ for 10–14 days for
differentiation.

Cell Viability and Proliferation Assay
Cell Counting Kit-8 (CCK-8) was used to measure cell
proliferation and cell viability. Cells were seeded in each
well of a 96-well culture plates (5 × 103/well). After the
treatment, 10 μl CCK-8 (Beyotime, Shanghai, China) was
added and incubated for 1 h at 37°C. Absorbance was
measured using a microplate reader (Thermo Fisher Sci-
entific, Waltham, MA, United States) at a wavelength of
450 nm.

Annexin V and Propidium Iodide Staining
Cells were plated and grown until they reached 60%
confluence, and then treated with high glucose (50 mmol/L)
or telmisartan. After 96 h, the collected cells were washed with
cold PBS and resuspended in binding buffer. Annexin V-FITC
and PI (eBioscience, Santiago, CA, United States) were added
to the cellular suspension as in the manufacturer’s
instructions, and a sample fluorescence of 10,000 cells was
analyzed by flow cytometry conducted with FACScan (Becton,
Dickinson and Company, Franklin, NJ, United States).

Western Blotting
The renal cortex, HRMCs and MPC-5 were homogenized in
Tissue or Cell Protein Extraction Reagent (Beyotime)
supplemented with protease and phosphatase inhibitors
(Merck, Whitehouse Station, NJ, United States). Samples
were separated on a 10% SDS PAGE and transferred to
nitrocellulose membrane (Pall Corporation, NY,
United States). The membrane was blocked with 5% bovine

serum albumin and blotted with antibody. Anti-PKCβ1 (Cell
Signaling Technology, 46,809), anti-swiprosin-1 (Abcam,
ab24368), TGF-β1 (Abcam, ab215715), Tubulin (Beyotime,
AT819) and GAPDH (Beyotime, AF5009) were used at a
concentration of 1:1,000. Proteins were visualized using an
IRDye-conjugated anti-mouse or anti-rabbit secondary
antibodys (Rockland, Limerick, PA, United States) at 1:
5,000. Using ODYSSEY INFRARED IMAGING SYSTEM
(LI-COR) to analyses the results.

RNA Isolation and Real-Time RT-PCR
Total RNA was isolated from cells with TRIzol reagent
(Invitrogen, Carlsbad, CA, United States) followed by
chloroform isopropanol extraction and ethanol
precipitation, and 1 μg of total RNA was reverse-transcribed
using the PrimeScript RT reagent kit (Takara Bio, Otsu,
Japan). RT-PCR was performed by the Thermal Cycler Dice
Real Time System TP800 (Takara Bio, Otsu, Japan) by use of
SYBR Green fluorescence signals. The following primers were
used:

Human
PKCβ1, 5′-TTTGAAGGGGAGGATGAAGATGAA-3′ (forward)
and 5′-TGAAGAGTTTATCAGTGGGGGTCAGTTC-3′ (reverse);

AT1, 5′-ACCTGGCTATTGTTCACCCAAT-3′ (forward) and
5′-TGCAGGTGACTTTGGCTACAAG-3′ (reverse);

AT2, 5′-TAAGCTGATTTATGATAACTGC-3′ (forward) and
5′-ATATTGAACTGCAGCAACTC-3′ (reverse);

PPARγ, 5′-GATGCCAGCGACTTTGACTC-3′ (forward)
and 5′-ACCCACGTCATCTTCAGGGA-3′ (reverse);

GAPDH, 5′-CGGAGTCAACGGATTTGGTCGTAT-3′
(forward) and 5′-AGCCTTCTCCATGGTGGTGAAGAC-3′
(reverse).

Mouse
PKCβ1, 5′-ATGAGTTCGTCACGTTCTCCT-3′ (forward) and

5′-CCATACAGCAGCGATCCACAG-3′ (reverse);
AT1, 5′-TTGTCCACCCGATGAAGTCTC-3′ (forward) and
5′-AAAAGCGCAAACAGTGATATTGG-3′ (reverse);
AT2, 5′-CGCAACTGGCACCAATGAG-3′ (forward) and 5′-

AGGGAGGGTAGCCAAAAGGAG-3′ (reverse);
PPARγ, 5′-CTTGGCTGCGCTTACGAAGA-3′ (forward)

and 5′-GAAAGCTCGTCCACGTCAGAC-3′ (reverse);
GAPDH, 5′-AATGGATTTGGACGCATTGGT-3′ (forward)

and 5′-TTTGCACTGGTACGTGTTGAT-3′ (reverse).
PCR conditions were set as incubation at 95°C for 30 s

followed by 40 cycles of 5 s at 95°C, 34 s at 64°C. Levels of
mRNA were normalized with GAPDH and expressed as
relative levels compared to control.

