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Abstract

The bandgap of two-dimensional (2D) materials plays an important role in their applications

to various devices. For instance, the gapless nature of graphene limits the use of this mate-

rial to semiconductor device applications, whereas the indirect bandgap of molybdenum

disulfide is suitable for electrical and photo-device applications. Therefore, predicting the

bandgap rapidly and accurately for a given 2D material structure has great scientific signifi-

cance in the manufacturing of semiconductor devices. Compared to the extremely high

computation cost of conventional first-principles calculations, machine learning (ML) based

on statistics may be a promising alternative to predicting bandgaps. Although ML algorithms

have been used to predict the properties of materials, they have rarely been used to predict

the properties of 2D materials. In this study, we apply four ML algorithms to predict the band-

gaps of 2D materials based on the computational 2D materials database (C2DB). Gradient

boosted decision trees and random forests are more effective in predicting bandgaps of 2D

materials with an R2 >90% and root-mean-square error (RMSE) of ~0.24 eV and 0.27 eV,

respectively. By contrast, support vector regression and multi-layer perceptron show that R2

is >70% with RMSE of ~0.41 eV and 0.43 eV, respectively. Finally, when the bandgap calcu-

lated without spin-orbit coupling (SOC) is used as a feature, the RMSEs of the four ML mod-

els decrease greatly to 0.09 eV, 0.10 eV, 0.17 eV, and 0.12 eV, respectively. The R2 of all

the models is >94%. These results show that the properties of 2D materials can be rapidly

obtained by ML prediction with high precision.

Introduction

The bandgap is a significant electronic property of certain materials that has been utilized for

the fabrication of semiconductor devices. Moore’s law has dominated the chip manufacturing

industry for over 50 years. However, Moore’s law is nearing its end, as reported by Nature [1].

One of the promising methods to prolong this era is to replace silicon, the most common

material used to make chips, with other materials for next-generation electronics [2–4]. Owing

to their unique nanosheet structure, large surface area, and extraordinary physical and chemi-

cal properties, atomically thin two-dimensional (2D) materials have attracted considerable

attention since the successful isolation and characterization of graphene in 2004 [5].
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Two-dimensional materials have become the most promising substitutes for silicon. It is to be

noted that 2D materials with different structures have different electrical properties. For

instance, intrinsic graphene is gapless, which makes it impossible to switch off [6–8]. This

major shortcoming of graphene limits its range of potential device applications. Conversely,

molybdenum disulfide (MoS2), which originates from the transition metal dichalcogenide

(TMDC) family, is a semiconductor with an indirect bandgap of ~1.89 eV [9, 10]. In addition,

hexagonal boron nitride (h-BN) is an insulator with a wide gap of ~ 5.9 eV [11, 12]. Therefore,

considering the diverse properties of different 2D materials, the priority is to study the electri-

cal properties of 2D materials used in manufacturing semiconductor devices.

Based on this motivation, it is anticipated that many theoretical and experimental studies

have been conducted on their electronic properties [13–15]. Although the results of experi-

mental studies are more reliable, it is difficult to carry out experiments on these thin materials

owing to experimental constraints. Theoretical research is an effective alternative to experi-

mental research. Over the past decades, conventional first-principles calculations have been a

powerful tool for calculating the structures and properties of materials [16–18]. For example,

they have been used to study the structural and electronic properties of perfect, doped, and

defective 2D materials [19–21], the interaction between the substrate and 2D materials [22,

23], and the interaction between the contacts and 2D materials [24, 25]. Although the results

calculated by the first-principles theory are usually consistent with experimental results, this

method is computationally expensive and time consuming [26, 27].

