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Abstract

Motivation: The reconstruction of possible histories given a sample of genetic data in the presence of recombination
and recurrent mutation is a challenging problem, but can provide key insights into the evolution of a population. We
present KwARG, which implements a parsimony-based greedy heuristic algorithm for finding plausible genealogical
histories (ancestral recombination graphs) that are minimal or near-minimal in the number of posited recombination
and mutation events.

Results: Given an input dataset of aligned sequences, KwARG outputs a list of possible candidate solutions, each
comprising a list of mutation and recombination events that could have generated the dataset; the relative propor-
tion of recombinations and recurrent mutations in a solution can be controlled via specifying a set of ‘cost’ parame-
ters. We demonstrate that the algorithm performs well when compared against existing methods.

Availability and implementation: The software is available at https://github.com/a-ignatieva/kwarg.

Contact: anastasia.ignatieva@warwick.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

For many species, the evolution of genetic variation within a popula-
tion is driven by the processes of mutation and recombination in
addition to genetic drift. A typical mutation affects the genome at a
single position, and may or may not spread through subsequent gen-
erations by inheritance. Recombination, on the other hand, occurs
when a new haplotype is created as a mixture of genetic material
from two different sources, which can drive evolution at a much
faster rate. The detection of recombination is an important problem
that can provide crucial scientific insights, for instance in under-
standing the potential for rapid changes in pathogenic properties
within viral populations (Simon-Loriere and Holmes, 2011).

Consider a population evolving through the replication, muta-
tion and recombination of genetic material within individuals,
emerging from a common origin and living through multiple genera-
tions until the present day. In general, the history of shared ancestry,
mutation and recombination events are not observed, and must be
inferred from a sample of genetic data obtained from the present-
day population. Crossover recombination can occur anywhere along
a sequence, and the breakpoint position is also unobserved. This art-
icle focuses on methods for reconstructing possible histories of such
a sample, in the form of ancestral recombination graphs (ARGs)—

networks of evolution connecting the sampled individuals to shared
ancestors in the past through coalescence, mutation and crossover
recombination events; an example is illustrated in Figure 1. This is a
very important but challenging problem, as many possible histories
might have generated a given sample. Moreover, recombination can
be undetectable unless mutations appear on specific branches of the
genealogy (Hein et al., 2004, Section 5.11), and recombination
events can produce patterns in the data that are indistinguishable
from the effects of recurrent mutation (McVean et al., 2002); that is,
two or more mutation events in a genealogical history that affect the
same locus.

Parsimony is an approach focused on finding possible histories
which minimize the number of recombinations and recurrent mutations.
This does not necessarily describe the most biologically plausible version
of events, but produces a useful lower bound on the complexity of the
evolutionary pathway that might have generated the given dataset.
Beyond specifying the types of events that are allowed, parsimony does
not require assuming a particular generative model; the approach
focuses on sequences of events that can generate the observed dataset,
disregarding the timing and prior rate of these events.

Previous work on reconstructing histories using parsimony has
tackled recombination and recurrent mutation separately.
Algorithms for reconstructing minimal ARGs generally make the
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infinite sites assumption, which allows at most one mutation to have
occurred at each site of the genome, thus precluding recurrent muta-
tion events, and the goal is to calculate the minimum number of
crossover recombinations required to explain a dataset, denoted
Rmin. Even with this constraint, the problem is NP-hard (Wang
et al., 2001); exact algorithms are practical only for small datasets
(Hein, 1990; Lyngsø et al., 2005), and general methods rely on heur-
istic approximations (Hein, 1993; Minichiello and Durbin, 2006;
Parida et al., 2008; Song et al., 2005; Thao and Vinh, 2019).
Alternatively, one can assume the absence of recombination and
seek to calculate the minimum number of recurrent mutations
required, denoted Pmin. In this case, reconstruction of maximum
parsimony trees is also NP-hard (Foulds and Graham, 1982); like-
wise, methods can only handle small datasets or are based on heuris-
tics (Semple and Steel, 2003, Section 5.4).

