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Abstract 
Background.  Diffuse midline gliomas (DMG) are aggressive pediatric brain tumors that are diagnosed and moni-
tored through MRI. We developed an automatic pipeline to segment subregions of DMG and select radiomic fea-
tures that predict patient overall survival (OS).
Methods.  We acquired diagnostic and post-radiation therapy (RT) multisequence MRI (T1, T1ce, T2, and T2 FLAIR) 
and manual segmentations from 2 centers: 53 from 1 center formed the internal cohort and 16 from the other center 
formed the external cohort. We pretrained a deep learning model on a public adult brain tumor data set (BraTS 
2021), and finetuned it to automatically segment tumor core (TC) and whole tumor (WT) volumes. PyRadiomics 
and sequential feature selection were used for feature extraction and selection based on the segmented volumes. 
Two machine learning models were trained on our internal cohort to predict patient 12-month survival from diag-
nosis. One model used only data obtained at diagnosis prior to any therapy (baseline study) and the other used 
data at both diagnosis and post-RT (post-RT study).
Results.  Overall survival prediction accuracy was 77% and 81% for the baseline study, and 85% and 78% for the 
post-RT study, for internal and external cohorts, respectively. Homogeneous WT intensity in baseline T2 FLAIR and 
larger post-RT TC/WT volume ratio indicate shorter OS.
Conclusions.  Machine learning analysis of MRI radiomics has potential to accurately and noninvasively predict 
which pediatric patients with DMG will survive less than 12 months from the time of diagnosis to provide patient 
stratification and guide therapy.

Key Points

•  Automatic machine learning approach predicts DMG survival at 77%–85% accuracy.

•  Homogeneous whole tumor intensity in baseline T2 FLAIR indicates worse prognosis.

•  Larger post-RT tumor core/whole tumor volume ratio indicates worse prognosis.

Diffuse midline gliomas (DMG), including diffuse intrinsic 
pontine gliomas (DIPG), are aggressive central nervous 
system pediatric tumors located in the brainstem, thalamus, 
and spinal cord.1 As one of the most devastating pediatric can-
cers, DMG represents about 10%–15% of all pediatric tumors 

of the central nervous system, with an estimated 300 new 
cases diagnosed annually in the USA.2 Most DMGs occur be-
tween the ages of 5 and 10 years, with a peak at 7 years.3 There 
is no curative therapy for DMG, and radiation therapy (RT) is 
the standard treatment with only transitory benefits.4 Despite 
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numerous clinical trials of new agents and novel thera-
peutic approaches over the last decades,5 disease out-
comes remain dismal with a median overall survival (OS) 
of less than 1 year, a 2-year OS rate of less than 10%,6 and a 
5-year OS rate of less than 1%.7

Magnetic resonance imaging (MRI) is the standard non-
invasive test for DMG diagnosis and monitoring of tumor 
response to therapy. Although pediatric DMGs have a di-
verse imaging appearance,8 MRI features have been used 
to predict H3K27M mutation status9 and correlate with pa-
tient prognosis.10–15 The features utilized in these studies 
were either low-dimensional image features10,11,13–15 or 
based on texture analysis.12 The statistical analyses that 
most of these studies relied on tend to identify inconsistent 
and inconclusive imaging biomarkers across different 
studies and data sets. For example, a study of 357 pediatric 
DIPGs demonstrated that although many MRI features, 
such as tumor size, enhancement, necrosis, etc., were 
strongly associated with survival on univariable analysis, 
very few were significantly associated with survival on 
multivariable analysis.11 These findings suggest that only 
relying on statistical analysis of conventional MRI findings 
may not be sufficient to predict OS in DMGs.

