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A B S T R A C T

Brooding, which refers to a repetitive focus on one's distress, is associated with functional connectivity within
Default-Mode, Salience, and Executive-Control networks (DMN; SN; ECN), comprising the so-called “triple-
network” of attention. Individual differences in brain structure that might perseverate dysfunctional connectivity
of brain networks associated with brooding are less clear, however. Using diffusion and functional Magnetic
Resonance Imaging, we explored multimodal relationships between brooding severity, white-matter micro-
structure, and resting-state functional connectivity in depressed adults (N=32–44), and then examined whether
findings directly replicated in a demographically-similar, independent sample (N=36–45). Among the fully-
replicated results, three core findings emerged. First, brooding severity is associated with functional integration
and segregation of the triple-network, particularly with a Precuneal subnetwork of the DMN. Second, micro-
structural asymmetry of the Superior Longitudinal Fasciculus (SLF) provides a robust structural connectivity
basis for brooding and may account for over 20% of its severity (Discovery: adj. R2= 0.18; Replication: adj.
R2= 0.22; MSE=0.06, Predictive R2=0.22). Finally, microstructure of the right SLF and auxiliary white-
matter is associated with the functional connectivity correlates of brooding, both within and between compo-
nents of the triple-network (Discovery: adj. R2=0.21; Replication: adj. R2= 0.18; MSE=0.03, Predictive
R2= 0.21–0.22). By cross-validating multimodal discovery with replication, the present findings help to re-
producibly unify disparate perspectives of brooding etiology. Based on that synthesis, our study reformulates
brooding as a microstructural-functional connectivity neurophenotype.

1. Introduction

Cognitive models of depression posit that negatively biased self-
referential processing plays a critical role in maintaining the disorder
(Beevers, 2005). Brooding (i.e. “depressive rumination”) is the perse-
verative form of this processing that involves a recursive focus on de-
pressive thoughts to putatively gain insight that might alleviate de-
pression symptoms (Lemoult and Joormann, 2014). In practice,
however, brooding exacerbates symptoms (Lyubomirsky et al., 2015),
yielding passive solutions to problems (Lyubomirsky, 2003), dimin-
ished social support (Nolen-Hoeksema and Davis, 1999), and an in-
creased likelihood of relapse following depression treatment (Jacobs
et al., 2016). Given brooding's toxic influence in depression (Woody
and Gibb, 2015), both its cognitive mechanisms and developmental
antecedents have been studied across multiple levels of analysis
(Woody and Gibb, 2015; Bagby et al., 2004; Hankin, 2008). A deluge of
recent neuroimaging studies have further propelled this effort,

revealing a heterogeneous set of structural and functional brain corre-
lates of brooding (Nejad et al., 2013) whose reproducibility and inter-
modal affinity remain unknown (Nolen-Hoeksema et al., 2008; Nolen-
Hoeksema, 2000). The present study therefore aims to identify candi-
date structural-functional brain biomarkers of brooding using multi-
modal neuroimaging with direct replication (Woody and Gibb, 2015).

1.1. A ‘triple’ cognitive model and functional connectivity in brooding

Although numerous cognitive theories of brooding have been pro-
posed (Nejad et al., 2013; Smith and Alloy, 2009), empirical evidence
from functional neuroimaging has yet to definitively favor any one
model over another (van Vugt and van der Velde, 2018). Common to
each, however, is a tension among three core mechanisms and their
associated resting-state networks (RSN's)—the latter modeled using
functional Magnetic Resonance Imaging (fMRI) (Nejad et al., 2013;
Wang et al., 2016; Ordaz et al., 2016; Bernstein et al., 2017). These
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include: (1) abnormal self-referential processing, which might entail
poor metacognition or recursive memory recall (Leech et al., 2011;
Sheline et al., 2009) as observed within the Default Mode Network
(DMN); (2) negatively-biased thought appraisal, which might involve
heightened discrepancy detection between self-states and goal-states
(Menon and Uddin, 2010), and abnormal vigilance (Andersen et al.,
2009) titration as observed within the Salience Network (SN) (Ordaz
et al., 2016; Kocsel et al., 2017); and (3) impaired attentional control,
which refers to top-down failures to disengage from negatively-biased
self-referential processing (Southworth et al., 2017), and has been de-
scribed with respect to the Executive Control Network (ECN).

With this framework as a foundation, we can use fMRI analysis to
describe precise intrinsic alterations of RSN's that might relate to each
respective brooding mechanism. We call this dimension of analysis
within-network functional connectivity. One study, for instance, found
that higher brooding severity is associated with alterations within a
Parietal subnetwork of the DMN – the pDMN – that supports reflexive
episodic memory refreshing (Rosenbaum et al., 2017; Freton et al.,
2014; Ahmed et al., 2018) and is vulnerable to malfunctioning under
cognitive resource depletion (Wang et al., 2016). Brooders also more
actively engage a Cingulo-Opercular subnetwork of the SN – the coSN –
critical for tonic alertness, as well as for maintaining ongoing emotional
appraisal of internal cognitive and somatic states (Wu et al., 2016a;
Sadaghiani and D'Esposito, 2015). Finally, abnormal integration of a
prefrontal subnetwork of the ECN – the fECN—might reflect deficits of
top-down regulation (Mandell et al., 2014) or attentional scope
whereby emotionally biased information cannot be easily dispelled
from working memory (Berman et al., 2011).