Parsimony contrasts with the alternative approach of model-based in-
ference, which requires the user to select a generative model and relies on
the estimation of mutation and recombination rates as model parameters.
Model-based inference generally involves integrating over the space of
possible histories, which is usually intractable; methods rely on MCMC
(e.g. Rasmussen et al., 2014) or importance sampling (e.g. Jenkins and
Griffiths, 2011), but the problem remains computationally difficult. If the
presence of recombination is certain and reasonable models of population
dynamics are available, model-based approaches may be more suitable
and result in more powerful inference. However, model misspecification
can play an important role, for instance when modelling viral evolution
over a transmission network, where the relative importance of factors
such as geographical structure, social clustering and the impact of inter-
ventions may be difficult to ascertain. In this case, model-based inference
can provide misleading results if overinterpreted, with poor quantification
of uncertainty due to model misspecification. Parsimony-based methods
fail to offer the interpretability or uncertainty quantification of a model
but this does preclude their results being overinterpreted. They are simple
and straightforward to implement and can be useful in situations such as
enabling testing for the presence or absence of recombination when this is
not certain (Bruen et al., 2006).

There are a number of recently developed methods, namely
RENTþ (Mirzaei and Wu, 2017), tsinfer (Kelleher et al., 2019) and
Relate (Speidel et al., 2019), that seek to reconstruct local tree or
ARG topologies from the data. These methods do not make strict
model-based assumptions, incorporating heuristic algorithms, and
do not aim to reconstruct the most parsimonious histories. We note
also the existence of numerous other methods for inference of re-
combination (e.g. Boni et al., 2007; Kosakovsky Pond et al., 2006;
Li and Stephens, 2003; Martin and Rybicki, 2000) which do not ex-
plicitly reconstruct ARGs.

KwARG (‘quick ARG’) is a software tool, written in C, which
implements a greedy heuristic-based parsimony algorithm for recon-
structing histories that are minimal or near-minimal in the number
of posited recombination and mutation events. The algorithm starts
with the input dataset and generates plausible histories backwards
in time, adding coalescence, mutation, recombination and recurrent
mutation events to reduce the dataset until the common ancestor is
reached. By tuning a set of cost parameters for each event type,

KwARG can find solutions consisting only of recombinations (giv-
ing an upper bound on Rmin), only of recurrent mutations (giving an
upper bound on Pmin), or a combination of both event types.
KwARG handles both the ‘infinite sites’ and ‘maximum parsimony’
scenarios, as well as interpolating between these two cases by allow-
ing recombinations as well as recurrent mutations and sequencing
errors, which is not offered by existing methods. This is illustrated
in Figure 1: KwARG finds all three types of solution for the given
dataset. KwARG shows excellent performance when benchmarked
against exact methods on small datasets, and outperforms existing
parsimony-based heuristic methods on large, more complex datasets
while maintaining computational efficiency; KwARG also achieves
very good accuracy in reconstructing local tree topologies. The
source code and executables are made freely available on GitHub at
https://github.com/a-ignatieva/kwarg, along with documentation
and usage examples.

The article is structured as follows. Details of the algorithm
underlying KwARG are given in Section 2, with an explanation of
the required inputs and expected outputs. In Section 3, the perform-
ance of KwARG on simulated data is benchmarked against exact
methods and existing programs. An application of KwARG to a
widely studied Drosophila melanogaster dataset (Kreitman, 1983) is
described in Section 4. Discussion follows in Section 5.

2 Materials and Methods

Consider a sample of genetic data, where the allele at each site can
be denoted 0 or 1. We do not make the infinite sites assumption, so
that each site can undergo multiple mutation events. However, we
do assume that mutations correspond to transitions between exactly
two possible states, excluding for instance triallelic sites.

2.1 Input
KwARG accepts data in the form of a binary matrix, or a multiple
alignment in nucleotide or amino acid format. The sequence and site
labels can be provided if desired. It is possible to specify a root se-
quence, or leave this to be determined. The presence of missing data
are permitted; regardless of the type of input, the data are converted
to a binary matrix D, with entries ‘?’ denoting missing entries or ma-
terial that is not ancestral to the sample.