Machine learning has shown great potential to predict 
survival or discriminate between certain groups in studies 
of other brain tumors such as glioblastoma (GBM) and pe-
diatric low-grade gliomas.16–19 For DMG, machine learning-
based regression models were proposed to correlate 
with patient prognosis based on extracted MRI radiomic 
features.20,21 These studies only focused on imaging data 
at diagnosis, and the tumors were segmented manually, 
which is generally believed to be time-consuming and to 
have high interoperator variability. Other studies demon-
strated that semiautomated DMG volume measurements 
are more accurate, prognostically relevant, and consistent 
than manual measurements.14,15 In addition to diagnostic 
scans, it is also important to consider longitudinal data at 
posttreatment timepoints.10

With new therapeutic strategies currently under investi-
gation for DMG, including epigenetic therapy and immuno-
therapy,22 there is a great need for noninvasive prognostic 
imaging tools that can be universally used to accurately 
identify which patients are at risk for the most rapid dete-
rioration, and thereby assist clinical trial stratification and 
therapy planning. Such tools should be automatic, objec-
tive, and easy to use in multi-institutional clinical trials. 
With the vast advancements in deep learning techniques, 

there has been tremendous success in automatic seg-
mentation of brain tumors from MRI, including adult,23,24 
pediatric brain tumors,25,26 and our previous work of seg-
menting DMG.27,28 These advancements have the poten-
tial to enable us to create a fully automatic, image-based 
radiomic analysis, and DMG prognostic tool.

We hypothesize that MRI radiomic features of DMG 
could be important biomarkers for OS prediction. The pur-
pose of this work is to develop an automatic pipeline to 
segment subregions of DMG and select MRI features to 
predict if patient can survive 12 months from diagnosis. 
Many studies have reported median OS of DMG patients 
to be approximately 12 months,4,11 which is also the me-
dian OS of our internal cohort. As a first step of quantita-
tive prognostication, accurate prediction if the patient can 
survive longer or shorter than the median OS could have 
positive impact on the clinical management of DMG. The 
proposed method was trained and validated on an internal 
cohort from Children’s National Hospital (CNH) to investi-
gate the accuracy of OS prediction in (1) a baseline study 
using MRIs obtained at diagnosis prior to any therapy, and 
(2) a post-RT study using MRIs obtained at both diagnosis 
and post-RT (ie, within 3 months since the first RT). The 
method was further tested on an external DMG data set 
from Children’s Hospital of Philadelphia (CHOP) to assess 
the reproducibility of our findings.

Materials and Methods

Study Cohort

The design of this study was developed with consider-
ation of the CLEAR checklist,29 which was submitted as 
Supplementary Material. For this 2-center retrospec-
tive study, institutional review board (IRB) approval was 
obtained at CNH (IRB Protocols #1339 and #14310). The 
data set from CHOP was obtained through the Children’s 
Brain Tumor Network (CBTN),30 a research consortium 
involving multiple institutions, with patients participating 
under protocols approved by local IRBs. All patients had 
classic (“typical”) DIPG based on radiological imaging 
defined as T1-hypointense and T2-hyperintense diffusely 
infiltrative tumors that arise from the pons and involve 
at least 50% of the pons by cross-sectional area.31 Our in-
ternal cohort from CNH includes 53 pediatric (1 young 

Importance of the Study

Studies of pediatric diffuse midline gliomas (DMG) prog-
nostication have relied on manual tumor segmentation 
from MRI, which is impractical and variable in busy 
clinics. We present an automatic imaging tool based on 
machine learning to segment subregions of DMG and 
select radiomic features that predict overall survival. 
We trained and evaluated our tool on multisequence, 
2-center MRIs acquired at the time of diagnosis and 
post-radiation therapy. Our methods achieved 77%–85% 

accuracy for DMG survival prediction. The data-driven 
study identified that homogeneous whole tumor in-
tensity in baseline T2 FLAIR and larger posttherapy 
tumor core/whole tumor volume ratio indicate worse 
prognosis. Our tool can increase the utility of MRI for 
predicting clinical outcome and stratify patients into 
risk groups. This automated tool has potential to be in-
corporated in multi-institutional clinical trials to provide 
consistent and repeatable tumor evaluation.

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae108#supplementary-data
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adult) patients diagnosed with DMG between 2005 and 
2022 (F = 29, M = 24) at CNH. The median patient age at 
diagnosis is 6.5 years with a range of 3.2–25.9 years. The 
median OS is 12 months with a range of 3.3–132 months 
from diagnosis (1 patient is still alive). 23/53 patients un-
derwent biopsy to identify the molecular characteristics 
of the tumor (1 wild-type, 3 K27M-H3.1, 19 K27M-H3.3). 
Data of 45/53 patients in our internal cohort were used 
in our previous publications27,28 which focused on devel-
oping deep learning models for DMG segmentation. This 
study included a larger number of patients and focused on 
predicting patient survival.