Other research has shown, however, that these three mechanisms
and their corresponding RSN's do not operate as wholly segregated
entities (Wang et al., 2016; Hamilton et al., 2015; Spreng et al., 2010;
Spreng et al., 2013). Impaired attentional control, for instance, is
thought to amplify and sustain negatively-biased thought appraisal
(Southworth et al., 2017; Grafton et al., 2016; Koster et al., 2011).
When combined with perseveration (Nolen-Hoeksema et al., 2008) and
reflexive processing, this contaminated appraisal forms a vicious cycle
of self-criticism (Bernstein et al., 2017; Brosschot et al., 2006) that re-
cursively drains attentional resources needed to disengage from the
processing (Southworth et al., 2016). Because these mechanisms can be
mutually reinforcing at a metacognitive level, metacognitive beliefs
about rumination may be particularly relevant to the etiology and
treatment of brooding (Clare Kelly et al., 2008; Smith et al., 2013;
Papageorgiou and Wells, 2000, 2004; Wells and Papageorgiou, 2008).

Analogously, the RSN's associated with brooding can also be de-
scribed on a hierarchical basis, where the RSN's themselves are inter-
dependent entities (Wang et al., 2016; Menon, 2011). We call this di-
mension of analysis between-network functional connectivity. As a case
in point, the DMN, SN, and ECN have been described as belonging to a
so-called “triple network” of attention, whose between-network con-
nectivity may be globally compromised across depression psycho-
pathology (Menon, 2011; Wu et al., 2016b; Liu et al., 2017; Zheng
et al., 2015) (See Fig. 1). Using this framework, Hamilton et al. (2011)
showed that the brains of brooders exhibit greater between-network
DMN dominance over the ECN, with a variable role for the SN de-
pending on level of depression severity. In another study, Wang et al.
(2016) similarly argued that greater DMN dominance over the ECN,
impaired SN–mediated switching between the DMN and ECN, and in-
effective ECN modulation of the DMN, each constitute separate yet
interactive cognitive mechanisms in brooding.

1.2. A model of individual differences and microstructural connectivity in
brooding

In contrast to the cognitive process models of brooding (Smith and
Alloy, 2009; Grafton et al., 2016), a complementary perspective has
sought to identify its developmental antecedents. That is, “who becomes

a ruminator” (Papageorgiou and Wells, 2004; Nolen-Hoeksema et al.,
1993)? Through her longitudinal work, Nolen-Hoeksema maintained
that brooding is not merely a defect of information processing, but also
a Response Style (Nolen-Hoeksema et al., 1993) – i.e. an individual
difference characteristic in the trait proclivity to brood (Kocsel et al.,
2017; Mandell et al., 2014; Nolen-Hoeksema et al., 1993; Moore et al.,
2013; Sarin et al., 2005). Although early research identified weak ge-
netic moderators (Woody and Gibb, 2015) and environmental risk
factors that may lend to brooding development as a response style
(Nolen-Hoeksema et al., 2008; Papageorgiou and Wells, 2004; Watkins
et al., 2005), a vigorous exploration of neurodevelopmental biomarkers
is lacking. At least theoretically, such a model should include anato-
mical traces of grey matter thickening and white-matter myelination
that implicitly encapsulate distal genetic and environmental influences,
and cumulatively shape brooding into a stable trait over the lifespan
(Papageorgiou and Wells, 2004).

In the search for a neurodevelopmental basis for brooding, previous
structural MRI studies might provide a useful springboard (Bagby et al.,
2004; Mandell et al., 2014; Kühn et al., 2012; Machino et al., 2014; Zuo
et al., 2012; Fawcett et al., 2015). To the extent that resource-intensive,
triple-network operations characterize a vicious cycle of negative
thoughts which persist repetitively, we should likewise expect struc-
tural MRI to be sensitive to grey or white-matter biomarkers capable of
scaffolding these operations over time (Nejad et al., 2013; Kühn et al.,
2012; Zuo et al., 2012; Wang et al., 2015). Along these lines, some of
the earliest voxel-based morphometric studies of depression looked to
modular grey matter structures, like the Anterior Cingulate Cortex
(ACC), whose volume, for instance, may be negatively correlated with
brooding severity (Kühn et al., 2012; Machino et al., 2014; Zuo et al.,
2012). Efforts to identify a straightforward role for ACC structure in
brooding have been somewhat inconsistent, however (Nejad et al.,
2013; Kühn et al., 2012; Cooney et al., 2010), perhaps alluding to its
dense interconnectivity with other cortical areas (Etkin et al., 2011) or

Fig. 1. The “triple-network” of attention is a mesoscale system of networks that
includes the Salience Network (SN) (green), Executive Control Network (ECN)
(red), and Default Mode Network (DMN) (blue), which correspond to three core
mechanisms of brooding. Brooding is known to be correlated with functional
connectivity disturbances both within and between these networks. (For in-
terpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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the multiple specialized functions among ACC sub-regions (Stevens
et al., 2011). Ultimately, appeals made to grey-matter alone have be-
come increasingly problematic in the study of brooding because they do
not reflect a commensurate level of information complexity to its
functional connectivity biomarkers that verifiably exhibit distributed
and dynamical neural activity (Mazzocchi, 2012; Monnart et al., 2016).

The structural analogue to functional connectivity – microstructural
connectivity of white-matter (Peer et al., 2017) – may therefore provide
a more flexible framework for conceptualizing individual differences in
trait brooding (Woody and Gibb, 2015). Perhaps not coincidentally,
BOLD signal clustering of resting-state networks produces patterns that
spatially resemble white-matter tracts (Mezer et al., 2009). Like grey
matter, white-matter microstructure is also highly correlated with age
(Cascio et al., 2007), but due to its high plasticity distributed
throughout the brain (Sampaio-Baptista and Johansen-Berg, 2017) may
more closely capture the complex gene-environment diathesis that
shapes myelination trajectories over the lifespan (Shi et al., 2013;
Gustavson et al., 2019). Microstructural connectivity of white-matter,
measured using Fractional Anisotropy (FA) (Reislev et al., 2016; Lebel
and Deoni, 2018; Marstaller et al., 2016), likely track these distributed
myelination patterns, which can be mapped using diffusion Magnetic
Resonance Imaging (dMRI) (Yendiki et al., 2011).