2.2 Methods
Under the infinite sites assumption, at most one mutation is allowed
to have occurred per site. If any two columns contain all four of the
configurations 00, 01, 10, 11, then the data could not have been
generated only through replication and mutation, and there must
have been at least one recombination event between the two corre-
sponding sites. This is the four gamete test (Hudson and Kaplan,
1985), and the two sites are said to be incompatible. When recurrent
mutations are allowed, the incompatibility could likewise have been
generated through multiple mutations affecting the same site
(McVean et al., 2002).

Fig. 1. Three examples of ARGs. The dataset is shown on the left in binary format, with 0’s and 1’s corresponding to the ancestral and mutant state at each site, respectively.

Mutation events are shown as black dots and labelled by the site they affect; green filled circle corresponds to a recurrent mutation. Recombination nodes (in blue) are labelled

with the recombination breakpoint; material to the right (left) of the breakpoint is inherited from the parent connected by the edge labelled S (P) for ‘suffix’ (‘prefix’)
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KwARG reconstructs the history of a sample backwards in time,
by starting with the data matrix D and performing row and column
operations corresponding to coalescence, mutation and recombin-
ation events, until only one ancestral sequence remains. By reversing
the order of the steps, a forward-in-time history is obtained, show-
ing how the population evolved from the ancestor to the present
sample. When a choice can be made between multiple possible
events, a neighbourhood of candidate ancestral states is constructed,
using the same general method as that employed in the program
Beagle (Lyngsø et al., 2005). A backwards-in-time approach has
also been implemented in the programs SHRUB (Song et al., 2005),
Margarita (Minichiello and Durbin, 2006) and GAMARG (Thao
and Vinh, 2019), all of which adopt the infinite sites assumption but
use different criteria for choosing amongst possible recombination
events.

2.2.1 Construction of a history

For convenience, assume that the all-zero sequence is specified as the
root, and 0 (1) entries of D correspond to ancestral (mutated) sites.
Suppose Dt is the data matrix obtained after t�1 iterations of the
algorithm. At the beginning of the tth step, KwARG first reduces Dt,
by repeatedly applying the ‘Clean’ algorithm (Song and Hein, 2003)
through:

• deleting uninformative columns (consisting of all 0’s);
• deleting columns containing only one 1 (corresponding to

‘undoing’ a mutation present in only one sequence);
• deleting a row if it agrees with another row (corresponding to a

coalescence event);
• deleting a column if it agrees with an adjacent column.

Two rows (columns) agree if they are equal at all positions where
both rows (columns) contain ancestral material, and the sites
(sequences) carrying ancestral material in one are a subset of the
sites (sequences) carrying ancestral material in the other.

A run of the ‘Clean’ algorithm repeatedly applies these steps to
Dt, terminating when no further reduction is possible. Suppose the
resulting data matrix is Dt. KwARG then constructs a neighbour-
hood N t of candidate next states, each one obtained through one of
the following operations:

• Pick a row and split it into two at a possible recombination

point. Only a subset of possible recombining sequences and

breakpoints needs to be considered; see Lyngsø et al. (2005,

Section 3.3) for a detailed explanation.
• Remove a recurrent mutation, by selecting a column and chang-

ing a 0 entry to 1, or a 1 entry to 0. This is the event type that is

disallowed by algorithms applying the infinite sites assumption.

Suppose a neighbourhood N t ¼ fN 1
t ; . . . ;NN

t g is formed, con-
sisting of all possible states that can be reached from Dt through
applying one of these operations. Then the reduced neighbourhood
N t ¼ fN

1

t ; . . . ;N N

t g is formed by applying ‘Clean’ to each state in
turn. Each state N i

t is then assigned a score SðN i

t;N
i
t;DtÞ, combin-

ing (i) the cost CðN i
t;DtÞ, defined below, of reaching the configur-

ation N i
t from Dt, (ii) a measure AMðN i

tÞ of the complexity of the
resulting data matrix N i

t and (iii) a lower bound LðN i

tÞ on the
remaining number of recombination and recurrent mutation events
still required to reach the ancestral sequence from N i

t. Finally, a
state is selected, say N j

t, based on its score, and we set Dtþ1 ¼ N
j

t.
The process of reducing the dataset followed by constructing a
neighbourhood and choosing the best move is repeated, until all
incompatibilities are resolved and the root sequence is reached.
Pseudocode for the ‘Clean’ algorithm and KwARG is given in
Supplementary Section S1.