Recent progress in machine learning (ML), a data-driven technique, has been effectively

used for material research [28–37]. For instance, ML has been used in guiding chemical syn-

thesis, assisting material characterization, and designing new materials [38]. In particular, ML

methods are considered suitable for predicting a series of material properties. Cherukara et al.

created the first atomic-level model using ML to accurately predict the thermal properties of

stanene [39]. Dieb et al. employed ML to determine the most stable structures of boron-doped

graphene [40]. Wan et al. developed a convolutional neural network (CNN) model to predict

the thermal conductivity of porous graphene [41]. Dong et al. developed deep learning algo-

rithms to predict the bandgaps of hybrids of graphene and h-BN with arbitrary supercell con-

figurations [42]. Baboukani et al. presented an ML method for predicting nanoscale friction in

2D materials [43]. Moreover, ML interatomic potentials have shown outstanding efficiency in

predicting novel materials [44, 45], lattice dynamics [46], estimating the thermal conductivity

[47, 48], and exploring the phononic properties of 2D materials [49].

In this study, we employ random forest (RF), support vector regression (SVR), gradient

boosted decision tree (GBDT), and multi-layer perceptron (MLP) models to predict the band-

gaps of 2D materials based on the open C2DB database. First, eight elemental features were

selected to train our ML models. The GBDT and RF models were found to be superior to the

SVR and MLP with a prediction accuracy >90% and prediction RMSE of 0.24 eV, and 0.27

eV, respectively. In addition, when the bandgap without SOC is added into the elemental fea-

ture space, the prediction RMSE of GBDT, RF, SVR, and MLP decreases to 0.09 eV, 0.10 eV,

0.17 eV, and 0.12 eV, respectively. Furthermore, the prediction accuracy R2 of the four ML

models is 98%, 98%, 95%, and 97%, respectively.

Materials and methods

Machine learning

Machine learning in this study was performed in Python 3.6 code with Scikit-learn frame-

works for SVR, MLP, RF, and GBDT. All hyperparameters were optimized, and model perfor-

mance was evaluated by grid search based on the averaged RMSE of the validation set.
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In existing studies, most data used for the prediction of 2D materials were calculated based

on the first-principles theory. Consequently, the accuracy of the prediction is easily challenged

by the root cause. The data used here are from the C2DB, which is a common 2D material

database [50]. The database contains approximately 4000 different 2D monolayer crystal struc-

tures. The dataset was split into training and test datasets. The training and validation datasets

were 2817 and 313, respectively. For the SVR method, the prediction value for the bandgap is

f̂ SVRðxÞ ¼
XN

i¼1

ðâ � a�ÞKðxi; xÞ þ b ð1Þ

where K is the kernel function used to measure the difference between the training data xi and

prediction data x.

The kernel function is the radial basis function (RBF) denoted by

Kðxi; xÞ ¼ expð�
kxi � xk

2

2s2
Þ

with the width σ> 0.

The b can be obtained by solving the following Lagrange function

Tðo; b; zi; z
�

i Þ ¼
1

2
kok

2
þ C

XN

i¼1

ðzi þ zi
�Þ ð2Þ

s:t: yi � f̂ SVRðxiÞ � εþ zi

f̂ SVRðxiÞ � yi � εþ z
�

i

zi; z
�

i � 0; i ¼ 1; � � � ;N

where C is the regularization parameter.

For the MLP model, the prediction value for the bandgap is

f̂ MLPðxÞ ¼
XN

i¼1

Wji
o�ðW

ji
l xi þ blÞ þ bo ð3Þ

where φ(z) = z is the activation function, Wl
ji and Wo

ji represents the weight of the jth neuron

in the lth and output layers connected to the ith neuron in the (l-1)th and (o-1)th layers, respec-

tively; b1,b0 are the biases of the hidden and output layers, respectively.

The weights W= (W1, W2,� � �Wm)T are repeatedly updated to minimize the loss function

LðW1 � � �WmÞ ¼
1

2
kf̂ MLPðxiÞ � yik

2

2
þ
a

2
kWk2

2
ð4Þ

where a> 0 is a non-negative tuning parameter that controls the magnitude of the penalty
a

2
kWk2

2
.

The weight is updated by

Wiþ1 ¼Wi � Z
@Li

@W
ð5Þ

where η is the learning rate.