Statistical Analyses
Data processing was analyzed by Origin 6.1 (OriginLab,
Northampton, MA) and expressed as mean ± SD of at least
three independent experiments. Statistical significance was
determined using ANOVA. A value of p < 0.05 was
considered statistically significant.
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RESULTS

Telmisartan Alleviated Early Renal Injury in
STZ-Induced Type 1 Diabetes Rats
STZ-injected rats produced characteristic symptoms of diabetes at
the 4th weeks, including declined body weight gain (Figure 1A)
hyperglycemia (Figure 1B), increased kidney-to-body weight ratio,
24-h urine protein and urea nitrogen (Figures 1C,D,F), and
decreased creatinine clearance rate (Figure 1E). Telmisartan
treatment significantly increased body weight (Figure 1A) and
creatinine clearance rate (Figure 1E), decreased blood glucose
(Figure 1B), urine protein (Figure 1D) and urea nitrogen
(Figure 1F). Although the kidney-to-body weight ratio of the
telmisartan treatment group was reduced, there was no
significant difference between these two groups (Figure 1C).
Histological analysis showed that extracellular matrix deposition
(Figure 1G) and glomerular volume (Figure 1H) were amplified in
diabetic rats, while telmisartan attenuated extracellular matrix
deposition significantly (Figure 1G).

To further estimate the effect of telmisartan on early glomerular
damage of diabetic rats, we observed the changes in podocytes loss
and mesangial matrix expansion. NPHS2, also known as podocin, is
a characteristic protein molecule located on the slit diaphragm of
podocytes. The decreased expression of NPHS2 in diabetic glomeruli
represents the damage and loss of podocytes (Tanoue et al., 2021),
and telmisartan could alleviate the down-regulation of NPHS2
(Figure 2A). α-SMA, an indicator of the activation of mesangial
cells under hyperglycemia to secrete extracellular matrix, could be
inhibited after telmisartan treatment (Figure 2B). In addition,
telmisartan reduced the number of apoptotic cells in the
glomeruli of early diabetic rats (Figure 2C).

Telmisartan Alleviated the Decreased Cell
Viability of Podocytes but Not Mesangial
Cells Induced by High Glucose In Vitro
To reveal the different effects of telmisartan on podocytes and
mesangial cells, we used human renal mesangial cells (HRMCs)

FIGURE 1 | Telmisartan alleviated early renal injury in STZ-induced type 1 diabetes rats. Weight 180–200 g male rats were intraperitoneally treated with STZ
(65 mg/kg body weight) to induce type 1 diabetes, and then received telmisartan (10 mg kg−1·d−1 po, group DM+ Tel, n = 10) or vehicle (group DM, n = 10) by gavage for
4 weeks. The body weight (A), blood glucose (B), urine protein (D), creatinine clearance (E) and urine nitrogen (F) were measured 24 h before anesthesia. Removed
kidneys for kidney-to-body weight ratio (C), histological imaging (G) and relative glomerular area (H)were shown. Data represent the mean ± SD andwere analysed
with one-way ANOVA (*p < 0.05, **p < 0.01, ***p < 0.001 vs. Con group;＃p < 0.05,＃＃p < 0.01 vs. DM group). Scale bar = 20 μm. Con, control; DM, diabetesmellitus;
DM + Tel, diabetes mellitus with telmisartan treatment.
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and mouse podocyte cell (MPC-5) lines to investigate the effect of
telmisartan on cell viability in a high-glucose (HG, 50mmol/L)
environment, respectively. As the results showed, cell viability of
MPC-5was significantly decreased when stimulated withHG after 96
h, while telmisartan could restore cell viability at the concentration of
10 μM. The cell viability of MPC-5 began to decrease significantly
after 48 h of HG stimulation, while telmisartan (10 μM) could fully
restore this decrease at three time points of 48, 72 and 96 h
(Figure 3A). Surprisingly, cell viability of HRMCs was
significantly decreased when stimulated with telmisartan dose-
dependently even in a normal glucose medium. Telmisartan also
could not improve the decreased viability of HRMCs induced by HG
(Figure 3B). Furthermore, we investigated whether the effect of
telmisartan on podocytes and mesangial cells was related to its
known target angiotensin II receptor. Here, angiotensin II did not
reduce cells viability, and telmisartan also only damaged the viability
of mesangial cells (Figure 3C). Meanwhile, HG and telmisartan did
not affect AT1 receptor mRNA expression in these 2 cell lines
(Figure 3D). Telmisartan is highly selective for AT1 receptor,
while AT2 receptor may be activated compensatory by angiotensin
II. As the results shown, HG-induced down-regulation of AT2

receptor in podocytes could be inhibited by telmisartan. However,
the mRNA expression of AT2 receptor in mesangial cells was not
affected by HG or telmisartan (Figure 3E).