The construction of a history for the dataset given in Figure 1 is
illustrated in Figure 2. The first step corresponds to the construction
of a neighbourhood, two of the states N 1

1;N
2
1 2 N 1 are pictured.

Then, the ‘Clean’ algorithm is applied to each state in the neighbour-
hood (illustrated as a series of steps following blue arrows). From
the resulting reduced neighbourhood fN 1

1;N
2

1; . . .g, the state N 2

1 is
selected; the other illustrated path is abandoned. This process is
repeated until all incompatibilities are resolved and the empty state
is reached. Following the path of selected moves in this figure left-
to-right corresponds to the events encountered when traversing the
leftmost ARG in Figure 1 from the bottom up. If instead the state
N 1

2 were selected at the second step of the algorithm, the resulting
path would correspond to the ARG in the centre of Figure 1.

2.2.2 Score

When considering which next step to take, more informed choices
can be made by considering not just the cost of the step, but also the
complexity of the configuration it leads to. This is the principle be-
hind the A* algorithm (Hart et al., 1968), using a heuristic estimate
of remaining distance to guide the choice of the next node to ex-
pand. KwARG applies the same principle in a greedy fashion, fol-
lowing a path of locally optimal choices in an attempt to find a
minimal history.

The score implemented in KwARG is

SðN i

t;N
i
t;DtÞ ¼

�
CðN i

t;DtÞ þ LðN i

tÞ
�
�maxAMðN tÞ þ AMðN i

tÞ;

(1)

where

LðN i

tÞ ¼
RminðN

i

tÞ ifmaxAMðN tÞ < 75;

HBðN i

tÞ if75 � maxAMðN tÞ < 200;

HKðN i

tÞ otherwise:

8>><
>>:

Here, CðN i
t;DtÞ denotes the cost of the corresponding event,

defined in Section 2.2.3; maxAMðN tÞ denotes the maximum
amount of ancestral material seen in any of the states in N t, and
AMðN i

tÞ gives the amount of ancestral material in state N i

t.
Incorporating a measure of the amount of ancestral material in a
state helps to break ties by assigning a smaller score to simpler
configurations.

The method of computing the lower bound L depends on the
complexity of the dataset, with a trade-off between accuracy and
computational cost. For relatively small datasets, it is feasible to
compute Rmin exactly using Beagle. HB refers to the haplotype
bound, employing the improvements afforded by first calculating
local bounds for incompatible intervals, and applying a composition
method to obtain a global bound (Myers and Griffiths, 2003). HK
refers to the Hudson–Kaplan bound (Hudson and Kaplan, 1985);
this is quick but less accurate, so is reserved for larger, more com-
plex configurations. Note that these bounds are computed under the
infinite sites assumption.

The particular form and components of the score were chosen
through simulation testing; we found that the given formula pro-
vides a good level of informativeness regarding the quality of a pos-
sible state.

2.2.3 Event cost

Each type of event is assigned a cost, which gives a relative measure
of preference for each event type in the reconstructed history:

• CR: the cost of a single recombination event, defaults to 1.
• CRR: the cost of performing two successive recombinations,

defaults to 2. It is sufficient to consider at most two consecutive

recombination events before a coalescence (Lyngsø et al., 2005);

this type of event also captures the effects of gene conversion.
• CRM: the cost of a recurrent mutation. If N i

t is formed from Dt

by a recurrent mutation in a column representing k agreeing

sites, this corresponds to proposing k recurrent mutation events,

so the cost is CðN i
t;DtÞ ¼ k � CRM.
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• CSE: this event is a recurrent mutation which affects only one se-

quence in the original dataset, i.e. it occurs on the terminal

branches of the ARG. Thus, the event can be either a regular re-

current mutation or an artefact due to sequencing errors. The

cost can be set to equal CRM, or lower if the presence of sequenc-

ing errors is considered likely.

