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Abstract: HIV mainly targets CD4+ T cells, from which Th17 cells represent a major cell type,
permissive, and are capable of supporting intracellular replication at mucosal sites. Th17 cells
possess well-described dual roles, while being central to maintaining gut integrity, these may induce
inflammation and contribute to autoimmune disorders; however, Th17 cells’ antiviral function in
HIV infection is not completely understood. Th17 cells are star players to HIV-1 pathogenesis and a
potential target to prevent or decrease HIV transmission. HIV-1 can be spread among permissive cells
via direct cell-to-cell and/or cell-free infection. The debate on which mode of transmission is more
efficient is still ongoing without a concrete conclusion yet. Most assessments of virus transmission
analyzing either cell-to-cell or cell-free modes use in vitro systems; however, the actual interactions
and conditions in vivo are not fully understood. The fact that infected breast milk, semen, and vaginal
secretions contain a mix of both cell-free viral particles and infected cells presents an argument for
the probability of HIV taking advantage of both modes of transmission to spread. Here, we review
important insights and recent findings about the role of Th17 cells during HIV pathogenesis in
mucosal surfaces, and the mechanisms of HIV-1 infection spread among T cells in tissues.
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1. Introduction

Human immunodeficiency virus (HIV) infection is a global public health concern and
the etiological agent of acquired immune deficiency syndrome (AIDS). There is no known
cure for HIV infection to date, and the demand for an HIV cure is on the rise, given its
associated costs, adverse events, stigma, as well as lifelong treatments using antiretroviral
therapy (ART) [1]. Worldwide, about 37.7 million people were living with HIV by the
end of 2020, with an estimated 27.5 million people able to access ART during the same
year [2–4]. Although new HIV infections are decreasing globally, a devastating estimated
1.5 million people became newly infected in 2020 [4].

The exact HIV pandemic origin is unknown; however, it is well documented that
HIV infection spread from non-human primates to humans around the 1900s [5,6]. HIV
is a complex retrovirus of the lentivirus family [7]. Retroviruses are characterized by the
fact that they carry their genetic material as single-stranded RNA (ssRNA) along with the
necessary components to hijack the genetic machinery of a target cell to replicate itself.
The main types of HIV infection include HIV-1 and HIV-2, which present differences in
replication and pathogenicity but share similarities in genetic and biological properties [8].
Most HIV infections correspond to HIV-1 which is also documented to be more pathogenic
than HIV-2 [8,9]. If left untreated, HIV-1’s mortality rate is over 95% [8,9]. HIV-1 is
an enveloped retrovirus with two copies of an ssRNA genome, which enters the host
primarily through mucosal surfaces, where it replicates after the integration of the newly
retro-transcribed double-stranded DNA (dsDNA) [5,10,11]. Predominant routes of HIV-1
transmission include sexual contact, percutaneous (through contaminated needles and
blood products), and perinatal [5,10,12]. Worldwide, about 90% of new HIV infections are
attributed to sexual transmission, with most infected people being women [13–15].
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One of the hallmarks of HIV-1 is that it selectively infects and depletes CD4+ T cells,
disrupting T cell homeostasis [8,16]. As a result, HIV patients develop a rapid drop in
T cell counts, a ramp-up phase of viremia, and impaired immunity [8,16]. The problem is
complex, since as soon as HIV-1 infection initiates, reservoirs may also establish within
resting memory CD4+ T cells and other cells [17]. HIV is well-versed in hiding from the
immune system and persisting regardless of a lifetime under suppressive ART [17,18]. ART
can inhibit new rounds of viral replication, reduce plasma viral load below clinical detection
limits (20 to 50 RNA copies/mL), and interrupt disease progression [17,18]; however, some
HIV-infected cells survive as persistent and latently infected cells [19]. Although early
initiation of ART has brought improved life expectancy to patients, it has its limitations, and
the different treatment regimens are unable to deplete latent reservoirs, prevent infection
establishment, and efficiently suppress new infections [16,18]. HIV-1 latent reservoirs
persist undetectable regardless of ART, annihilating all chances for ART to eradicate HIV
infection. Current proposed strategies to eliminate latent HIV-1 reservoirs include “shock
and kill”, “block and lock”, and “lock in and apoptosis” [17]. The “shock and kill” approach
aims to “shock” or reactivate the latent virus using latency-reversing agents (LRAs) such
as toll-like receptor (TLR) agonists and histone deacetylases (HDACs), and then “kill”
infected cells or eliminate the latent reservoir via targeted cytotoxic T lymphocyte (CTL)
response [17,20]. The “block and lock” approach aims to enhance the latent virus state by
“blocking” HIV transcription and “locking” the HIV promoter in a deep or super latent state
using small interfering RNAs (siRNAs) or trans-activator of transcription (Tat) inhibitors
to disrupt epigenetic regulators or viral replication [17,20]. Moreover, the “lock in and
apoptosis” approach aims to block virus budding from the cell using LRAs, and Pr55Gag

HIV-1 protease inhibitor [17]. Alternative approaches to target latent HIV reservoirs involve
gene therapy via stem cell transplantation or via gene editing using CRISPR/Cas9 and
zinc-finger nucleases (ZFN) [17,20]. Still, an effective strategy to eliminate HIV infection
remains elusive.