Telmisartan Alleviated Podocytes
Apoptosis Induced by High Glucose In Vitro
As telmisartan could reduce glomerular cell apoptosis in diabetic
rats and restore the decreased viability of podocytes induced by
HG, we further confirmed that telmisartan attenuated MPC-5
apoptosis induced by HG in vitro via measuring the ratio of
apoptotic Anexin-V and IP-stained cells by cytometry (Figures
4A,B). We have previously reported that swiprosin-1 participates
in the apoptosis of podocytes in early diabetic kidney injury
(Wang et al., 2018b). Here, we also found that telmisartan
decreased the expression of swiprosin-1 in diabetic renal
cortex (Figure 4C) and HG-stimulated MPC-5 (Figure 4D).

Telmisartan Induced Apoptosis of
Mesangial Cells With or Without HG
Stimulation In Vitro
The above results have shown that telmisartan reduces
glomerular α-SMA and directly inhibits the cell viability of
HRMCs. We further investigated whether telmisartan itself
could induce mesangial cells apoptosis. Under HG stimulation,
telmisartan could further increase the apoptosis of HRMCs
significantly (Figure 5A). Besides, telmisartan itself could also
directly induce apoptosis of HRMCs in normal glucose

FIGURE 2 | Telmisartan decreased expression of NPHS2, α-SMA and cell apoptosis in diabetic glomeruli. (A)NPHS2 staining, (B) α-SMA staining, and (C) TUNEL
staining were used to observed podocyte loss, mesangial matrix expansion and cell apoptosis in glomeruli of early diabetic rats. Data represent the mean ± SD and were
analysed with one-way ANOVA (**p < 0.01, ***p < 0.001 vs. Con group;＃＃p < 0.01,＃＃＃p < 0.001 vs. DM group). Scale bar = 20 μm. Con, control; DM, diabetes
mellitus; DM + Tel, diabetes mellitus with telmisartan treatment.
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medium (Figure 5B). PPARγ, as another target that could be
activated by telmisartan, is widely involved in the apoptosis of
various cells (Ayza et al., 2020). Telmisartan-induced HRMCs
apoptosis and cell viability damage were significantly inhibited
by the PPARγ blocker GW9662 (Figures 5B,C). Interestingly,
telmisartan specifically induced high expression of PPARγ in
HRMCs but not in MPC-5 (Figure 5D).

Telmisartan Decreased PKCβ1 and TGFβ1
in Mesangial Cells
TGF-β is a major mediator of matrix expansion in diabetic
glomerulus and its up-regulation stimulated by HG in
mesangial cells requires PKCβ1 (Wu et al., 2009). As the
results showed below/above, telmisartan inhibited the up-
regulation of PKCβ1 in renal cortex of diabetic rats
(Figure 6A). Specifically, HG induced the protein expression

of PKCβ1 in HRMCs but not in MPC-5, and telmisartan could
reduce PKCβ1 expression induced by HG in HRMCs
(Figure 6B). The mRNA expression of PKCβ1 induced by HG
was also suppressed by telmisartan in HRMCs (Figure 6C).
Reversely, HG down-regulated the mRNA expression of
PKCβ1 in MPC-5, which could be partially restored by
telmisartan (Figure 6C). Similarly, HG specially induced
TGFβ1 expression in HRMCs but not MPC-5, and telmisartan
significantly inhibited HG-induced TGFβ1 in HRMCs
(Figure 6D).

DISCUSSION

Telmisartan is a selective AT1 receptor blocker which has been used
clinically for reducing elevated blood pressure and urinary protein
excretion in hypertensive patients (Baden et al., 2008; Mann et al.,