KwARG allows the specification of a range of event costs as tun-
ing parameters, as well as the number Q of independent runs of the
algorithm to perform for each cost configuration. The proportions
of recombinations to recurrent mutations in the solutions produced
by KwARG can be controlled by varying the ratio of costs for the
corresponding event types.

2.2.4 Selection probability

The method of selecting the next state from a neighbourhood of can-
didates will impact on the efficiency and performance of the algo-
rithm. At one extreme, selecting at random amongst the states will
mean that the solution space is explored more fully, but will be pro-
hibitively inefficient in terms of the number of runs needed to find a
near-optimal solution. On the other hand, always greedily selecting
the move with the minimal score will quickly identify a small set of
solutions for each cost configuration, at the expense of placing our
faith in the ability of the score to assess the quality of the candidate
states accurately.

We propose a selection method that is intermediate between
these two extremes, randomizing the selection but focusing on
moves with near-minimal scores. A pseudo-score for state N i

t is
calculated:

exp T �
�

1� ~SðN i

t;N
i
t;DtÞ

�� �
; (2)

where

~SðN i

t;N
i
t;DtÞ ¼

SðN i

t;N
i
t;DtÞ �minjSðN

j

t;N
j
t;DtÞ

maxjSðN
j

t;N
j
t;DtÞ �minjSðN

j

t;N
j
t;DtÞ

;

and states in N t are selected with probability proportional to their
pseudo-score. The annealing parameter T controls the extent of ran-
dom exploration; T¼0 corresponds to choosing uniformly at ran-
dom from the neighbourhood of candidates, and T ¼ 1 to always
choosing a state with the minimal score. The default value of T¼30
was chosen following simulation testing, which showed that this

provides a good balance between efficiency and thorough explor-
ation of the neighbourhood.

2.3 Output
The default output consists of the number of recombinations and re-
current mutations in each identified solution; an example for the
Kreitman dataset is given in Table 1. Each iteration is assigned a
unique random seed, which can be used to reconstruct each particu-
lar solution and produce more detailed outputs, such as a detailed
list of events in the history, the ARG in several graph formats or the
corresponding sequence of marginal trees.

3 Results

We have tested the performance of KwARG on simulated data,
based on two main criteria. First, we compared its performance
against exact methods, PAUP* and Beagle, to demonstrate that
KwARG successfully reconstructs minimal histories in the mutation-
only and recombination-only cases, respectively. Second, we carried
out simulation studies to determine how accurately KwARG recon-
structs local trees, compared against three other methods: tsinfer,
RENTþ and ARGweaver. Finally, we compared how well KwARG
performs against the parsimony-based heuristic methods SHRUB
(Song et al., 2005) and SHRUB-GC (Song et al., 2006); these results
are presented in Supplementary Section S4. We also investigated the
dependence of the run time of KwARG on the number and length of
sequences, through simulation studies.

Fig. 2. Example of a reconstructed history for the dataset in Figure 1. Stars ‘?’ denote non-ancestral material. SE: recurrent mutation occurring on a terminal branch of the

ARG. R: recombination event. A sequence of blue arrows corresponds to one application of the ‘Clean’ algorithm. Green boxes highlight the selected states

Table 1. Example output of KwARG for the Kreitman dataset

Seed T CSE CRM CR CRR SE RM R
P

t jN tj

2263536315 30.0 1 1 1.00 2.00 0 0 7 143

2347021759 30.0 0.90 0.91 1.00 2.00 1 0 6 853

1791455164 30.0 0.80 0.81 1.00 2.00 1 0 5 728

1684879495 30.0 0.60 0.61 1.00 2.00 2 0 4 783

1884182000 30.0 0.40 0.41 1.00 2.00 3 0 3 806

1900122424 30.0 0.20 0.21 1.00 2.00 5 0 2 702

2111915557 30.0 0.10 0.11 1.00 2.00 8 0 1 833

2888657821 30.0 0.01 0.02 1.00 2.00 10 0 0 715

Note: SE: number of recurrent mutations occurring on terminal branches

of the ARG (possible sequencing errors); RM: number of other recurrent

mutations; R: number of recombinations. Last column gives the total number

of neighbourhood states considered.
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3.1 Finite sites
3.1.1 Comparison to PAUP*

Disallowing recombination, the quality of computed upper bounds
on Pmin was tested by comparison with PAUP* (Swofford, 2001,
version 4.0a168), which was used to compute the exact minimum
parsimony score via branch-and-bound on 994 datasets simulated as
described in Supplementary Section S3.1.