Despite its potential utility for revealing neurodevelopmental vul-
nerabilities in depressive cognition (Korgaonkar et al., 2014; De
Kwaasteniet et al., 2013; Chavez and Heatherton, 2013; Liao et al.,
2013), only one study to date has explicitly investigated the micro-
structural basis for brooding specifically. In 2012, Zuo et al. used Tract-
Based Spatial Statistics (TBSS) to show that FA of the Superior Long-
itudinal Fasciculus (SLF) and neighboring motor fibers are negatively
associated with brooding severity. Due to its small sample size (N=15)
and reliance on dMRI data alone, however, that study was not strongly
positioned to reconcile these microstructural connectivity correlates
with known functional connectivity correlates.

1.3. A reproducible microstructural-functional connectivity model of
brooding

As studies of schizophrenia have recently shown (Calhoun and Sui,
2016; Sui et al., 2014; Sui et al., 2012), multimodal analysis can un-
iquely fuse disparate information across modalities to formulate new
ideas that encompass multiple levels of analysis simultaneously. By
leveraging multimodal methodology in the study of brooding, we might
discover more specific neural biomarkers, residing at the intersection of
developmental differences and cognitive processes. Consequently, a
joint analysis of rsfMRI and dMRI that seeks to reconcile patterns of
functional connectivity with patterns of microstructural connectivity
may prove especially informative. Perhaps through this feat, we can put
Nolen-Hoeksema's Response Styles Theory to the test based on neu-
roscience for the first time (Calhoun and Sui, 2016; O'Halloran et al.,
2016; Tadayonnejad et al., 2014; Uludağ and Roebroeck, 2014) Al-
though recent studies beyond brooding literature have shown that
frontoparietal white-matter, such as the Cingulum (CCG) and the Un-
cinate Fasciculus (UF), may support DMN (Tao et al., 2015) and ECN
(Steffens et al., 2011) function, the precise nature of these multimodal
associations remains largely unclear (Sui et al., 2012; Uludağ and
Roebroeck, 2014; Pettersson-Yeo et al., 2014).

While multimodal analysis can increase sensitivity and specificity to
disease biomarkers (Calhoun and Sui, 2016; Sui et al., 2012), its high
dimensionality can limit the generalizability of detected effects if not
balanced by additional effort towards reproducibility (Calhoun and Sui,
2016). To overcome this obstacle, without a massive sample size
(Mulugeta et al., 2018), we performed out-of-sample replication within
the same study (Button et al., 2013). That is, following initial analysis of
a dataset collected at the University of Texas at Austin, we conducted a
direct replication using an independent sample obtained from the Na-
thaniel Kline Institute (Nooner et al., 2012). The two samples were

approximately matched on demographic criteria, contained comparable
fMRI and dMRI neuroimaging data, and included nearly identical
measures of brooding and depression. By exploiting this similitude, we
were positioned to better evaluate the reproducibility of sufficiently-
powered large effects from our Discovery sample in a Replication
sample. Those findings that replicate should increase confidence in
their generalizability and could be directly assessed for effect-size in-
flation using cross-validation (Cawley and Talbot, 2010; Evans, 2017;
Poldrack et al., 2017a; Poldrack, 2019; Smith and Nichols, 2018;
Nichols, 2012).

We conducted our analyses over three phrases. First, we considered
unimodal microstructural and functional connectivity correlates of
brooding severity so as to replicate and extend findings from prior
work. To assure parallel-forms across analytic software and protect
against computational error, we further analyze both rsfMRI and dMRI
modalities using multiple complementary methodologies (de Haas,
2018; Bowring et al., 2018). The dMRI analyses, for instance, include
dual investigations of white-matter microstructure using both Tract-
Based Spatial Statistics (TBSS) and global probabilistic tractography
methods (Yendiki et al., 2011). Similarly, the rsfMRI analyses include
investigations of resting-state functional connectivity, using Dual-Re-
gression (Abou Elseoud et al., 2011) and hierarchical network modeling
(Parlatini et al., 2017) based on Independent Components Analysis
(ICA) (Ordaz et al., 2016). For the second phase of analysis, we then
assess whether the microstructural and functional connectivity bio-
markers of brooding predict one another. Subsequently, we apply the
same analytic pipeline used to conduct phases 1–2 of our Discovery
analysis to the homogeneously preprocessed, phenotypically-similar
Replication sample. Finally, we cross-validate each fully-replicated re-
gression model to quantify mean-squared prediction error – a direct
estimate of model reproducibility and alternative to the often-criticized
p-value (Szucs and Ioannidis, 2017).