For the GBDT and RF models, the algorithmic details are provided in Figs 1 and 2.
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Fig 1. Gradient boosting decision tree algorithm.

https://doi.org/10.1371/journal.pone.0255637.g001

Fig 2. Random forest algorithm.

https://doi.org/10.1371/journal.pone.0255637.g002
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Criteria of evaluation

We used the mean absolute error (MAE), RMSE, and explained variance (R2) to evaluate the

prediction accuracy of each model on the test set.

MAE ¼
1

k

Xk

i¼1

jyitb � ŷ
i
pbj ð6Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

k

Xk

i¼1

ðyitb � ŷipbÞ
2

v
u
u
t ð7Þ

R2 ¼ 1 �

Xk

i¼1

ðyitb � ŷipbÞ
2

Xk

i¼1

ðyitb � �yitbÞ
2

ð8Þ

In formulas (6)–(8),yitb is the true bandgap value randomly selected from the test set, �yitb is

the average value of yitb,ŷ
i
pb is the predicted value of the corresponding regression model, and

i = 1,2,. . .,k, where k = 313.

Spearman method

The spearman correlation coefficient is calculated by [51]

r ¼

XN

i¼1
ðxi � �xÞðyi � �yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
ðxi � �xÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
ðyi � �yÞ2

q ð9Þ

where Xi is the value of the ith feature x in the training set, �x is the average value of all the fea-

tures, yi is the value of the ith feature y, �y is its average value, and i = 1, 2, . . ., N, where N is the

total number of samples in the training set.

Results and discussions

Feature selection is a key step in ML algorithms. A good sample dataset can improve the per-

formance of ML algorithms. The most common elemental information, including Dosef,

Hform, Natoms, Mass, Cellarea, Energy, Smax, Fmax, and Volume, was first chosen for feature

correlation analysis. The elemental features selected are listed in Table 1. The Pearson linear

Table 1. Definitions of the features selected [50].

Feature Name Definitions

Dosef density of states at the Fermi energy

Hform heat of formation

Natoms number of atoms

Mass sum of atomic masses in unit cell

Energy total energy

Fmax maximum force

Smax maximum stress on unit cell

Volume volume of unit cell

Gap_nosoc gap w/o soc

https://doi.org/10.1371/journal.pone.0255637.t001
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correlation coefficient map can analyze and identify features with high correlation, and elimi-

nate the multiple collinearities between features, which leads to the distortion or inaccuracy of

model estimation; this is particularly evident in linear models, such as SVR. Therefore, among

many features with a strong correlation (correlation value greater than 0.8), only one effective

feature is reserved. However, the Pearson correlation coefficient is not stable and is affected by

the outlier values. Thus, scatter plots are also used. Scatter plots of features not only show out-

lier values but also show a high feature correlation. The scatter plots of the feature correlation

and Pearson linear correlation coefficient map are provided in S1 and S2 Figs.

Four types of ML models: SVR, MLP, RF, and GBDT are used. The performance compari-

son of the four ML models with the 8-dimensional feature space (without Gap_nosoc) is

shown in Fig 3. The prediction accuracy is characterized by the absolute error of the predicted

bandgaps (EML) to the C2DB bandgaps (EC2DB), which is calculated as |EML−EC2DB|. As shown

in Fig 3(a), RF and GBDT can predict the bandgaps within 10% absolute error for approxi-

mately 80% of the cases, whereas MLP shows approximately 50% of the cases. By contrast, the

prediction results from SVR deviate much more from the C2DB benchmarks, showing >20%

error for approximately 40% of the cases. Fig 3(b) and 3(c) show the fitness between the pre-

dicted bandgaps and true bandgaps on the training and test sets, respectively. The RF and

GBDT exhibit a strong direct linear correlation between the predicted ML values and the

C2DB values, whereas the SVM and MLP show weaker correlations. The predicted bandgaps

of the four models for new materials with bandgap values between 4 and 6 showed relatively

Fig 3. Prediction performance of four ML algorithms (GBDT, RF, SVR and MLP) without the feature Gap_nosoc. (a) Error levels of ML predicted

bandgaps (b) Fitness between predicted bandgaps and true bandgaps on the training sets (c) Fitness between predicted bandgaps and true bandgaps on

the test sets.

https://doi.org/10.1371/journal.pone.0255637.g003
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deviations, especially for SVR and MLP. This is because the amount of data with bandgap val-

ues between 4 and 6 in the training set is small. Consequently), the model cannot obtain a bet-

ter prediction ability for new materials with bandgap values between 4 and 6 in the learning

process.