KwARG failed to find Pmin in 11 (1.1%) cases out of 994. The
results are illustrated in the top panel of Figure 3. Where KwARG
failed to find an optimal solution, in all 11 cases it was off by just
one recurrent mutation. Figure 3 also demonstrates that a substan-
tial proportion of recurrent mutations do not create incompatibil-
ities in the data, and the number of actual events often far exceeds
Pmin.

3.2 Infinite sites
3.2.1 Comparison to beagle

Under the infinite sites assumption (disallowing recurrent mutation),
the accuracy of KwARG’s upper bound on Rmin was tested by com-
parison with Beagle (Lyngsø et al., 2005), on 1037 datasets simu-
lated as described in Supplementary Section S3.2.

Using the default annealing parameter T¼30, KwARG found
Rmin in all cases. In 97% of the runs, this took under 5 s of CPU
time (on a 2.7 GHz Intel Core i7 processor); all but one run took

<40 s. In 93% of the runs, one iteration was sufficient to find an op-
timal solution; in 99% of the runs, five iterations were sufficient.
Beagle found the exact solution in 5 s or less in 86% of cases; for
datasets with a small Rmin Beagle runs relatively quickly (median
run time for Rmin ¼ 5 was 1 s, compared to KwARG’s 0.3 s). For
more complex datasets, KwARG finds an optimal solution much
faster; for Rmin ¼ 9, the median run time of Beagle was 56 s, com-
pared to KwARG’s 3 s.

Setting T¼10 and T ¼ 1 resulted in 5 and 22 failures to find an
optimal solution, respectively, when KwARG was run for Q ¼ 1000
iterations per dataset (or terminated after 10 min have elapsed),
demonstrating that setting the annealing parameters too low or too
high results in deterioration of performance.

The bottom panel of Figure 3 illustrates the results and shows
the relationship between the true simulated number of recombina-
tions and Rmin. This demonstrates that in many cases, substantially
more recombinations have occurred than can be confidently
detected from the data.

3.2.2 Comparison to tsinfer, RENT1 and ARGweaver

We tested the performance of KwARG in recovering the topology of
simulated local trees for a range of recombination and mutation
rates (under the infinite sites assumption). For each combination of
rates, we simulated 100 datasets; details of the simulation parame-
ters and settings used in running each program are given in
Supplementary Section S5. From the output of each method, we cal-
culated the Kendall–Colijn metric (Kendall and Colijn, 2016) be-
tween the inferred and true tree topologies at each variant site
position, calculating the mean across all variant sites and averaging
over the 100 datasets. We note that ARGs contain more information
than local trees, but there is no obvious way of comparing ARG top-
ologies (and tsinfer only infers local trees, rather than full ARGs).

The results are shown in the top panel of Figure 4 and
Supplementary Figure S4. All methods show very comparable per-
formance across the range of considered scenarios, with KwARG
slightly outperforming the other methods, based on the chosen met-
ric, when the recombination rate is relatively low and the mutation
rate relatively high. We have performed the same analysis using the
Robinson–Foulds metric (Robinson and Foulds, 1981), and found
this to give very similar results.

3.3 Run time analysis
A comparison of the run times of KwARG against tsinfer, RENTþ
and ARGweaver is presented in the bottom panel of Figure 4 and
Supplementary Figure S5. KwARG demonstrates good efficiency
when the recombination and mutation rates are relatively low, and
shows roughly linear growth in run time as the mutation rate
increases.