Remarkable research efforts have led to a better understanding of HIV target cells
(mainly CD4+ T cells), and HIV cellular reservoirs, including naïve CD4+ T cells (TN), stem
cell-like memory (TSCM), central memory (TCM), transitional memory (TTM), effector
memory CD4+ T cells (TEM), T helper 1, 2, 17, 9 (Th1, Th2, Th17, Th9) cells, regulatory T cells
(Treg), follicular T helper cells (Tfh), astrocytes, dendritic cells (DCs), and tissue-resident
macrophages which establish in different tissues soon after acquiring infection [21,22]. In
light that current approaches including ART are unable to prevent acute mucosal CD4+

T cell depletion after first exposure to the virus, gaining a better understanding of permis-
sive cell types, mechanisms of transmission, and cellular reservoirs could be beneficial
to devise new approaches for HIV eradication efforts. For instance, Th17 antiviral func-
tion of HIV infection is not completely understood; however, Th17 cells are key to HIV
pathogenesis and represent potential targets to help prevent or reduce HIV transmission.
Here, we review important insights and recent findings of the role of Th17 cells during HIV
pathogenesis in mucosal surfaces, and the mechanisms of HIV-1 infection spread among
T cells in tissues (Figure 1).
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Figure 1. Overview of current models of HIV-1 transmission between CD4+ T cells.

2. Mucosa HIV-1 Pathogenesis and the Role of Th17 Cells

Mucosal surfaces are crucial to HIV-1 transmission, as these constitute the boundary
between the host and the environment [21,22]. The mucosal immune system (commonly
described as the mucosa-associated lymphoid tissue or MALT) is the largest epithelial sur-
face consisting of lymph nodes (LNs) and lymphoid tissues present in submucosal layers of
the gastrointestinal (GI), respiratory, urinary, and genital tracts, in addition to eyes, tonsils,
thyroid, breasts and salivary glands [10,23]. The gut-associated lymphoid tissue (GALT) is
part of the MALT and includes Peyer’s patches in the small intestine and mesenteric lymph
nodes (MLNs) [21,22]. The GI mucosa represents a cardinal site of HIV-1 pathogenesis
due to its role as a portal of entry and as a site of infection dissemination to lymphoid
tissues [24,25]. During mucosal viral exposure, HIV-1 targets CD4+ T cells, macrophages,
Hofbauer cells (HCs or placental macrophages), Kupffer cells (KCs or liver macrophages),
DCs, DC-SIGN+ DCs, Langerhans cells (LCs), and mast cells (MCs) located in the epithelial
layer or within the vicinity, which can be responsible for residual replication [9,26–30]. It
is well established that HIV-1 induces a progressive and steady loss of CD4+ T cell count,
leading to the impossibility of containing HIV infection, which is characteristic of HIV
pathogenesis and culminates in AIDS progression [9,26–30].

The three recognized stages of HIV infection, acute infection, chronic infection, and
AIDS, are defined by viral load, CD4+ T cell count, as well as clinical progression; however,
prior to the appearance of acute infection symptoms, there is an initial eclipse phase (up
to 10 days) in which infection is established at the exposure site, while viral load has not
yet reached detectable levels in the circulation [31]. The acute or primary infection phase
of HIV is recognized as the time from acquisition until seroconversion (up to 4 weeks
from first exposure) [9]. Acute infection is characterized by “flu-like” symptoms along
with high levels of viremia (up to 107 or more copies of viral RNA per mL of blood), a
substantial drop in both peripheral and lymph nodes CD4+ T cell counts, and an increase
in overall CD8+ T cells [9,31,32]. The chronic phase of infection or clinical latency (1 to
20 years after acute infection) is characterized as an asymptomatic phase with a continued
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decline of CD4+ T cells, usually correlating with AIDS progression along with the level
of immune activation, presenting with constant or slow levels of viremia (in the order
of 1 to 100,000 copies/mL) [33,34]. AIDS is the final stage of HIV infection, when CD4+

T cells abruptly decline (below 200 cells per mm3, in contrast to the normal range between
500 and 1500 cells per mm3), at this point, HIV-1 infection control is lost, viremia rises, and
opportunistic infections also rise as a result of CD4+ T cells depletion. This stage often
culminates in death [9,33,35]. Mucosal CD4+ T cell recovery during chronic infection is
often used to predict the clinical outcome with no recovery in rapid progressors, and only
transient recovery in normal and long-term progressors [24]. Unfortunately, undetectable
plasma viral loads are no guarantee of viral particles’ absence. In fact, HIV RNA and DNA
have been identified in GALT despite ART and undetectable viral loads in plasma [36].
Furthermore, most individuals under ART with plasma HIV-1 RNA suppressed below the
limits of detection (20 to 40 copies/mL) as per commercial assays, still show detectable
HIV-1 RNA in plasma (1 to 3 copies/mL) by RT-qPCR [37].