The external cohort from CHOP includes 16 pediatric pa-
tients diagnosed with DMG between 2005 and 2022 (F = 9, 
M = 7), made available by CBTN. The median age at diagnosis 
is 9.4 years with a range of 3.8–18.2 years. The median OS is 
9.6 months with a range of 1.3–27.1 months from diagnosis. 
None of the patients underwent biopsy. The differences in 
median age and OS between the 2 cohorts can be used to an-
alyze whether the model trained on our internal cohort gen-
eralizes effectively to the external cohort. Sample size of the 
2 cohorts was determined based on availability of MRI data.

MRI Data

Both institutions used scanners and imaging protocols that 
varied among patients and timepoints because of retro-
spective data collection. For each patient, 4 MRI sequences 
at diagnosis and/or post-RT were collected including 
T1-weighted (T1), contrast-enhanced T1 (T1ce), T2-weighted 
(T2), and T2-weighted-Fluid-Attenuated Inversion Recovery 
(T2 FLAIR). The MRIs were acquired either on 1.5T or 3T 
magnet, with 2D or 3D acquisition protocols, using scanners 
from GE Healthcare, Siemens AG, or Toshiba. T1 and T1ce 
MRIs included T1 SE, T1 FSE, T1 MPRAGE, or T1 SPGR. T2 
MRI included T2 SE, T2 FSE, T2 FRFSE, or T2 propeller. T2 
FLAIR MRI included those with or without gadolinium (Gd) 
enhancement. The slice thickness range was 0.5–6 mm and 
matrix range was (256–512) × (256–512) pixels. All images 
were collected in the DICOM image format.

Manual segmentation of DMG volumes was used as the 
ground truth for training the deep learning segmentation 
model. All segmentations were conducted by trained labora-
tory personnel (E.R.B. and K.B.) using ITK-SNAP32 and were 
reviewed by a neuro-oncologist (M.B.). A representative 
subset of segmentations was jointly reviewed by a neuro-
radiologist (Gilbert Vezina) and neuro-oncologist (M.B.) to en-
sure adequacy of the segmentation technique and accuracy of 
the data. Because necrosis/cyst is not consistently identifiable 
for DMG, 2 labels were created: tumor core (TC) and whole 
tumor (WT). TC included 2 components: the Gd-enhancing 
tumor appearing as enhancement on T1ce, and the necrotic/
cystic core appearing as hypointense on T1ce. WT includes TC 
and the peritumoral edematous/infiltrated tissue appearing 
as abnormal hyperintense signal on T2 FLAIR.

Automatic DMG Segmentation

Despite the success of deep learning-based automatic 
segmentation for adult GBMs, the direct application of 
these methods on rare pediatric brain tumors remains 

challenging.33 While GBMs and DMGs are both high-
grade brain gliomas, they have distinctive characteristics. 
GBMs typically locate in frontal/temporal lobe, whereas 
DMGs typically locate in the pons. Necrosis is common 
in GBMs but is rare/unclear in DMGs. Our approach was 
to transfer knowledge learnt from GBM segmentation to 
DMG segmentation.

The Brain Tumor Segmentation (BraTS) challenge is an 
ongoing annual event that has been held since 2012. We 
obtained imaging data of 1251 GBM patients that was 
publicly available from BraTS.34 For each patient, 4 MRI 
sequences (T1, T1ce, T2, and T2 FLAIR) and manual seg-
mentations of TC and WT subregions of GBM were pro-
vided. The winning method of the BraTS 2020 challenge 
was based on nnU-Net,24 a popular and robust semantic 
deep-learning segmentation method. nnU-Net analyzes 
the training data and automatically configures a matching 
U-Net35-based segmentation pipeline.