The dependence of the run time of KwARG on the number and
length of sequences was further investigated through simulations;
the results are presented in Supplementary Section S6. Keeping the
sequence length fixed showed that KwARG runs very quickly when
the number of sequences is very low, and shows roughly exponential
growth in run time when the number of sequences is 6 or more.
Keeping the number of sequences fixed shows that, after an initial
exponential increase (due to small datasets taking very little time per
iteration), the run time scales roughly linearly in sequence length.

3.4 Application to Kreitman data

The performance of KwARG is illustrated on the classic dataset of
Kreitman (1983, Table 1); this is not close to the performance limit
of KwARG, but has been widely used for benchmarking algorithms
used for ARG reconstruction. The dataset consists of 11 sequences
and 2721 sites, of which 43 are polymorphic, of the alcohol de-
hydrogenase locus of D.melanogaster. The data are shown in Figure
5, with columns containing singleton mutations removed for ease of
viewing. Applying the ‘Clean’ algorithm, as described in Section
2.2.1, reduces this to matrix of 9 rows and 16 columns. KwARG
was run with the default parameters, Q¼500 times for each of 13
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default cost configurations given in Supplementary Section S2. An
example of the output is shown in Table 1.

KwARG correctly identified the Rmin of 7 and the Pmin of 10
(confirmed by running Beagle and PAUP*, respectively). The 6500
iterations of KwARG took just under 9 min to run. Of these, 1829
(28%) resulted in optimal solutions; some are shown in Table 1.

KwARG identified multiple combinations of recombinations and re-
current mutations that could have generated this dataset. By default,
slightly cheaper costs are assigned to recurrent mutations if they
happen on terminal branches, so the results show a bias towards sol-
utions with more SE events for each given number of
recombinations.

The ten recurrent mutations appearing in the solution in row 8
of Table 1 are highlighted on the dataset in Figure 5. It is striking
that 7 of these 10 recurrent mutations affect the same sequence Fl-
2S. In fact, these seven recurrent mutations could be replaced by
three recombination events affecting sequence Fl-2S, with break-
points just after sites 3, 16 and 35; leaving the other identified recur-
rent mutations unchanged yields the solution in row 5 of Table 1.
These findings suggest that the sequence may have been affected by
cross-contamination or other errors during the sequencing process,
or it could indeed be a recombinant mosaic of four other sequences
in the sample. This recovers the results obtained by Stephens and
Nei (1985), who posited the recombinant origins of sequence Fl-2S
following manual examination of a reconstructed maximum parsi-
mony tree, which also highlighted the five consecutive mutations
identified by KwARG. The ARG corresponding to the solution in
row 5 of Table 1, visualized using Graphviz (Ellson et al., 2004), is
shown in Figure 6.

Examination of the identified solutions also shows that site 36 of
sequence Ja-S ‘necessitates’ two of the seven recombinations inferred
in the minimal solution in the absence of recurrent mutation, while
sites three and nine in sequences Wa-S and Fl-1S, respectively, each
create incompatibilities that could be resolved by one
recombination.

4 Discussion

Methods for the reconstruction of parsimonious ARGs generally
rely on the infinite sites assumption. When examining the output
ARGs, it is often difficult to tell by how much the inferred recombin-
ation events actually affect the recombining sequences. As is the case
with the Kreitman dataset, sometimes further examination reveals
that two crossover recombination events have the same effect as one
recurrent mutation, raising questions about which version of events
is more likely. KwARG removes the need for such manual examin-
ation, and provides an automated way of highlighting such cases,
which is particularly useful for larger datasets.

While KwARG performs well in inferring ARGs under the infin-
ite sites assumption, it can be particularly useful in analysing genetic
data from organisms whose genomes are reasonably likely to under-
go recurrent mutation, such as viruses with relatively high mutation
rates and short genomes. One such application is demonstrated in
Ignatieva et al. (2021), where the output of KwARG is combined
with probabilistic arguments to investigate the presence of ongoing
recombination in SARS-CoV-2.
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Fig. 4. Comparison of performance in inferring local trees. Top panel: points show

mean across 100 simulated datasets for each value of mutation rate l (per gener-

ation per site) with recombination rate q ¼ 4 � 10�7 (per generation per site); error

bars show mean 6 standard error. Lower K-C distance indicates better accuracy.