When the bandgap calculated without SOC was used as a feature, the performance of all

four ML models was greatly enhanced, as shown in Fig 4. Fig 4(a) shows that the GBDT, RF,

and MLP can predict the bandgap within 10% absolute error for>80% of the cases, and SVR

shows >75% of the cases. The four ML models exhibit a very strong direct linear correlation

between the predicted ML values and the C2DB values for both the training and test sets, as

shown in Fig 4(b) and 4(c). The predicted bandgap values between 4 and 6 improved signifi-

cantly. Only SVR showed relatively slight deviations.

Other indicators of the MAE, RMSE, and R2 were used to evaluate the regression perfor-

mance of the ML models. Normally, the MAE and RMSE are much smaller and closer to 0,

and R2 is greater and closer to 1, indicating better performance and higher prediction accuracy

of the model. The MAE, RMSE, and R2 of the four ML models based on an 8-dimensional fea-

ture space are provided in Table 2. The GBDT shows the lowest RMSE of ~0.24 eV for the pre-

dicted bandgaps. The RMSE values slightly increase to 0.27 eV for the RF. By contrast, the

prediction accuracy of the SVR and MLP algorithms is lower, showing higher RMSEs of 0.41

eV and 0.47 eV, respectively. R2 is an indicator of the correlation between the prediction and

real values and is considered one of the most important metrics for evaluating the accuracy of

the prediction models. Table 2 illustrates the bandgaps predicted by the GBDT and RF with

Fig 4. Prediction performance of four ML algorithms (GBDT, RF, SVR and MLP) with the feature Gap_nosoc. (a) Error levels of ML predicted

bandgaps (b) Fitness between predicted bandgaps and true bandgaps on the training sets (c) Fitness between predicted bandgaps and true bandgaps on

the test sets.

https://doi.org/10.1371/journal.pone.0255637.g004
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~92% and 90% relevance to the values from the C2DB database. Both SVR and MLP had

>70% relevance. Both RF and GBDT are known to be more effective in predicting the band-

gaps of 2D materials than other models. Among them, GBDT yields the best prediction results.

This is because of the fusion of the decision tree and the gradient descent algorithm. Thus, the

model has the advantages of high prediction accuracy, ability to deal with nonlinear data, flexi-

bility to deal with various data types, stronger fitting ability, and better generalization ability

for unknown new datasets. Table 3 shows the MAE, RMSE, and R2 of the four ML models

based on a 9-dimensional feature space. The prediction precision was greatly improved when

the bandgap calculated without SOC was added to the feature space. The bandgaps predicted

by the four models had>94% relevance to the values from the C2DB database. The RMSE val-

ues of all the models fall drastically to 0.17 eV, 0.09 eV, 0.10 eV, and 0.12 eV, respectively. In

summary, these results show that the RF and GBDT are superior to the SVR and MLP without

highly relevant features in predicting the bandgaps of 2D materials. Provided that highly rele-

vant features are chosen, ML models are less important and show high prediction accuracy.

The correlation index between the features used for model training and the target was cal-

culated by the Spearman method, which was used to judge the importance of features to the

target. In addition, the RF and GBDT models have their feature importance scoring functions.

Feature importance is shown in Fig 5. For the 8-dimensional feature space, as shown in Fig

5(a), the Spearman correlation coefficient indicates that the features of “Dosef,” “Hform,”

“Volume,” “Smax,” and “Energy” have relatively high scores. For the RF and GBDT, the fea-

tures of “Dosef,” “Hform,” and “Energy” have relatively high scores. For the 9-dimensional fea-

ture space, as shown in Fig 5(b), both “Dosef” and “Gap_nosoc” have the highest scores based

on the Spearman correlation coefficient. For the RF and GBDT, the features of “Dosef,”

“Hform,” and “Gap_nosoc” have relatively high scores. These results reveal that the features of

“Dosef,” “Hform,” and “Gap_nosoc” have a high influence on the performance of the training

model.