Prior to dissemination and latency, HIV-1 establishes infection by a single viral particle
infecting a single cell, mainly a CD4+ T cell [9,38,39]. CD4+ T cells represent most cells
residing within the GI tract, LNs, and other lymphatic tissues [40]. GALT is recognized
as the primary site of HIV replication where CD4+ T cells are massively and rapidly
depleted during primary infection; however, and contrary to older beliefs, the activation
state of target cells is not required for acquiring HIV infection [36,41–43]. Macal et al.
demonstrated that a good number of CD4+ T cells in GALT of HIV-infected patients
are not activated [36,41]. HIV-1 entry into target cells requires the engagement of the
surface subunit gp120 of the viral envelope glycoprotein (Env) to host CD4, and C-C motif
chemokine receptor 5 (CCR5) and/or C-X-C motif chemokine receptor 4 (CXCR4) serving
as HIV co-receptors in the host cell membrane [11,44]. Viruses using CCR5 co-receptors
(also known as R5 viruses/R5-tropic strains) are responsible for viral transmission and
establishment of infection, while viruses using CXCR4 (also known as X4 viruses/X4-tropic
strains), or both co-receptors (also R5X4 viruses/dual-tropic strains) have been identified
at later time points during disease progression [38]. Both HIV-1 and the lab SIVmac model
preferentially infect T cells expressing CCR5 co-receptors [39,45,46]. Indeed, CCR5+ CD4+

memory T cells have been reported to constitute most CD4+ T cells present in MALT as
opposed to CCR5− CD4+ T cells mostly present in peripheral blood and LNs [33].

Once HIV-1 infects a CD4+ T cell, it integrates its genetic material into the host cell’s
DNA to either initiate a cycle of replication or remain inactive [47]. After integration,
the HIV-1 genome resides within the DNA of the infected CD4+ T cell, acquiring lifelong
persistence [33,36]. Once a replication cycle is completed, mature HIV-1 virions are released
into the extracellular space ready to spread and infect other host-permissive CD4+ T cells.
CD4+ T cells participate in orchestrated cascades of immune responses against acute
and chronic viral infections, and they serve as mediators between innate and adaptive
immunity [8,34,48]. One peculiarity of CD4+ T cells is that they can differentiate into
different T cell subsets responsible for mounting specific adaptive immune responses [49].
By the same token, different subsets of CD4+ T cells possess different levels of susceptibility
and permissiveness to HIV infection [42]. Among CD4+ T cells, Th17 cells represent a
major T cell lineage at mucosal sites known to be highly susceptible and permissive to
HIV/SIV entry, and capable of supporting intracellular viral replication [26,33,42,50–52].
Th17 cells are primarily enriched in the intestinal lamina propria (LP) and vaginal cervix
mucosa [33,49,53–55].

Th17 cells were identified in 2005 [56–59]. Th17 cells (CCR4+ CCR6+ CXCR3− CD161+)
derive from CD161+ precursors and constitutively express CCR4 and CCR6, but not
CXCR3 [59]. Established T cell lineages are commonly characterized through canoni-
cal sets of cytokines and transcription factors [60]. For instance, Th17 cells are defined
by the expression of a transcription factor profile including retinoic acid-related orphan
receptor gamma t (RORγt), RAR-related orphan receptor alpha (RORα), and signal trans-
ducer and activator of transcription 3 (STAT3), and by the secretion of cytokines such as
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interleukin (IL)-8, -17A, -17F, -21, -22, -26, as well as tumor necrosis factor alpha (TNFα),
and C-C motif chemokine ligand 20 (CCL20, also MIP-3α) [61]. Th17 differentiation requires
cytokines such as transforming growth factor-beta (TGF-β) and IL-6 [60,62,63]. Low doses
of TGF-β, along with IL-6, induce STAT3 and RORγt expression, which promotes Th17
development [51,63–65]. In contrast, high doses of TGF-β inhibit RORγt while promot-
ing the generation of inducible Treg (iTreg) cells [51,64,65]. IL-21 is a required survival
factor involved in Th17 expansion [51]. IL-1β contributes to Th17 differentiation and ex-
pansion [51,60,63]. IL-23 is a requirement for pathogenicity in Th17 [51]. Together, IL-1β
and IL-23 are vital to complete Th17 lineage commitment program by repressing IL-10 and
inducing B lymphocyte maturation protein-1 (Blimp-1) expression in Th17 cells [51,63].