2. Methods

2.1. Participants – discovery sample

Fifty-one treatment-seeking participants with DSM-IV Major
Depressive Disorder (MDD) were recruited for this study from adver-
tisements placed online, in newspapers, and on late night TV.
Participants were screened for medical or physical conditions that
would preclude participation in an MRI study. They also completed an
abbreviated Mini International Neuropsychiatric Interview (MINI)
(Sheehan et al., 1998) to determine provisional MDD diagnosis, which
were then confirmed using in-person Structured Clinical Interviews for
the DSM-IV Disorders (SCID) (First et al., 1997a), and additional ad-
ministration of the Beck Depressive Inventory (BDI-II) (Beck et al.,
1996). Participants were further administered the RSQ (Response Styles
Questionnaire) (Erdur-Bakera and Bugaya, 2010) – a 10-item self-report
measure of the tendency to ruminate. To minimize brain changes as-
sociated with aging, participants were between 18 and 55 years old.
Participants were excluded if they met criteria for current or past psy-
chotic disorder, bipolar disorder, and schizophrenia. Those receiving
pharmacological treatment were allowed into the study if there had
been no medication change in the 12weeks prior to study entry. Seven
participants were excluded from the rsfMRI analyses (five with unu-
sable data due to image artifact, and two for whom no rsfMRI data was
acquired), yielding N=44 for all unimodal rsfMRI analyses. Twelve
participants were excluded from the dMRI analyses (eight for unusable
data due to image artifact, and four for failed tractography re-
constructions), yielding N=43 and N=39 for the unimodal dMRI
analyses. With only one significant outlier detected across all analyses,
N=32 participants with both usable dMRI and rsfMRI in common
remained for multimodal analyses (See Appendix, Methods: Section J
for detailed participant accounting and quality control tracking).
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2.2. Participants – replication sample

To formally test whether the findings would generalize beyond the
Discovery sample (Poldrack et al., 2017b), we directly replicated all
stages of analysis using a phenotypically similar, independent sample
obtained from the multi-site Nathaniel Kline Institute Rockland dataset
(Nooner et al., 2012). The dataset contained a sub-sample of N=46
participants with similar demographics to those participants from our
original sample. Participants were also between the ages of 18–55, had
no severe comorbid psychopathology, had usable dMRI or rsfMRI data,
reported at least some depressive symptomatology, and had been ad-
ministered the 21-item Beck Depression Inventory (BDI-II) and the 22-
item Rumination Response Scale (RRS)(See METHODS: Brooding Mea-
surement), which contained identical brooding sub-scale items to those
administered in the 10-item RSQ scale (Treynor et al., 2003). As part of
a larger battery of measures, many but not all participants also com-
pleted the Structured Clinical Interview for DSM-IV-TR Axis I Disorders
(SCID) (First et al., 1997b), requiring that the remaining participants be
included on the basis of depressive symptomology or a history of de-
pression diagnosis. To maximize usable data, we therefore also included
dysphoric participants that had currently reported depression symp-
toms of> 4 (Berle and Moulds, 2013; Williams and Moulds, 2007) on
the BDI-II (Beck et al., 1996). Six participants were excluded from the
rsfMRI analyses (five with unusable data due to image artifact, and one
which was a significant outlier across all analyses), yielding N=40 for
all unimodal rsfMRI analyses. Seven participants were excluded from
the dMRI analyses (only one for unusable data due to image artifact,
and six for failed tractography reconstructions), yielding N=45 and
N=39 for the unimodal dMRI analyses. N=36 participants with both
usable dMRI and rsfMRI in common remained for multimodal analyses
(See Appendix, Methods: Section J for detailed participant accounting
and quality control tracking).

2.3. Ethics statement

For the Discovery sample, the Institutional Review Board at the
University of Texas at Austin approved all study procedures and ma-
terials and all participants provided signed informed consent. For the
Replication sample, Institutional Review Board approval had been
previously obtained at the Nathan Kline Institute (Phase I #226781 and
Phase II #239708) and at Montclair State University (Phase I
#000983A and Phase II #000983B) (Nooner et al., 2012). Written in-
formed consent was obtained for all study participants. For analysis of
the Replication sample, a Data Usage Agreement (DUA) was signed and
approved by all relevant parties.

2.4. Brooding measurement

The RSQ (Response Styles Questionnaire) (Erdur-Bakera and
Bugaya, 2010) and the longer RRS (Rumination Response Scale)
(Treynor et al., 2003) consist of a total score and two sub-scales: re-
flection and brooding. The reflection subscale measures an individual's
tendency to engage in problem-solving whereas brooding measures the
intensity of ruminative responses to expressions of negative emotion
(Nolen-Hoeksema et al., 2008; Hamilton et al., 2011; Nolen-Hoeksema
and Morrow, 1991). Brooding specifically reflects the intensity of ru-
minative responses to expressions of negative emotion (Nolen-
Hoeksema and Morrow, 1991). For each item (See Appendix, Methods:
I), participants indicate the frequency of each event on a scale ranging
from 0 (“almost never”) to 3 (“almost always”), yielding a range of
scores from 0 to 30. The brooding subscale has high reliability
(α= 0.77–0.92) (Erdur-Bakera and Bugaya, 2010), is well-validated
within depressed populations (Kühn et al., 2012), decontaminated of
any explicitly depressive content (Treynor et al., 2003), and the sub-
scale of choice for most studies of depressive rumination.

2.5. Imaging acquisition

MRI scans were acquired on a whole body 3 T GE MRI with an 8-
channel phase array head coil. The scanning protocol involved collec-
tion of a localizer followed by a high-resolution T1 structural scan, two
resting state scans of 6min each, a second high-resolution structural
scan, and finally a 55-direction diffusion MRI (dMRI) scan. Since not all
participants had both resting-state scans, only the first of the two was
analyzed by default, unless visual inspection revealed overt artifact in
which case the second scan was used if it was available. For the resting-
state scan, instructions were presented utilizing a back-projection
screen located in the MR bore and viewed through a mirror mounted on
the head coil. Participants were instructed to remain awake and alert
and keep their gaze on a fixation cross (+) presented approximately at
the center of their field of view for the duration of the scan. (See
Appendix, Methods: Section A).