Bottom panel: points show mean run time averaged over 100 datasets for each com-

bination of rate parameters; error bars show mean 6 standard error. ARGweaver

results not shown past l ¼ 3:2 � 10�6 due to prohibitively long run time

Fig. 5. Illustration of the Kreitman dataset. The 11 sequences labelled as in Kreitman (1983); polymorphic sites are labelled 1–43 and columns with singleton mutations are not

shown
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The solutions identified by KwARG differ in the proportion of
recurrent mutations to recombinations, ranging from an explanation
that invokes only recombination events to one that invokes only mu-
tation events. As is the case with other heuristic and parsimony-
based methods, KwARG cannot offer uncertainty quantification for
the inferred ARGs. Quantifying the likelihood of each scenario will
be application-specific; for instance, one can choose a reasonable
model of evolution for the population being studied, and identify
the most likely solution under a range of reasonable mutation and
recombination rates. When the presence or absence of recombin-
ation is not certain, then should the number of recurrent mutations
needed to explain the dataset be infeasibly large, this provides evi-
dence for the presence of recombination; this is the idea underlying
the homoplasy test of Maynard Smith and Smith (1998). If the larg-
est ‘reasonable’ number of recurrent mutations is then estimated,
KwARG can be used to say how many additional recombination
events are required to explain the dataset.

KwARG performs well when compared against exact parsimony
methods for the ‘recombination-only’ and ‘mutation-only’ scenarios.
Because of the random exploration incorporated within KwARG, it
should be run multiple times on the same dataset before selecting
the best solutions; the optimal run length of KwARG will be con-
strained by timing and the available computational resources. To
gauge whether KwARG has run enough iterations, one could pro-
ceed by calculating Rmin and Pmin either exactly (if the data is rea-
sonably small) or using other heuristics-based methods (such as
SHRUB or PAUP*), to confirm whether KwARG has found good
solutions at these two extremes.

The range of solutions explored by KwARG is guided by the
choice of cost parameters. As a rule of thumb, simulations have
shown that if the mutation and recombination rates are similar,
costs near one give good accuracy of solutions in terms of recon-
structing local tree topologies; if the mutation rate is significantly
higher (lower) than the recombination rate, the cost should be set to
less than (greater than) one. As KwARG incorporates a degree of
random exploration, a range of solutions will still be obtained; the
best choice of parameters will depend strongly on the nature and
aims of the analysis being performed.

For model-based inference, the modelling assumptions can obvi-
ously affect the quality of the results; however, a parsimony-based
approach also makes the strong assumption that the minimal ARG
can capture useful information about the history of a sample. This
will obviously depend strongly on the true recombination rate.
Based on our comparisons with RENTþ, tsinfer and ARGweaver,
KwARG achieves very good accuracy of inference of local tree top-
ologies at least comparable to these other methods, particularly
when the recombination rate is low to moderate and the mutation

rate moderate to high. We emphasize that KwARG demonstrates
relatively good accuracy even when the recombination rate is high
and even though its express goal is to seek the most parsimonious,
rather than necessarily the most likely, history. Moreover, for data-
sets with relatively few incompatibilities, the run time of KwARG is
competitive with that of the other methods. It is also interesting to
note that although all four programs incorporate very different
approaches and heuristic algorithms, they demonstrate very similar
performance in inferring local tree topologies over the range of con-
sidered scenarios.

The scalability of KwARG remains a challenge for large and
more complex datasets. Performance gains could be readily achieved
by running multiple iterations of KwARG in parallel, or incorporat-
ing more efficient ways of storing the intermediate states. Further
improvements could also be obtained by amending the calculation
of lower bounds within the cost function in order to account for the
presence of recurrent mutation, which should make the scores more
accurate, and hence the neighbourhood exploration more efficient.
Other avenues for further work include explicitly incorporating
gene conversion as a possible type of recombination event with a
separate cost parameter, with a view to developing the underlying
model of evolution to even more closely reflect biological reality.
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