In contrast to Th1 and Th2 cells, which are considered as stable lineages, Th17 cells
are more plastic and less terminally differentiated cells capable to undergo lineage repro-
gramming and transdifferentiate into Th1, Th2, Tfh, or Treg like subsets, particularly under
lymphopenic or inflammatory conditions [51,63–66]. Contingent upon the microenviron-
ment, Th17 cells have the potential to acquire new effector features and convert toward
other lineage subsets [51,66]. Th17 cells generated either in vitro or in vivo can retain the
Th17 phenotype or can acquire new effector characteristics upon secondary stimulation [65].
Th17 cells may shift toward Th1Th17 cells during autoimmunity, cancer, and infections or
toward Th2Th17 cells during asthma [66]. For instance, Th17 cells in the presence of IL-12 or
IL-23 and in the absence of TGF-β convert toward Th1Th17 cells (IFN-γ secreting) [51,65].
Lymphopenic conditions also shift Th17 cells toward pathogenic IFN-γ secreting cells in
models of diabetes mellitus [65]. And TNF-α has been reported to shift Th17 cells toward
Th1Th17 subsets [51]. On the other hand, Th17 cells exposed to IL-4 acquire the ability
to produce Th2 cytokines IL-4 and IL-5 while expressing IL-17A, IL-21, and IL-22 [51].
These Th2Th17 cells have been detected in the peripheral blood of patients with chronic
asthma [51]. In the context of autoimmune diseases or infections, Th17 cells may also
convert toward Treg cells [66]. Intestinal Th17 cells can reprogram toward IL-10 producing
Treg cells under pro-inflammatory conditions in the gut involving Aryl hydrocarbon re-
ceptor (AHR) and TGF-β signaling or upon high levels of TGF-β and retinoid acid [51,64].
Some reports indicate that Th17 cells transdifferentiate into Treg cells naturally during the
resolution of inflammation [51]. Finally, Th17 cells reprogram toward Tfh and contribute to
the development of IgA-secreting germinal center B cells [51,66].

The dual activity of Th17 cells is extensively documented. Th17 cells are beneficial
in maintaining mucosal barrier integrity and homeostasis [33,49,51–54,67,68], while the
role of Th17 cells in maintaining gut integrity is crucial against fungal and bacterial infec-
tions [24,51]. One of the mechanisms of Th17 cells to maintain epithelial barrier integrity
involves CCR6 expression to be recruited to the skin and to the small intestine in response
to CCL20 (the ligand for CCR6) where they stabilize by IL-23 [26,53,59,69]. Mucosal epithe-
lial cells secrete CCL20 in response to inflammatory stimuli, including pro-inflammatory
cytokines (i.e., IL-1α and TNFα) and bacteria [69]. Then, Th17-derived IL-17 and IFN-γ
stimulate keratinocytes and APCs to produce more IL-1α, IL-23, and CCL20, resulting in a
feedback loop for keratinocyte proliferation and pro-inflammatory cytokines, production
and secretion [26,53,59,69]. Conversely, Th17 cells are also inducers of inflammation (by
recruiting neutrophils, inducing chemokine expression, and releasing inflammatory cy-
tokines) as well as contributors to autoimmune disorders (i.e., multiple sclerosis, psoriasis,
rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus, and
asthma) [33,49,51–54,67]. Furthermore, Th17 cells are recognized as vital effector cells in
adaptive immunity able to recruit epithelial cells, neutrophils, and B cells, in addition to
directly responding to infections by pathogens including fungi (i.e., Candida albicans),
mycobacteria (i.e., Mycobacterium tuberculosis), and extracellular bacteria (i.e., Klebsiella
pneumoniae) [33,49]. Recent reports by Agak et al. identified a subpopulation of Th17 cells
capable of capturing and killing extracellular bacteria by secreting antimicrobial proteins
and T cell extracellular traps (TETs) in cell culture systems [60].
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Observations from several groups suggest that HIV infection of T cells is enhanced
under conditions containing Th17 polarizing cytokines (i.e., IL-1β, TGF-β, IL-6, and IL-23)
in culture systems; furthermore, Th17 cells are preferentially depleted from GALT during
acute HIV/SIV infection in vivo [52,70]. Current evidence has led to wonder what are the
features that make Th17 cells susceptible to HIV/SIV infection and depletion. There is still
no consensus to answer this question, but several proposals are considered.