FIGURE 3 | Telmisartan alleviated the decreased cell viability of podocytes but not mesangial cells induced by high glucose in vitro. (A) Representative images of
mouse podocyte cell (MPC-5) lines. And the effect of telmisartan onMPC-5 cell viability in normal glucose (5.5 mmol) or high-glucose (HG, 50 mmol/L) environment were
measured. (B) Representative images of human renal mesangial cells (HRMCs). And the effect of telmisartan on HRMCs cell viability in normal glucose (5.5 mmol) or
high-glucose (HG, 50 mmol/L) environment were measured. (C) Cell viability of podocytes and mesangial cells with HG or telmisartan treatment. The mRNA
expression of AT1 (D) and AT2 (E) receptor in podocytes and mesangial cells treated with telmisartan (10 μM) in a high-glucose environment. Data are shown as mean ±
SD of n = 3–5 (*p < 0.05, **p < 0.01, ***p < 0.001). PC, mouse podocyte cell lines; MC, Human renal mesangial cells; NG, normal glucose; HG, high glucose; HG + Tel,
high glucose mellitus with telmisartan treatment; Con, control; Ang II, angiotensin II; Ang II + Tel, angiotensin II unite with telmisartan treatment.
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2009). Several clinical trials have suggested that telmisartan is
effective to reduce proteinuria in patients with macroalbuminuria,
and delay the onset and progression of diabetic nephropathy
(Makino et al., 2005; Nakamura et al., 2010; Fujita et al., 2011;
Schmieder et al., 2011). In the present study, oral treatment with
telmisartan in STZ-induced diabetes rats prevented the onset of early
abnormalities in renal and overall including the decrease in body
weight, blood glucose and urine protein. These results confirmed
that telmisartan has renoprotection in early stage diabetic
nephropathy mice. More importantly, this study found that the
protective effect of telmisartan on diabetic glomeruli was reflected in
the anti-apoptotic and pro-apoptotic effects on podocytes and
mesangial cells, respectively.

Advanced glycation end products (AGE) could cause podocyte
DNA injury and detachment partly through stimulation of Ang
II-AT1R axis, thus supplying a innovative beneficial feature of
telmisartan in DKD (Fukami et al., 2013). In normotensive, low-
grade proteinuric glomerular diseases, treatment with telmisartan
in the early stage of disease, attenuates glomerular and
tubulointerstitial damage (Villa et al., 2011). And several
pathways probably linked to the pleiotropic consequences
including growth factor signaling, mammalian target of
rapamycin signaling, protein ubiquitination, the Wnt-beta
catenin pathway and hypoxia signaling (Villa et al., 2011).

Recently, we reported that swiprosin-1 (Wang et al., 2018b),
another name as EF hand domain containing 2 (EFhd2), that
played a critical part in the progression of DKD initiated after the
induction, while it located in podocytes of the mouse glomerulus.
Swiprosin-1 absence ameliorated mitochondria-dependent
podocytes apoptosis stimulated by hyperglycemia or high-
glucose through p38 MAPK signaling pathway. Here, we also
found that telmisartan inhibited hyperglycemia or high-glucose
induced expression of swiprosin-1 both in vivo and in vitro, which
indicated the anti-apoptosis effect of telmisartan on podocytes
may be related to the regulation of swiprosin-1 expression.

Mesangial cells proliferation and excessive deposition of
extracellular matrix proteins has been ascertained contributing
to the development of DKD (Lee et al., 2004). Previous studies
showed that high glucose could induce expression of mesangial
extracellular matrix proteins under hyperglycemia (Taniguchi
et al., 2013). α-SMA is generally used to differentiate mesangial
cells from other glomerular cells in STZ-induced diabetes mice,
and increased α-SMA expression could be as the marker of
mesangial cells phenotypic shifts from the non-activated phase
to the proliferative, secretory activated phase (Niu et al., 2014).
Here, we found that telmisartan decreased α-SMA expression in
diabetic glomerulus. In addition, it has been reported that
mesangial cells proliferation has a significant impact on the

FIGURE 4 | Telmisartan alleviated podocyte apoptosis induced by high glucose in vitro. (A) Flow cytometry analysis of podocytes apoptosis. (B) The statistical
results of apoptosis in MPC-5 incubated with normal glucose (5.5 mmol) or high-glucose (HG, 50 mmol/L) environment with or without telmisartan (10 μM) for 96 h. (C)
Immunoblot of swiprosin-1 expression in diabetic renal cortex with or without telmisartan treatment. (D) Swiprosin-1 expression of MPC-5 incubated in normal glucose
(5.5 mmol) or high-glucose (HG, 50 mmol/L) environment with or without telmisartan (10 μM) for 96 h. Representative blots of three independent experiments are
shown. Data are shown as mean ± SD of n = 3 (*p < 0.05, **p < 0.01 vs. NG or Con group;＃p < 0.05 vs. HG or DM group). PC, mouse podocyte cell lines; NG, normal
glucose; HG, high glucose; HG + Tel, high glucose mellitus with telmisartan treatment; Con, control; DM, diabetes mellitus; DM + Tel, diabetes mellitus with telmisartan
treatment.
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pathogenesis of DKD (Zeng et al., 2013). Our results in this study
were reflecting the time- and dose-dependent depressed effect of
telmisartan on mesangial cells proliferation related with pro-
apoptotic characteristic.