Figure 1 shows the model architecture of our transfer 
learning-based approach using nnU-Net. It includes a 
pretraining phase of nnU-Net using the GBM data set. 
Because nnU-Net automatically determines the segmenta-
tion pipeline based on the specific data set, we changed 
this pretraining paradigm to first design the segmenta-
tion pipeline based on the DMG data set, and then used 
the planned pipeline to perform pretraining on the GBM 
data. The pretrained network weights were then used 
as initialization to finetune the model using the DMG 
data set. Preprocessing was performed in an automatic 
fashion and included N4 bias correction to correct for MRI 
inhomogeneities,36 rigid registration to the SRI-24 Atlas for 
spatial alignment,37 and skull stripping.38 The output of the 
segmentation model was the TC and WT volumes, which 
were used as input to the radiomic feature extraction step.

Experiments and Evaluation for Tumor 
Segmentation

Data from 45 CNH patients (with manual segmentation) 
were used for training and validation of the segmenta-
tion model. Because tumor regions varied considerably 
between images at diagnosis and post-RT of the same pa-
tient, the images at the 2 timepoints were considered as 
separate sets for the purpose of segmentation. This yielded 
a total of 82 sets from the 45 patients (not all patients 
had qualified images or manual segmentations for both 
timepoints). Specifically, 41/82 sets were acquired at di-
agnosis, 34/82 sets were acquired within 1-month post-RT, 
and the rest of 7 sets were acquired 2–4 months post-RT.

The 82 DMG sets were randomly divided into 5 folds, 
and 5-fold cross-validation was performed to obtain the 
TC and WT volumes. Images at 2 timepoints of the same 
patient were kept in the same fold. Dice coefficient and 
volume similarity were used as evaluation metrics to com-
pare the predicted and ground truth segmentations, where 
the volume similarity is calculated as the ratio between the 
smaller of the compared volumes and the average of the 
compared volumes.39

After 5-fold cross-validation, we trained a final model 
with all 82 sets and used it to predict TC and WT volumes 
for the remaining 8 internal patients (these cases did not 
have manual segmentations) and 16 external patients 
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(14 cases has manual segmentations). For evaluation of 
automatic segmentation, 5-fold cross-validation of the 
82 internal cases and test on the 14 external cases were 
reported.

Many DMG cases do not have or have very small TC vol-
umes. Thus, comparison between predicted and ground 
truth in small or absent TC volumes produces extreme met-
rics (eg, Dice score of 0 or 1). To void bias to small volumes, 
we cleaned predicted volumes by removing small (ie, 
<130 mm3) disconnected regions. Moreover, we let TC/WT 
denote the ratio between TC volume and WT volume. We 
did not evaluate TC segmentation performance if 0 < TC/
WT < 4% for both predicted and ground truth segmenta-
tions. If TC/WT = 0 for both, the metrics were set to be 1. 
As a result, evaluation of TC segmentation for 7/82 internal 
cases and 3/14 external cases was omitted. The thresholds 
of 130 voxels and 4% were determined by a previous study 
on the pediatric brain tumor data.40,41

Radiomic Feature Extraction

Based on automatically segmented DMG volumes, we 
used the open-source PyRadiomics software42 with default 
configuration to extract radiomic features from the orig-
inal images. These features included 13 volumetric and 
shape features and 91 gray level features. Please refer to 
Supplemental Appendix S1 for a complete list of features. 
The gray level features included: 18 first-order features, 22 
gray level co-occurrence matrix (GLCM) features, 16 gray 
level size zone matrix (GLSZM) features, 16 gray level run 
length matrix (GLRLM) features, 5 neighboring gray tone 
difference matrix (NGTDM) features, and 14 gray level de-
pendence matrix (GLDM) features. In addition, we added 2 
demographic features (ie, sex and age), and 2 volumetric 

features of interest (ie, brain volume and relative tumor 
volume [DMG volume divided by brain volume]). Because 
gray level features are susceptible to inter-scanner varia-
tion due to different acquisition protocol,43 image gray 
levels were normalized by removing the mean and scaling 
to unit variance before the features were calculated.

The baseline study employed 401 features, including sex, 
age, 35 volumetric and shape features, and 4 sets of 91 gray 
level features (1 set for each MRI sequence). The volumetric 
and shape features include brain volume, 14 WT features 
(ie, 13 from PyRadiomics and relative DMG volume), 10 TC 
features, and 10 features for the ratio between TC and WT 
(TC/WT). Because many DMG cases do not have TC volume, 
4 features (ie, elongation, flatness, surface area to volume 
ratio, and sphericity) having measurements of TC in the de-
nominator of their calculation were excluded. The gray level 
features were calculated based on WT segmentations.