3. Mechanisms That Contribute to the Preferential Loss of Th17 Cells during
HIV-1 Infection

The rapid loss of Th17 cells is documented to be key to HIV/SIV pathogenesis [33,42,51,52].
Maek et al. pioneered reports highlighting increased IL-17 production by circulating T cells,
and the role of Th17 cells during HIV infection [71]. It is recognized that Th17 cells are
susceptible to HIV/SIV entry, then after successful virus internalization, Th17 cells can
support virus replication and production [52]; however, there is evidence that Th17 cells play
inhibitory effects against HIV replication and amplification [72]. Mechanisms contributing
to the preferential depletion of Th17 cells during HIV/SIV infection in vivo remain mainly
unknown since most analyses have been generated from culture systems using purified
Th17 cells from either sorted human peripheral blood or from T cells skewed to Th17 [73].
Some of the proposed mechanisms explaining the preferential loss of Th17 cells include:
(a) overexpression of factors inhibiting Th17 differentiation, (b) depletion of naïve Th17
precursors, (c) deficient expression of cytokines such as IL-21, (d) high expression of HIV
binding receptors, (e) low expression of macrophage inflammatory protein-1β (MIP-1β
is an HIV inhibitory chemokine, also known as CCL4), (f) AIDS-associated opportunistic
infections, (g) chronic immune activation, (h) low expression of HIV-suppressive RNase 6,
(i) susceptibility and permissiveness to HIV/SIV infection, and (j) expression of co-receptors
and integrins (such as CD4, CXCR3, CXCR4, CCR4, CCR5, CCR6, and α4β7 integrin) among
others [42,51,52,69,74]. Here, we only focus on Th17 susceptibility and permissiveness to
HIV/SIV infection, and Th17 expression of co-receptors and integrins, both of which
represent mechanisms targeting Th17 cells for preferential infection and depletion.

It is thought that high levels of CCR5 expressed by Th17 cells facilitate virus en-
try [26]. In support of this notion, CCR5+ Th17 cells are found depleted from the GI tract
of HIV-infected patients [51]. Some CCR6+ cells have also been documented to express
higher levels of CCR5, as compared to CCR5− cells [42]. Further, co-expression of CCR6
and CCR5 in Th17 cells correlates to their depletion from the blood of HIV-infected pa-
tients [51]. Planas et al. demonstrated that Th17 polarized CCR6+CD4+ T cells are highly
permissive to infection [69]. Although the CCR6+ CD4 T cell population is inclusive
of all Th17 cells, not all CCR6+ cells are capable of secreting IL-17 [26,69]. Subsets of
CD4+ T cells are commonly defined by their functional properties [69]. Similarly, signa-
ture cytokines production is used to characterize these subsets, and their expression of
chemokine receptors are used to identify functionally polarized CD4+ T cell subsets such as
Th1 (CXCR3+/CCR4−/CCR6−), Th2 (CXCR3−/CCR4+/CCR6−), Th17 (CXCR3−/CCR4+/
CCR6+), and Th1/Th17 cells (CXCR3+/CCR4−/CCR6+) [19]. Wacleche et al. described four
IL-17A producing Th17 subsets in humans based on their CCR4 and CXCR3 expression
including Th17 (CCR4+ CXCR3−), Th1Th17 (CCR4− CXCR3+), and two Th17 polarized
subsets designated as CCR6+DN (CCR4− CXCR3−) and CCR6+DP (CCR4+ CXCR3+) both,
in vitro and in ART-treated patients where each subset is thought to play a specific role
during HIV pathogenesis [51]. Preferential loss of CCR6+ CD161+ CD4+ T cells from
the blood of SIV-infected rhesus macaques (but not in sooty mangabeys, a natural SIV
host) correlates to disrupted homeostasis and contributes to disease progression due to
redistribution to the gut mucosa [69]. Analyses from a vaginal challenge model in rhesus
macaques detected that SIV selectively targeted CCR6+ CD4+ T cells corresponding to the
Th17 lineage as confirmed by RORγt expression [26]. Th17 cells were highly susceptible to
SIV and selectively depleted from the female reproductive tract (FRT) early within 48 h
post-infection [26]. Several studies in SIV-infected rhesus macaques indicate that Th17
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cells are preferentially depleted from the GI tract during the acute phase of infection as
compared to blood Th17 cells; moreover, Th17 cells are preserved during non-pathogenic
infection [43,51]. Additionally, a variety of publications indicate preferential depletion
of Th17 cells from HIV-infected patients. In a cross-sectional study from a South African
cohort, Mycobacterium tuberculosis-specific Th17 cells were preferentially depleted in
HIV-infected patients [74].

In HIV patients with progressive disease, Th17 frequency is lower during the chronic
phase [43]. Lower frequencies of peripheral blood CCR4+ CCR6+ Th17 and CXCR3+ CCR6+

Th1Th17 cells have been reported in chronic HIV-infected patients under ART when com-
pared to uninfected patients [51]. Nevertheless, Th17 cells are preserved under slow disease
progression or during non-pathogenic infection [43,75]. For instance, sooty mangabeys
which do not progress to AIDS preserve healthy mucosal function as well as Th17 lev-
els post-SIV infection [42]. In contrast, in HIV-infected long-term non-progressors, the
frequency of Th17 cells is preserved [51]. While the frequency of Th17 cells negatively
correlates with plasma viral load, it positively correlates with CD4+ T cell counts [43,51,76].
Assessments regarding Th17 frequency may vary in the literature due to the use of diverse
methods of characterization and identification (i.e., surface markers vs. intracellular produc-
tion of cytokines) [73]. In summary, Th17 depletion induce enhanced mucosal permeability
and bacterial translocation leading to chronic immune activation (driver of changes in the
frequency of different T cell subsets such as an increase in effector or fully differentiated
T cells and a decrease in naïve T cells) and AIDS progression [43,51,76]. Depletion of Th17
cells in the blood and gut has been identified in both humans and macaques with HIV
or SIV infection, and it is a predictor of disease progression [75,77]; however, blood Th17
depletion analyses are still filled with questions, as Th17 cells function mainly at the mucosa
and not in circulation [77].