2.6. dMRI: Preprocessing

Preprocessing of dMRI data was carried out using a custom work-
flow that included eddy correction, brain extraction, denoising, and
tensor/ball-and-stick model fitting tools adapted from the FMRIB
Diffusion Toolbox (Jenkinson et al., 2012). To achieve maximal sensi-
tivity and specificity from the dMRI data, preprocessing included rig-
orous automated and manual quality control steps (See Appendix,
Methods: B).

2.7. dMRI: tract-based spatial statistics (TBSS) and global probabilistic
tractography

A number of approaches to dMRI analysis were implemented. To
begin, the whole-brain data was interrogated using Tract-Based Spatial
Statistics (TBSS) (Smith et al., 2006) to identify microstructural char-
acteristics that were associated with brooding severity (See Appendix,
Methods: Section C). We additionally employed the ‘crossing-fibers’
extension of TBSS (Jbabdi et al., 2010), which allowed for greater
specificity than TBSS based on the tensor model alone, because it is
sensitive to the impact of cross-fibers. For statistical testing, a permu-
tation approach was employed using FSL's “randomise” function with
the TFCE Threshold-Free Cluster Enhancement option, generating
10,000 permutations and applying family-wise error (FWE)-correction
to obtain cluster inferences. A two-tailed regression model was next
generated using FSL's GLM function, whereby RSQ brooding scores
were used as the criterion variable with age and gender as nuisance
covariates. Age was included to control for typical white matter
changes that would occur across the aging spectrum (Westlye et al.,
2010), and gender was included due to known brain differences based
on sex (Kaiser et al., 2009; Inano et al., 2011), along with some evi-
dence of gender differences in brooding—namely, that females tend to
be more severe ruminators than males (Nolen-Hoeksema, 1987).

Following TBSS, we sought to corroborate our initial group level,
voxel-wise dMRI findings using individual-level tractography, which is
an alternative dMRI analysis methodology that attempts to reconstruct
known white-matter pathways while retaining each subject's image in
native space orientation. Because spatial information is not manipu-
lated in tractography as it is with TBSS (De Groot et al., 2013), trac-
tography could confirm any TBSS findings as reflecting actual under-
lying white-matter differences rather than differences introduced
during the image normalization process (Torgerson et al., 2013). For
tractography, we chose to define microstructure as average weighted
FA measures from the entire pathways of tracts of interest whose labels
included>5 significant voxels from the earlier TBSS stage. These
measures were then further analyzed across hemispheres to establish
any significant laterality effects (Vernooij et al., 2007). To perform
tractography, we specifically used the TRActs Constrained by Under-
Lying Anatomy (TRACULA) tool in FreeSurfer (version 5.3.0) (Yendiki
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et al., 2011), which delineates 18 known white-matter bundles in a
fully-automated, unbiased manner using each participant's joint dMRI
and T1-weighted MRI reconstruction (See Appendix, Methods: Section
D). Because this process involves joint reconstructions, it can often fail
to reconstruct all tracts successfully, even after reinitialization, if both
the T1-weighted and dMRI images do not closely conform to those used
in the default ‘training-set.’ Thus, tractography was performed on most,
but not all participants (See Appendix, Methods: Section J).

2.8. rsfMRI preprocessing

Preprocessing of baseline rsfMRI data was carried out using FSL's
FEAT (Jenkinson et al., 2012), combined with AFNI and FREESURFER
tools. Additional control for white-matter and ventricular Cerebral-
Spinal Fluid confounds was included, and denoising was carried out
using FSL's ICA-based Xnoisifier artifact removal tool (FIX) to control
for motion and physiological artifact based on an unbiased classifier
(See Appendix, Methods: Section E).

2.9. rsfMRI: dual-regression and hierarchical network modeling

Group-level Independent Components Analysis (ICA) was per-
formed by employing “temporal concatenation” of the complete, pre-
processed rsfMRI time-series from all of the participants and restricted
to twenty-five independent component (IC) outputs (Beckmann, 2009).
Four IC's were manually identified as noise and removed from further
examination. Of the remaining twenty-one networks, all were identified
using visual inspection by way of reference to the 17 RSN's delineated
by the Yeo et al. 2011 atlas (Thomas Yeo et al., 2011), thus allowing for
identification of the three IC's of the triple-network established from
prior work – the pDMN (Rosenbaum et al., 2017; Hamilton et al., 2011),
the coSN (Wu et al., 2016b), and the fECN (Bernstein et al., 2017; Dutta
et al., 2014).

A dual-regression approach (Smith, 2012) was next performed on
the triple-network RSN's, which were used as regressors for each par-
ticipant's rsfMRI dataset in order to extract time-series that were both
specific to each participant and to each of the three IC's (Cascio et al.,
2007). Design matrices and contrasts were then created to test for
correlations between brooding severity and total average intrinsic
connectivity within each of these RSN's, controlling for age and gender.
These regression models were tested separately for each RSN, using
two-tailed contrasts in an identical manner to that used in TBSS, with
FSL's randomise (10,000 permutations) and TFCE cluster-thresholding
with whole-brain FWE-correction (Smith and Nichols, 2009). To further
correct for analysis-level multiple comparisons among the three triple-
network RSN's, we also Bonferroni-corrected our alpha significance
level for these models to 0.05/3 or p= .0167.