The post-RT study employed 1576 features, including 
sex, age, 118 volumetric and shape features, and 1456 gray 
level features. The volumetric and shape features include 
brain volumes at diagnosis and post-RT, 28 WT features 
(14 at diagnosis and 14 post-RT), changes of 14 WT fea-
tures (post-RT values minus values at diagnosis), relative 
changes of 14 WT features (changes divided by values at 
diagnosis), 20 TC features (10 at diagnosis and 10 post-RT), 
changes of 10 TC features, 20 TC/WT features (10 at diag-
nosis and 10 post-RT), and changes of 10 TC/WT features. 
We did not include relative changes of TC and TC/WT fea-
tures because measurements related to TC at diagnosis 
could be null, which would make the definition of relative 
change invalid. The gray level features included 4 sets of 91 
gray level features at diagnosis, 4 sets of 91 gray level fea-
tures post-RT, changes of 4 sets of 91 gray level features, 
and relative changes of 4 sets of 91 gray level features.

Adult Data
BraTS 2021: 1,251 GBM cases
4x 3D MRIs (T1, T1ce, T2, T2 Flair)

Pediatric Data
82 DMG cases

4x 3D MRIs (T1, T1ce, T2, T2 Flair)

Preprocessing

Multi-region Segmentation

DMG specific
segmentation
pipeline

Fine-tuning

Pre-training

nnU-Net

nnU-Net

Tr
an

sf
er

W
ei
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ts

Figure 1. Model architecture of our DMG segmentation method, which employs nnUnet-based pre-training and fine-tuning. The input to pre-
training is the adult brain tumor data set from the BraTS 2021 challenge. The input to fine-tuning is the preprocessed DMG data set. Based on the 
DMG data set, a specific segmentation pipeline is determined and used for pre-training. After pre-training, the obtained weights are used as input 
for fine-tuning. The output of the model is multi-region segmentation masks.

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae108#supplementary-data
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Feature Selection

Feature selection was performed on the training data prior 
to prediction to avoid overfitting. In the first step, feature 
filtering was performed using the Mann–Whitney U test 
comparing feature values between short OS (<1 year) and 
long OS (≥1 year). Sixty-nine features with P < .05 were 
selected for the post-RT study. For the baseline study, be-
cause there was only 1 feature with P < .05, we selected 
10% of all features (40 features) with the smallest P values. 
Sequential feature selection was then performed on the 
filtered features to select the optimal number of discrim-
inative features for each study. Starting from none, the 
algorithm added 1 feature at an iteration to form a fea-
ture subset until the desired number of features (which 
we capped at 10% of the number of patients to avoid 
overfitting the model to the training data) was reached. At 
each iteration, the algorithm went through each feature not 
currently in the feature subset and chose the feature to add 
such that the new feature subset achieved the best accu-
racy in the leave-one-out cross-validation. Specifically, we 
trained a linear support vector machine (SVM) to classify 
between short OS and long OS using all subjects in our 
internal cohort except for 1, which was used for testing. 
This process was repeated iteratively until all patients were 
tested. Because of our small data sets, we used leave-one-
out cross-validation to maximize the number of training 
examples, and employed the linear kernel for SVM, which 
is less prone to overfitting than nonlinear kernels.

Experiments and Evaluation for OS Prediction

Images at diagnosis of 52/53 CNH patients were used for 
training and validation in the baseline study. There were 
26/52 patients with short OS, that is, survival shorter than 
12 months from diagnosis. One patient did not have im-
ages of all 4 MRI sequences at diagnosis, but the post-RT 
images were used for training the segmentation model. 
Images at diagnosis and within 3 months post-RT of 41/52 
patients were available and used for training and valida-
tion in the post-RT study. There were 22/41 patients with 
short OS.

After feature selection, the final SVM model was trained 
with all internal patients with the selected features. 
Validation of the final model on the internal data set was 
reported. The final model was used to predict OS based on 
the same selected features on the external data set. For the 
baseline study, 16 external patients (9 had short OS) were 
tested. 9/16 external patients who had post-RT imaging 
(< 3 months) were tested in the post-RT study. 4/9 patients 
had short OS.