Th17 and Treg subsets derive from a common progenitor and differentiate based on IL-6
and TGF-β levels; however, they have quite opposite functions, and their ratios are directly
associated with HIV progression [43,72,78]. While Th17 cells’ primary function is to mount
immune responses to invading pathogens via pro-inflammatory responses and perhaps
promote autoimmunity, Treg cells have an immunosuppressive function and help maintain
self-tolerance, control activation, and expansion of autoreactive CD4+ T effector cells via
anti-inflammatory responses [43,72,78]. Normally, Th17/Treg ratios are stable; however,
inflammation and other immune conditions, including multiple sclerosis, rheumatoid
arthritis, inflammatory bowel disease, and HIV/SIV infections drive generalized immune
activation and disturb their balance [72,79]. During acute HIV infection, Treg cells may be
beneficial to the host, as prior to full activation of HIV-specific immune responses, Treg cells
inhibit T cell activation and limit the number of target cells for HIV spread [80]; however,
during chronic HIV infection, increased Treg cell frequency is detrimental to antiviral
immune responses [80]. Changes in the absolute numbers of Treg and Th17 cells lead to
imbalanced Th17/Treg ratios, which contribute to the breakdown of mucosal integrity,
resulting in microbial translocation and systemic immune activation [79]. Falivene et al.
found reduced Th17/Treg ratio in HIV-infected patients as compared to healthy donors,
and higher Th17 levels correlating with stronger CD8+ T cell responses against the infection
which led them to suggest that Th17 cells have potential prognostic value for HIV-specific
T cell responses [77]. Thus, a progressive increase in Treg frequency along with a progressive
loss of Th17 drive Th17/Treg ratios to drop as HIV infection progresses [72,80]. Moreover,
high frequency of both Th17 and Th17/Treg ratios are reported in HIV elite controllers when
compared to HIV patients [43]. To date, we have a better understanding of the role of Th17
cells in HIV-1 infection control; however, the main mechanisms of HIV-1 transmission in
Th17 cells remain unclear. Hot topics of research include whether HIV-1 spread takes place
mainly via cell-free viral particles and/or via cell-to-cell direct contact [81].
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4. Cell-to-Cell versus Cell-Free HIV-1 Spread

After the assembly of infectious virus particles, HIV-1 is proposed to infect and
replicate in target cells via multiple mechanisms [82]. The two main modes of HIV-1
spread among permissive cells are direct cell-to-cell infection and cell-free infection [82–86].
Although the release of cell-free viral particles has been considered as the primary mode of
HIV-1 infection transmission, cell-to-cell and cell-free modes are not mutually exclusive and
the precise contribution of either mode of virus transmission in vivo is not yet clear [87,88].
HIV-1 Env spike supports both cell-free and cell-to-cell infection of CD4+ T cells [44]. HIV-1
Env spike is a trimeric glycoprotein comprised of three gp120-gp41 heterodimers which
mediate viral attachment, fusion, and entry into CD4+ T cells during cell-free and/or direct
cell-to-cell infection [44,89]; however, it has been proposed that only cell-to-cell HIV-1
transmission can overcome deficiencies of viral Env incorporation [44].

Direct transfer between one donor cell and a target cell by cell-to-cell spread has
been extensively characterized in cell culture systems using T cells from peripheral blood
lymphocytes [11,82]. The first description of direct cell-to-cell HIV transfer was reported
between DCs and T cells [90]. Nevertheless, cell-to-cell HIV transfer takes place between a
number of immune cells such as macrophages and LCs, which are known to help establish
HIV reservoirs in different host tissues and play important roles early during transmission
and dissemination [81]. Direct contact between infected and uninfected cells contributes
to viral spread through well-described structures such as the virological synapse (or VS,
described as interactions engaging the Env glycoproteins expressed in the infected cells
and receptor in the target cells), filipodia, and nanotubes in addition to phagocytosis,
and cell-cell fusion modes of transmission [11,81,85,90]. Galloway et al. proposed that
infected cells in lymphoid tissues are the main source of HIV spread via direct cell-to-cell
infection [83]. It is speculated that infected T cells in LNs possessing migratory potential
contribute to cell-to-cell transmission and spread in vivo [81]; however, HIV transmission
either by cell-to-cell or by cell-free modes has been commonly assessed in vitro [82]. The
challenge to quantitatively discriminate the effectiveness of each HIV-1 transmission strat-
egy individually rests on technical difficulties to exclusively analyze cell-free infection
without cell-to-cell infection taking place in parallel, and vice versa, since these are not
mutually exclusive mechanisms [82].