To investigate interactions between the triple-network RSN's, we
used FSLNets (Smith et al., 2013), a MATLAB-based tool that interfaces
with FSL. FSLNets treats the group-ICA outputs (generated from the
earlier dual-regression stage) as RSN nodes for hierarchical network
modeling. This involved estimating a partial-correlation matrix of the
triple-network RSN's for each participant. To perform between-RSN
general linear modeling, randomise (Berle and Moulds, 2013) was
again employed with FWE-correction, but this time using the nets_glm
function with 10,000 permutations. The design matrices and contrasts
used in the earlier FSL GLM analyses, were used in this analysis as well.

2.10. Cross-validating discovery

To minimize potentially confounding sample-variant effects due to
incongruence of neuroimaging acquisition parameters across samples
(Gouttard et al., 2008), we spatially and temporally resampled the
rsfMRI and dMRI data in the Replication sample to match that of the
Discovery sample (See Appendix, Methods: Sections F & G). To ensure
direct equivalence of neuroimaging data preprocessing in the

replication (Bowring et al., 2018), we also applied an equivalent ana-
lytic pipeline to that applied to the discovery sample, but using the
pDMN, fECN, and coSN RSN definitions from the Discovery sample
group-ICA as the input to both dual-regression and FSLnets. Lastly,
given the multiple scanner sites used to collect the neuroimaging data
in the Replication sample, we employed mixed-effects regression
models (both with FSL's GLM and in R 3.4.0), whereby a scanner-site
factor was additionally modeled as a random effect. Thus, we report
conditional R2′ (cond. R2′) values for Replication sample regression
analyses, where effect sizes are contingent upon the influence of
scanner site.

To ensure adequate power to justify replication based on the
Discovery findings, we conducted power analyses for detecting a large
effect size when using multiple regression with two covariates (age and
gender) (Kocsel et al., 2017; Treynor et al., 2003; Butler and Nolen-
Hoeksema, 1994) (See Appendix: Methods, Section H). To decrease the
risk of false-discovery made in the Discovery sample, we also opted to
filter significant effects by a minimum cutoff of unadjusted R2= 0.25
and p < .01 FDR for non-voxel-wise tests (i.e. tractography, multi-
modal analysis of beta-coefficients) and whole-brain p < .05 FWE-
corrected threshold for voxel-wise tests (TBSS, Dual-Regression). This
step served to more stringently identify those findings with the greatest
practical significance, highest putative generalizability, and lowest risk
of replication failure. Further, we conservatively classified a finding as
being a ‘full replication’ if it replicated with respect to both direction-
ality of the effect, the RSN's or neuroanatomical label(s) implicated, and
its laterality. Likewise, the fully-replicated findings needed to meet our
effect-size cutoff in at least one of the two samples and survive a Fa-
mily-Wise Error (FWE)/False Discovery Rate (FDR)-corrected sig-
nificance level of α < 0.05 (Eklund et al., 2016) or α < 0.001 un-
corrected for ROI analyses (Poldrack and Mumford, 2009). To directly
quantify predictive test error, we used each regression model to predict
the corresponding dependent variable from the Replication sample
based on a 4-fold cross-validation, where the four scanner sites of the
Replication sample could be conveniently used as ‘natural’ fold as-
signments to avoid the need for mixed modeling in out-of-sample pre-
diction. We then calculated the mean squared error (MSE) between the
values predicted by the Discovery sample and the actual outcome va-
lues from the Replication sample. This out-of-sample error could then
be used to derive a predictive R (Lemoult and Joormann, 2014), which
is the proportion of variance in the Replication sample that is explained
by the model fit to the Discovery sample (Alexander et al., 2015; Fox,
2019). That is to say, for each Replication sample outcome value yi ∈ R,
∀ i=1, 2, . . , n where y is the predicted value based on the Discovery
sample estimator, we define MSE and R2

as = =MSE y y y y( , ) ( )n i
n

i
1

1
2 and = =

=
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tively. That predictive R2 could then be compared to the fit R2 values
from the corresponding Discovery-sample estimator to infer the extent
of optimistic bias in the within-sample estimates of effect size.

3. Results

3.1. Demographic, behavioral, and clinical characteristics

3.1.1. Discovery sample
Brooding severity as measured using the RSQ was normally dis-

tributed (M=9.06, SD=3.44, range: 1–15, IQR=5; Shapiro-
Wilk= 0.971, p= .24). Depression severity was also normally dis-
tributed (M=31.98, SD=8.16, range: 17–48, IQR=10, Shapiro-
Wilk= 0.975, p= .35) and was modestly associated with brooding
severity (adj. R2= 0.11, F(1, 49)= 7.11, p < .05). Age was positively
skewed (M=28.71, SD=9.76, range: 18–56) due to an over-
representation of young adults in our discovery sample. There was an
approximately even gender distribution (females= 29). Whereas 18%
of Discovery sample participants had not experienced a past depressive
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episode, 82% had reported one or more prior episodes. Additionally,
28% of participants reported currently having comorbid symptoms of
one or more non-exclusionary disorders (See METHODS: Participants –
Discovery Sample). Participant exclusion on the basis of neuroimaging
artifact and modality subsampling did not significantly alter demo-
graphic makeup. No significant correlations were detected between
brooding severity and age or gender in either Discovery or Replication
samples. Nevertheless, we retained both age and gender as nuisance
covariates for each regression model to control for their established
interactions with neuroimaging measures, previously identified re-
lationships with brooding and depression severity from other studies, as
well as to ensure maximal generalizability and consistency across our
analyses and samples.