Results

Segmentation Results

Table 1 shows performance of the automatic DMG segmen-
tation method evaluated on the internal and external data 
sets. The external evaluation shows performance on out-of-
distribution data to reflect generalizability based on scan-
ning and protocol variability and tumor heterogeneity.44 
Metrics of WT segmentation for the external cohort (0.86 
mean Dice score and 0.91 mean volume similarity) were 
similar to those obtained for the internal cohort (0.88 mean 
Dice score [Mann–Whitney U test P = .10] and 0.93 mean 
volume similarity [P = .13]). This suggests our method can 
be successfully generalized for segmenting WT volume of 
images from different sources. Similarly, metrics of TC seg-
mentation for the external cohort (0.74 mean Dice score and 
0.81 mean volume similarity) were similar, although inferior 
to those obtained for the internal cohort (0.91 mean Dice 
score [P = .10] and 0.94 mean volume similarity [P = .58]).

Figure 2 shows qualitative segmentation results on the 
diagnosis and post-RT images of a DMG patient of the in-
ternal cohort. The Dice scores for this case were 0.92 (diag-
nostic TC), 0.92 (diagnostic WT), 0.97 (post-RT TC), and 0.93 
(post-RT WT), which were approximately the median Dice 
scores for our internal cohort (0.94 for TC and 0.91 for WT 
in Table 1).

OS Prediction Results

Table 2 shows results of the proposed OS prediction 
method. Our classification results were reported in 2 ways: 
emphasizing accuracy, a balanced measure combining 
sensitivity and specificity, and the other emphasizing sen-
sitivity, potentially more clinically useful for identifying 
patients with short OS. For accuracy-focused results (first 
row), the specificity range of 71%–73% is reasonable. For 
sensitivity-focused results (second and third rows), we 
achieved a superb sensitivity of 92%–100%. However, 
when prioritizing sensitivity, specificity tends to be lower, 
illustrating the typical tradeoff between these metrics. Our 
model demonstrated better performance on sensitivity 
than specificity, possibly due to the relatively small size of 
our training data set. Our results also suggest that adding 
post-RT data may improve prediction accuracy and sen-
sitivity over the baseline. Despite the small data cohort, 
the evaluation metrics on our external cohort were gener-
ally comparable to those obtained on the internal cohort, 
indicating overall generalizability of our machine learning 
predictive model.

Table 1. Mean (median) and Standard Deviation of Dice Coefficient and Volume Similarity Calculated by Comparing Predicted Tumor Core (TC) 
and Whole Tumor (WT) Volumes and Those Segmented Manually. Results Shown Include Validation on the Internal Cohort (From Children’s National 
Hospital) and Testing on the External Cohort (From Children’s Hospital of Philadelphia)

Evaluation data set TC Dice WT Dice TC vol. similarity WT vol. similarity

Internal cohort 0.91 (0.94) ± 0.12 0.88 (0.91) ± 0.07 0.94 (0.99) ± 0.10 0.93 (0.96) ± 0.07

External cohort 0.74 (0.83) ± 0.32 0.86 (0.89) ± 0.06 0.81 (0.99) ± 0.34 0.91 (0.93) ± 0.07
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The number of selected features for the baseline and 
post-RT studies was 5 and 4, respectively. We list below the 
selected features for each study, along with their interpre-
tation for prediction and the P values of Mann–Whitney U 
test between short and long OS computed on our internal 
cohort. The features are listed in the order of their relevance 
to OS prediction.

The 5 selected features for the baseline study were:

GLCM Information measure of correlation (Imc1) on T2 
FLAIR (P = .118): quantifies the complexity of the texture. 
It ranges from −1 to 0 and the higher the value the more 
complex in texture.

GLSZM High gray level zone emphasis on T1 (P = .231): 
measures the distribution of the higher gray level values.

The median gray level value on T2 FLAIR (P = .173)
Skewness on T2 (P = .061): measures the asymmetry of  

the distribution of gray level values about the mean 
value.