Conclusion

Recently, researchers have performed ML to investigate the properties of 2D materials. Com-

mon databases of 2D materials are few and less developed. Therefore, most published studies

used their calculated data to train ML models. The prediction accuracy of these data can be

Table 2. Statistics of predicted bandgaps by SVR, GBDT, RF and MLP algorithms based on an 8-dimensional feature space.

Models Parameters MAE RMSE R2

SVR C = 50, epsilon = 0.2 gamma = 50,kernel = rbf 0.10 0.41 0.75

GBDT n_estimators = 21000, max_depth = 21, min_samples_split = 5, max_features = 0.8, learning_rate = 0.001 0.12 0.24 0.92

RF n_estimators = 15000, max_depth = 20, min_samples_split = 5,max_features = 0.8, min_samples_leaf = 3 0.10 0.27 0.90

MLP solver = adam, hidden_layer_sizes = (262,140,139,180), activation = tanh,alpha = 1e-8, tol = 1e-6, max_iter = 5000,

learning_rate_init = 0.01

0.24 0.43 0.73

https://doi.org/10.1371/journal.pone.0255637.t002

Table 3. Statistics of predicted bandgaps by SVR, GBDT, RF and MLP algorithms based on a 9-dimensional feature space.

Models Parameters MAE RMSE R2

SVR C = 50, epsilon = 0.2 gamma = 50,kernel = rbf 0.11 0.17 0.95

GBDT n_estimators = 21000, max_depth = 21, min_samples_split = 5, max_features = 0.8, learning_rate = 0.001 0.03 0.09 0.98

RF n_estimators = 15000, max_depth = 20, min_samples_split = 5,max_features = 0.8, min_samples_leaf = 3 0.03 0.10 0.98

MLP solver = adam, hidden_layer_sizes = (262,140,139,180), activation = tanh,alpha = 1e-8, tol = 1e-6, max_iter = 5000,

learning_rate_init = 0.01

0.06 0.12 0.97

https://doi.org/10.1371/journal.pone.0255637.t003
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challenged by the root. Although all the data used here are available from the C2DB database,

feature selection is more important. It is easy to train the models to obtain high prediction

accuracy in other fields owing to the availability of a large amount of data; however, in the field

of materials, data are very few and limited. Determining the highly relevant features from the

limited datasets and training the models to obtain a high prediction accuracy is the key issue.

In this study, four ML models trained on a common 2D material database were utilized to suc-

cessfully predict the bandgap of 2D crystals. When Gap_nosoc is not added to the feature

space, the GBDT and RF models yield prediction accuracy>90%, whereas the SVR and MLP

models show lower prediction accuracy (70%). The RMSE of the GBDT is ~0.24 eV, whereas

that of the SVR and MLP is ~0.41 eV. After Gap_nosoc is added to the feature space, the pre-

diction accuracy of the four ML models is significantly improved. The RMSE of the four ML

models decreases significantly to 0.09 eV, 0.10 eV, 0.17 eV, and 0.12 eV, respectively. The R2 of

all the models is>94%. The results indicate that features highly relevant to the target have a

major influence on the performance of the training model. In contrast to three-dimensional

materials, the electrons in 2D materials are inherently constrained in the direction perpendicu-

lar to the material, which make 2D materials naturally have many unique properties. The band-

gap is an essential electronic property of the materials. The width of the bandgap determines

whether the material is a semiconductor or an insulator. Therefore, we first focused on predict-

ing the bandgaps of 2D materials. In the future, we will investigate the prediction of other prop-

erties of 2D materials, such as magnetic properties, electron mobility, and mechanical stability.
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S1 Fig. Scatter plot of the feature correlation.

(DOCX)

S2 Fig. Pearson linear correlation coefficient map.
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S1 Code. Code used to build the model.
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Fig 5. Feature importance evaluation. (a) 8-dimensional feature space (b) 9-dimensional feature space.
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