3.1.2. Replication sample
The Replication sample exhibited similar descriptive statistics to

those of the Discovery sample (See Table 1). Average brooding severity
was similar across samples (M=10.91, SD=2.86, range: 6–20,
IQR=3) with marginal but non-significant positive skew (Shapiro-
Wilk= 0.952, p= .06). Age also exhibited a marginal positive skew
(M=31.02, SD=6.07, Range: 22–45; Shapiro-Wilk= 0.953, p= .06)
as it did in the Discovery sample. Unlike in the Discovery sample,
however, the Replication sample was less gender balanced (fe-
males= 31). Furthermore, 62% of the participants had never experi-
enced a past depressive episode, and only 38% had reported at least one
prior episode. With the less stringent dysphoria inclusion criterion,
depression severity was also notably lower in the Replication sample
(M=10.39, SD=7.08, range: 4–34, IQR=5). Nevertheless, co-
morbidity profiles were similar to those of the Discovery sample. 51%

of Replication sample participants reported having experienced symp-
toms of one or more non-depressive disorders and 26% of participants
reported currently having comorbid symptoms of one or more non-
exclusionary disorders (See METHODS: Participants – Replication
Sample). Participant exclusion on the basis of neuroimaging artifact and
modality subsampling again did not significantly alter demographic
makeup. Detailed participant comorbidity characteristics of the Dis-
covery and Replication samples can be found in Tables I and II of the
Appendix, Results: Section A. When applying the analytic methdology
used for our Discovery sample to the Replication sample (See
METHODS: Replication), we directly cross-validated the Discovery
findings across each level of analysis—1) triple-network functional
connectivity and brooding; 2) microstructural connectivity and
brooding; 3) microstructural-functional connectivity and brooding.
Cross-validation involved testing the Discovery sample regression
models directly on the Replication sample, and then reporting MSE as a
measure of the out-of-sample prediction error. Ultimately, the derived
values of Predictive R2 were similar to the estimated values and did not
demonstrate any signs of systematic inflation so long as the R2 estimates
were adjusted for degrees of freedom. Thus, we opted to report only the
adjusted (and predictive) R2 effect sizes for all model estimation results.

3.2. ‘Within-network’ functional connectivity and depressive brooding

In both samples, brooding was associated with resting-state func-
tional connectivity of the three triple-network RSN's as identified from
the outputs of group-ICA followed by dual-regression (METHODS:
rsfMRI Group-ICA & Dual-regression). More precisely, brooding was
correlated with functional connectivity in multiple clusters belonging to

Table 1
The table compares key characteristics of both Discovery and Replication samples.

Sample characteristics Discovery sample Replication sample

Age M=28.71, SD=9.76, Range: 18–56 M=31.02, SD=6.07, Range: 22–45
Gender 29 females (57%) 31 females (67%)
Brooding Severity M=9.06, SD=3.44 M=10.91, SD=2.86
Depression Diagnosis Current depression only, DSM-IV diagnosed Current or past depression, DSM-IV diagnosed or BDI-II symptomatic
Depressive Episodes 82% Reported >1 past episodes 38% Reported >1 past episodes
Depression Severity Moderate-severe Dysphoric-Severe

BDI-II: M=31.98, SD=8.16 BDI-II: M=10.39, SD=7.08
Medication Useage Excluded if medication changes reported within 12weeks prior to study entry Excluded if medication change

data available
Other Psychopathology 26% current, 51% past comorbidity 28% current, 56% past comorbidity
Scanner Type Siemens Skyra 3 T Siemens Tim Trio 3 T
Multi-site? No Yes, 4 separate sites
dMRI parameters TR/TE=1200/71.1, B=1000, 128×128 matrix, 3 mm slice thickness,

anistropic voxels, 2 B0+ 53 DWI (55-directions)
TR/TE=2400/85, B= 1500, 212×212 matrix, 2mm slice
thickness, isotropic voxels, 9 B0+ 128 DWI (137-directions)

rsfMRI parameters eyes open, TR=2000ms, TE=30ms, 31 axial slices, voxel
size= 3.125×3.125×3mm3 anisotropic

eyes open, TR=2000ms, TE=30ms, 40 axial slices, voxel
size= 3×3×3mm3 isotropic

Fig. 2. Replicated within-network functional con-
nectivity findings from the Replication sample are
indicated with dark shaded red, green, and blue
clusters along with surrounding dotted yellow ovals,
as compared to lighter-shaded clusters from the
Discovery sample. In both samples, Blue clusters
depict those areas of the right Precuneus with sig-
nificantly lower functional connectivity within the
pDMN in association with brooding. Green clusters
depict those areas of the left Precentral Gyrus with
significantly lower functional connectivity of the
coSN in association with brooding. Red clusters de-
pict those areas of the left Amygdala and
Parahippocampal Gyrus with greater functional
connectivity within the fECN in association with
brooding. (For interpretation of the references to
color in this figure legend, the reader is referred to
the web version of this article.)
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each respective triple-network RSN (i.e. ‘intrinsic’ connectivity), but
also to others that were outside of the respective RSN's (i.e. ‘extrinsic’
connectivity) (see Fig. 2). With respect to intrinsic connectivity,
brooding was associated with lower functional connectivity of the
pDMN with the right Precuneus (MSE=0.04, Predictive R2= 0.34;
Discovery: p < .01 FWE; Replication: p < .001 with a minimum dis-
tance of 4.5 voxels between significant clusters across samples (see blue
clusters in Fig. 2). With respect to extrinsic connectivity, brooding was
positively associated with functional connectivity of the frontal Ex-
ecutive Control Network (fECN) and the inferior Temporal Lobe be-
tween the left Amygdala and Parahippocampal Gyrus (MSE=0.05,
Predictive R2=0.12; Discovery: p < .05 FWE; Replication: p < .001
with a minimum distance of 9.7 voxels between significant clusters
across samples) (See red clusters in Fig. 2). Lastly, the Cingulo-Opercular
Salience Network (coSN) exhibited lower intrinsic functional con-
nectivity in the left dorsal Precentral Gyrus near Broca's area (Dis-
covery: p < .01 FWE; Replication: p < .001 with a minimum distance
of 1 voxel between significant clusters across samples) (See green clusters
in Fig. 2). With a very strong effect (Predictive R2=0.63), but com-
paratively high prediction error (MSE=0.10), this coSN-brooding
model was only significant in the Replication sample when controlling
both for depression severity (p < .01) and a gender-coSN interaction
(p < .05). The gender term was needed due to a gender imbalance in
the Replication sample and because gender is a known moderator of the
SN in relation to brooding (Ordaz et al., 2016).