The 10th percentile of gray level value on T2 FLAIR (P = .217)

The significant feature for the baseline study was the 
GLCM Cluster Shade on T2, which is a measure of skew-
ness and uniformity (P = .009). However, our feature selec-
tion algorithm did not select this feature. This verifies our 
method selects features that perform best in combination 

T1

Diagnosis

T1 T1ce

Post-RT

T1ce

T2 T2 T2 FLAIRT2 FLAIR

GT GT PredPred

Figure 2. Qualitative segmentation results on the diagnosis and post-RT images of a DMG patient from the internal cohort. The figure shows 
4 MRI sequences after preprocessing, the ground truth (GT) segmentation, and the predicted (Pred) segmentation of 2 regions: the tumor core, 
which is enclosed by the whole tumor.

Table 2. Results of the Proposed OS Prediction Method. Short OS of Less Than 1 Year is Considered Positive. We Present Results at the Operating 
Points of Maximum Accuracy and Maximum Sensitivity

Study Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Internal cohort (52 subjects) External cohort (16 subjects)

Baseline max accuracy 77% 81% 73% 81% 89% 71%

Baseline max sensitivity 62% 92% 31% 75% 100% 43%

Internal cohort (41 subjects) External cohort (9 subjects)

Post-RT max accuracya 85% 100% 68% 78% 100% 60%

aAlso max sensitivity.
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in the machine learning approach, but not necessarily the 
features with the smallest P values.
The 4 selected features for the post-RT study were:

The ratio of maximum 2D diameter (coronal plane) between 
post-RT TC and post-RT WT (P = .017). The maximum 2D 
diameter is the largest pairwise Euclidean distance be-
tween tumor surface mesh vertices on a 2D plane.

The 10th percentile of gray level value on post-RT T1ce 
(P = .027).

The ratio of minor axis length between post-RT TC and 
post-RT WT (P.002). The minor axis length is the second-
largest axis length of principal component analysis per-
formed on the volume.

Root mean squared on post-RT T1ce (P=.006): is the square-
root of the mean of all the squared gray level values. This 
is a measure of the magnitude of gray level values.

The algorithm selected the 10th percentile of gray 
level value as an important feature for both studies, in 

combination with the other chosen features. Figure 3 
shows the comparison between short OS and long OS for 
the selected features of the 2 studies. A visual example of 
radiomics is shown in Figure 4.

Discussion

The analysis of brain tumors on MRI, and especially of 
rare pediatric tumors, has been challenged by small data 
cohorts acquired by different scanners and imaging proto-
cols, and by manual segmentations with interobserver 
variability. Machine learning models have the potential to 
extract complex imaging patterns, provide automation, 
and standardization for the analysis, and support the eval-
uation of clinical trials—and ultimately of patient therapy—
with repeatable and consistent data.

To our best knowledge, this study is the first to re-
port a fully automatic, machine learning-based model to 
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Figure 3. Comparison between short OS and long OS for the selected features of the baseline (A–E) and the post-RT (F–I) studies. Data of both 
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prognosticate DMG survival using MRI features. Our auto-
matic DMG segmentation method generated accurate TC 
and WT segmentations. The mean Dice scores of 0.91 for 
TC and 0.88 for WT obtained on the internal cohort were 
comparable to those reported for adult GBM segmentation 
using state-of-the-art deep learning models.45,46 The results 
on the external cohort were similar for WT, an indication 
of model generalizability and robustness when applied to 
independent data with different imaging and patient char-
acteristics. Although results were inferior for TC segmenta-
tion for the external cohort (mean Dice = 0.74), they were 

comparable to the 0.62–0.74 Dice scores reported in a re-
cent study of automatic segmentation of subregions of 
pediatric brain tumors.26 Our results are also comparable 
with results of the winning method (TC Dice = 0.78, WT 
Dice = 0.82)40 for the pediatric BraTS challenge 2023.41

A recent study based on manual tumor segmentation 
presented a machine learning-based regression model to 
correlate MRI radiomic features with DIPG prognosis.20 The 
study employed T1ce and T2 MRI acquired at diagnosis, 
and found that homogeneous tumor pixel intensity or tex-
ture, such as the GLCM features, conferred a shorter OS. 