Cell-to-cell transmission has been regarded as an efficient strategy implicated in HIV-1
pathogenesis [83,85]. Multiple studies have suggested that a virus associated with a cell is
more infectious than a cell-free virus [91]. Experimental and mathematical models allowed
for the quantification of the sole dynamics behind cell-to-cell infection, leading to the
finding that cell-to-cell infection predominates 60% of total viral infection [84]. Chen et al.
reported that in vitro cell-associated infection is 18,000-fold more efficient in transferring
viral particles into target cells than cell-free infection [90]. Cell-to-cell transmission has
been found to reduce the generation time of viruses by 0.9 times while increasing viral
fitness by 3.9 times [84]. Furthermore, it has been argued that cell-to-cell contact through
the VS may protect HIV-1 from antiviral factors such as antibodies while also enabling
disseminating [90,91]. Numerous studies indicate that gp120-directed and gp41-directed
broadly neutralizing antibodies halt virus transmission in rhesus macaques upon topical
or intravenous challenge of cell-free virus [92,93]. Although spread via cell-free particles
has been challenged as the main transmission model, there is evidence in the literature for
its support. After comparing HIV and human T lymphotropic virus (HTLV) transmission,
HIV spread was proposed to take place mainly via cell-free mode [94]. A big challenge to
cell-free HIV-1 transmission implies that during transcytosis via mucosal epithelial cells,
only 0.01% to 0.05% of virions from the initial inoculum may translocate across epithelial
cells [95,96]. It is documented that more than 90% of virions internalized in tonsil, cervical
and foreskin epithelial cells do not cross the epithelium; instead, virions are retained in
endosomal compartments, such as multivesicular bodies and vacuoles for several days [96].
Sequestered virions in the epithelium maintain infectivity for about nine days and can
be released through cell-to-cell interaction of epithelial cells containing the virus with
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activated peripheral blood mononuclear cells (PBMCs) and CD4+ T lymphocytes [96];
however, Sufiawati et al. reported that HIV-1 cell-free virions along with tat and gp120
proteins are key for the disruption of adherens and tight junction proteins leading to the
impaired mucosal barrier and spread of the virus within target cells, as seen in ex vivo tonsil
tissue explants [95]. In addition, HIV-1 and human cytomegalovirus (HCMV) coinfection
of tonsils act synergistically to promote and facilitate both viral infections [95].

The infectivity of retroviruses, including HIV-1, either in plasma or cultured media,
has been reported to be less than 0.1%, arguing potentially large numbers of defective
virions in a virus pool and limiting the infectivity of HIV virions [97]. Nonetheless, Josefs-
son et al. demonstrated that in peripheral blood CD4+ T cells from patients, the majority of
infected cells contain only one copy of HIV-1 DNA as compared to the high proviral HIV
content present in tissues and co-cultures which may correlate to transmission by cell-free
particles [98,99]. Despite the fact that HIV-1 infects antigen-presenting cells (APCs) to a
lesser extent than T cells, a major pathogenic process in HIV-1 infection is the uptake of
HIV-1 by APCs followed by transfer of virus to CD4+ T cells, leading to explosive levels of
virus replication within T cells [100]. Nonetheless, DCs express both CD4 and CCR5 HIV-1
co-receptors where DC-mediated cell-free HIV-1 trans-infection of T cells is well docu-
mented [101]. Additionally, three nonexclusive pathways are described for cell-free viruses
to enter DCs including clathrin-rich endosomes, lipid rafts in the presence of DC-SIGN
(pathway which favors productive infection), or via lipid rafts in the absence of DC-SIGN
(pathway which may prevent viral replication) [101].

The debate on which mode of transmission is more efficient is still ongoing, with no
concrete conclusion yet. Most of the available evidence has been obtained from in vitro
systems examining virus transmission; however, the actual interactions and conditions
in vivo are not fully understood. Notwithstanding, infected breast milk, semen, and vaginal
secretions contain a mix of both cell-free viral particles and infected cells [82,93]. Current
evidence indicates that the field is not plain when making comparisons between cell-to-cell
and cell-free HIV-1 transmission modes, as cell-free viral particles might also contribute
to cell-associated infection. HIV likely takes advantage of both modes of transmission to
spread. Moreover, no single cell type has been linked to a preferential mode of transmission,
and it is widely unknown what the preferential mode of transmission in cells typically
found in the mucosae such as Th17 lymphocytes is. The next difficult question is how latent
HIV-1 reservoirs replenish?