Clinical evidence recommends that telmisartan is more
efficient than losartan in ameliorating proteinuria in
hypertensive person with DKD, which may be related to its
ability to partially agonize PPARγ (Bichu et al., 2009).
Furthermore, these beneficial changes such as the prevention
of renal atrophy and fibrosis of telmisartan were connected with a
diminishing in the expression of TGFβ1 and other
proinflammatory and profibrotic cytokine genes via the
PPARγ/HGF activation (Kusunoki et al., 2012), independent
of Ang II type 1 receptor blockade. Here, we also found
telmisartan specifically activated PPARγ gene expression in
mesangial cells, and pro-apoptotic effect caused by telmisartan
to mesangial cells could be alleviated by PPARγ inhibitors.

PKCβ1 is one of the extensively expressed family of
serine–threonine kinases that transduce a wide range of
cellular progressions by substrate-specific phosphorylation
(Newton, 1995). It has been reported that not only increased
PKCβ activity but also its mRNA levels are observed in human
diabetic nephropathy biopsies (Langham et al., 2008).
Hyperglycemia-induced PKCβ expression and activation has
pleiotropic effects in mesangial cells, including the promoting
excessive accumulation of ECM proteins (Brownlee, 2001).
Studies have shown that inhibition of PKCβ attenuates
glomerular hypercellularity and extracellular matrix expansion
in db/dbmice and glomerular dysfunction in STZ-rats (Ishii et al.,
1996; Koya et al., 2000). Likewise, PKCβ inhibitor attenuated
platelet derived growth factor (PDGF)-driven mesangial cell
proliferation and collagen production (Tokuyama et al., 2011).
In our study, telmisartan reduced the upregulation of PKCβ1
mRNA and protein expression in hyperglycemia-stimulated

FIGURE 5 | Telmisartan induced apoptosis of mesangial cells with or without HG stimulation in vitro. (A) Flow cytometry analysis of human renal mesangial cells
apoptosis with HG or telmisartan treatment for 96 h. (B) Representative images of flow cytometry apoptosis analysis in HRMCs with telmisartan (10 μM) or GW9662
(10 μM) treatment for 96 h. (C)Cell viability of human renal mesangial cells with telmisartan (10 μM) or GW9662 (10 μM) treatment for 96 h. (D) The effect of telmisartan or
GW9662 on PPAR-γ mRNA expression in podocytes and mesangial cells were measured. Data are shown as mean ± SD of n = 3 (***p < 0.001 vs. NG or Con
group; ＃p < 0.05 vs. HG or Tel group). PC, mouse podocyte cell lines; MC, Human renal mesangial cells; NG, normal glucose; HG, high glucose; Con, control; Tel,
telmisartan; GW9662, PPAR-γ blocker; GW9662 + Tel, PPAR-γ blocker unite with telmisartan treatment.
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mesangial cells. In addition, TGFβ1 expression in mesangial cells
induced by high glucose could also be inhibited by telmisartan.

Both AT1 and AT2 receptors, well known as seven
transmembrane spanning G protein-coupled receptors, have
been cloned and pharmacologically illustrated (Touyz and
Berry, 2002). The AT1 receptors can be selectively
antagonized by telmisartan, while AT1 receptor blocker can
induce the expression of AT2 receptors (Touyz and Berry,
2002). Studies has shown that AT1 receptors exert their
influences by restraining cell growth, and by provoking
apoptosis (Horiuchi et al., 1997; Touyz et al., 1999).
Moreover, AT2 receptors induce cell apoptosis in a specific
conformation though p38 MAPK-mediated apoptotic
signaling (Miura and Karnik, 2000). In our present paper,
expression of AT1 and AT2 mRNA was unchanged in cultured
mesangial cells stimulated with telmisartan or hyperglycemia.
Therefore, telmisartan-induced mesangial cells apoptosis and
decreased expression of PKCβ1 might not mediated by AT1

and AT2 receptors.
In conclusion, telmisartan attenuated early glomerular

injury in type 1 diabetic rats by inhibiting podocyte
apoptosis and promoting mesangial apoptosis. The anti-

apoptotic effect of telmisartan in podocytes may be related
to its inhibition of swiprosin-1 expression, meanwhile the pro-
apoptotic effect on mesangial cells was partially associated
with its agonistic effect on PPARγ. Additionally, telmisartan
selectively blocked the expression of PKCβ1/TGFβ1 in
mesangial cells but not in podocytes. Advanced studies are
necessitated to elucidate the opposite but beneficial effects of
telmisartan on podocytes and mesangial cells and the
underlying molecular mechanisms.
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