A

B

Short OS WT on T2 FLAIR at diagnosis Short OS TC/WT on T1ce post-RT

Long OS WT on T2 FLAIR at diagnosis Long OS TC/WT on T1ce post-RT

Figure 4. MRI of 2 patients who survived 8 months (A, short OS) and 14 months (B, long OS) from our internal cohort. Manual segmentations 
were outlined (inner contour: tumor core [TC], outer contour: whole tumor [WT]). Diagnostic T2 FLAIR suggests in WT intensity distribution is more 
homogeneous and intensity values are relatively lower (in contrast to nearby tissues) for short OS compared with long OS. Post-RT T1ce suggests 
the TC/WT ratio of short OS is larger than that of long OS. These observations were consistent with our findings in the selected features (Figure 3).
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A similar pattern was found in our baseline study, where 
tumors in the short OS group tend to have more homo-
geneous gray level distribution (ie, smaller value of GLCM 
Imc1) as shown in Figures 3A and 4.

Although diagnostic features were considered in the 
post-RT study, all the selected features in the post-RT study 
were related to post-RT measurements. Tumor volumetric 
and shape features, which are independent of scanner varia-
tion, were selected for the post-RT study, whereas no shape 
feature was selected for the baseline study. These results 
suggest post-RT features are more discriminative and po-
tentially more robust compared with diagnostic features. 
The 2 selected shape features in the post-RT study indicate 
that larger post-RT TC/WT ratio predicts OS shorter than 12 
months (Figure 3F and H). For both baseline and post-RT 
studies, our method predicted short OS with high sensitivity 
and specificity for both internal and external cohorts.

Our study is not without limitations. Both of our internal 
and external cohorts are small data sets, which is a chal-
lenge for studies of rare diseases. The findings of this study 
should be further verified with a larger DMG data set. Given 
the data size, we used machine learning predictors based on 
SVM, which perform better on small cohorts and offer fea-
ture interpretability. Better DMG segmentation and OS pre-
diction models can be achieved by training on a larger data 
set, and the fully automatic nature of the proposed method 
is well suited for such large multi-institutional collaboration. 
Another potential limitation is the fact that radiomics are 
susceptible to bias and variation due to inter-scanner fac-
tors such as different acquisition protocols. We addressed 
this limitation by normalizing the distribution of gray level 
values. Additional feature harmonization methods besides 
what was performed in our study could be used to remove 
scanner effects in brain MRI radiomic features.43,47 One 
other limitation of our study is that we only classified if the 
patient could live longer or shorter than 12 months. Adding 
more clinically relevant timepoints, or directly predicting the 
patient’s lifespan in terms of months, could be natural ex-
tensions of this study. Another restriction of our work is that 
18/52 cases we used for classification had Gd-enhanced T2 
FLAIR, evenly split between 9 with short OS and 9 with long 
OS. This balanced distribution suggests that the inclusion of 
Gd-enhanced T2 FLAIR had a limited effect on our results. 
Additionally, all cases in the external cohort had T2 FLAIR 
without enhancement. The comparable results across both 
cohorts further support the minimal impact of Gd enhance-
ment on the study outcomes.

In conclusion, we presented a fully automatic machine 
learning-based approach to compute radiomic biomarkers 
of DMGs from multisequence MRI. The approach can ac-
curately and noninvasively predict OS for DMG patients 
and can be extended to other rare pediatric brain tumors. 
Our approach offers several advantages over the current 
standards of evaluation of pediatric brain tumors on MRI. 
Quantitative image analysis, including volumetrics of tumor 
components, can support the evaluation of tumor progres-
sion and response to treatment. Early prognostication of OS 
can guide patient risk stratification and clinical decisions. 
Specifically, the results of this study would allow for a tissue-
agnostic stratification of patients where upfront treatment 
could be modified based on radiomic features to ensure 
maximum intervention for patients with a predicted survival 

less than 12 months compared to patients who may have a 
longer survival. Future studies incorporating radiomic fea-
tures and genomic findings will allow for a more precise 
radiogenomic stratification, with the hope to decrease the 
need for biopsies of the tumor in the future. With automated 
and standardized analysis, the machine learning tool can 
also provide data-driven evidence to clinical trials.

Supplementary material

Supplementary material is available online at Neuro-
Oncology Advances (https://academic.oup.com/noa).
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