5. Virus Free Seeding New Reservoirs in Distant Places and Latency

ART regimens are unable to halt chronic immune activation, inflammation, and im-
mune dysfunction, all of which may contribute to the establishment of reservoirs harboring
latent HIV-1 [102]. Thus, it is likely that the cure for HIV-1 is a reservoir away. Previously,
the rapid loss of CD4+ T cells was associated with apoptosis, but it was found that about
95% of quiescent CD4+ T cells die via caspase 1-mediated pyroptosis and which correlates
with chronic inflammation in HIV pathogenesis [103]. Later, Galloway et al. went on to
show in cell culture that, unlike cell-free HIV-1 particles, cell-to-cell contact predominantly
through the VS is key to trigger innate immune responses leading to the depletion of
non-permissive CD4+ T cells via caspase 1-dependent pyroptosis [83]. In contrast, highly
permissive cells in HIV-1 infection, such as activated peripheral blood lymphocytes die
via caspase 3-mediated apoptosis [83]; however, not all infected cells die, and many HIV-
infected cells remain as a latent reservoir. Memory CD4+ T cells represent the primary HIV
reservoir in tissues [104]. The seeding of free HIV virions to distant places is subject to the
limits of diffusion between tissues and restricted by not just anatomical barriers, but by
soluble immune factors as well (i.e., complement factors and antibodies) [105]. In contrast,
cell-to-cell transmission in LNs with high local density of target cells may contribute to the
spread of infected cells given the migratory potential of T cells which might transport HIV
to remote tissues [105]. Moreover, cell-to-cell transfer represents a mechanism for HIV to
hide and escape from the immune system and ART, contributing to the establishment of
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new virus reservoirs and latency in distant host tissues [81]. Thus, the cell-to-cell spread
of HIV is likely promoted in lymphoid tissues with a high abundance of target cells in
proximity, along with reduced ART penetration [106].

Data from latent reservoirs in patients on ART exhibit a very slow decay rate
(t1/2 = 3.7 years) which translates to about 73 years to eradicate a reservoir of 106 cells,
making cure unlikely even under ART [18]. Additionally, infected CD4+ T cells are long-
lived cells capable of living for decades; however, these can potentially revert to resting
memory CD4+ T cells and further contribute to latent HIV reservoirs [18,36]. CCR5+

CD4+ memory T cells constitute most CD4+ T cells in MALT as opposed to CCR5− T cells
mostly present in peripheral blood and LNs [33]. Most CCR5+ CD4+ memory T cells
are preferentially depleted during early HIV/SIV infection [70]. In fact, memory CD4+

T cells have been reported to be more permissive to HIV compared to naïve T cells [70].
CCR5+ CD4+ memory T cells have been identified as specific targets of HIV replication
and infection [33]. Monteiro et al. suggested CCR6 as a marker for memory T cells
imprinted with a transcriptional program permissive to HIV replication [70]. Importantly,
CCR6+ T cells also express integrin β7 and CCR5, which possess superior capabilities to
disseminate HIV from the entry site since integrin β7 can regulate cell migration into the
GALT and bind to HIV-gp120 [70].

Studies by Meås et al. using a cell-to-cell transmission model show that toll-like
receptor 8 (TLR8) activates human T cells and triggers inflammatory responses favoring
both HIV-1 replication and reversal of latency [11]. Reversion of latency was also observed
in patient-derived latently infected CD4+ T cells by TLR8 stimulation [11]. Moreover, TLR8
stimulation promoted differentiation towards pro-inflammatory Th17 cells by upregulating
IL-17 production [11]. Furthermore, Hsiao et al. found that CCR5-tropic HIV could not
enter naïve CD4+ T cells but gained entry to all subsets of memory CD4+ T cells including
tonsillar memory cells expressing the IL-7 receptor alpha chain or CD127+ tissue memory
(TM) cells that preferentially support latent HIV-1 infection as demonstrated by HIV DNA
integration but not HIV gene expression [104]. The authors propose that these CD127+

TM cells represent a superior alternative to in vitro tissue models of HIV latency based on
blood-derived cells which present with early post-entry by SAM domain and HD domain-
containing protein 1 (SAMHD1) restriction [104]. Moreover, T cell latent HIV-1 reservoir
include infected cells in diverse locations including, but not limited to peripheral blood,
LNs, central nervous system (CNS), GALT and tissues such as lungs.

6. Conclusions

There are multiple challenges in the field. First, we know that ART does not cure
HIV and that HIV reservoirs and latent infection are in part to blame. Moreover, HIV can
accumulate genetic diversity over time during infection on a given individual, making
the clearance of the virus on an infected patient unfeasible [9]. Another challenge is the
absence of a good animal model for HIV. Commonly, non-human primates and SIV or
chimera simian/HIV (SHIV) are used, but they differ from HIV-1. Alternatively, humanized
mice (mice with a reconstituted human immune system) allow for features that correlate
better with HIV-1 transmission in humans [107]. Furthermore, tissue environments may
have a direct impact on virus spread, as well as the modes of viral transmission; however,
this remains to be established [88]. A better understanding of the mechanisms promoting
and supporting latency in tissue cells could help devise innovative approaches to identify
and eliminate latent reservoirs of infected cells in order to devise new strategies to cure
HIV/AIDS [104].
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