3.3. ‘Between-network’ functional connectivity and depressive brooding

Based on prior evidence for the role of the pDMN, coSN, and fECN in
brooding, we next used FSLnets to explore whether between-network
functional connectivity of each pair combination of triple-network
RSN's correlated with brooding severity (see METHODS: Between-
Network Functional Connectivity). FSLnets revealed that brooding se-
verity was positively associated with an inverse correlation between the
fECN and pDMN in both samples (MSE=0.04, Predictive R2= 0.26;
Discovery: p < .05 FDR; Replication: p < .05, FDR) (See Fig. 3). Al-
though an inverse correlation was also detected between the coSN and
the pDMN in the Discovery sample (p < .01 FDR), this effect only
marginally replicated (p < .06 FDR), and required controlling for the
gender-coSN interaction and depression severity. The third ‘between-
network’ correlation (fECN-coSN) was not significantly associated with
brooding in either the Discovery or Replication samples.

3.4. Microstructural connectivity and brooding

3.4.1. Tract-based spatial statistics (TBSS)
Our next set of analyses sought to identify any microstructural as-

sociations with brooding. To achieve this, we first employed TBSS (see

METHODS: TBSS; Appendix, Methods: Section C). In first exploring a
neurodevelopmental basis for these associations, we observed a robust
negative correlation with age across samples (F(1,37)= 4.58, adj.
R2= 0.11, p < .05; F(1,37)= 4.85, adj. R2= 0.08, p < .05). In as-
sociation with higher brooding severity, our results first revealed sig-
nificantly lower FA within several large clusters covering the right
Superior Longitudinal Fasciculus (SLF, parietal and temporal parts), as
well as within smaller clusters of the Cingulum, right posterior Corpus
Callosum (i.e. Splenium), and Corticospinal Tract (CST) (MSE=0.04,
Predictive R2=0.10; Discovery: p < .01 FWE; Replication: p < .05
FWE). At the p= .05 FWE threshold in TBSS, 98 voxels, located in the
SLF, CST, and Corpus Callosum overlapped across samples, and covered
a key posterior section of right SLF-Splenium fibers adjacent to the right
Precuneus (See zones of convergence demarcated in green in Fig. 4). Some
of these clusters also extended into the Anterior Thalamic Radiation
(ATR), Uncinate Fasciculus (UF), and Splenium. In general, however, it
was the right SLF-T specifically that most prominently drove the effect
in both samples.

3.4.2. Global probabilistic tractography
Although TBSS is sensitive to whole-brain white-matter associa-

tions, tractography offers greater specificity for labeling known white-
matter pathways (Yendiki et al., 2011; De Groot et al., 2013). Because it
can be performed in native diffusion space, it is therefore largely im-
mune from artifact that might result from the geometric transforma-
tions involved in the normalization step in TBSS. Hence, we employed
tractography alongside TBSS to ensure the reliability of the TBSS
findings and gain greater location specificity. Towards that end, six
pathways of interest were automatically parcellated with tractography
and included the SLF, CCG, CST, ATR, UF, and Splenium. As also in-
dicated from the TBSS analysis, tractography revealed a negative cor-
relation between weighted average FA of the right SLF-T and brooding
severity in both samples at Bonferroni-corrected thresholds
(MSE=0.06, Predictive R2=0.22; Discovery: adj. R2= 0.18, F(3,
36)= 3.85, pcorrected < 0.005; Replication: adj. Cond. R2=0.22, F(3,
35)= 8.90, pcorrected < 0.005).

3.4.3. Tract hemisphericity
Both TBSS and tractography analyses indicated that the SLF-T

finding was distinctly right-lateralized. To test this formally, we treated
hemisphere as a within-subjects measure and used Analysis of Variance
(ANOVA) to compare two GLM's predicting brooding for each tracto-
graphy measure of global average FA. Specifically, the first GLM used
left hemisphere controlling for right hemisphere as the predictor,
whereas the second used right hemisphere controlling for left hemi-
sphere. On the basis of log-likelihood, we found supportive evidence for
right lateralization of the SLF-T in its association with brooding in both
samples (Discovery: F(2,36)= 8.71, p < .005; Replication: F
(2,36)= 5.43, p < .05).

3.5. Multimodal connectivity (microstructural-functional) and brooding

3.5.1. Microstructure supports ‘within-network’ functional connectivity in
brooding

To explore any multimodal relationships between the micro-
structural and the functional connectivity findings, we next extracted
the beta coefficients representing average total intrinsic connectivity
for each of the brooding-associated triple-network clusters discovered
through dual-regression. This involved creating a matched subsample
of N=32 in the Discovery sample and N=36 in the Replication
sample to be used for all multimodal analyses, since those participants
with unusable dMRI data were not the same as those with unusable
fMRI data (See Appendix, Methods: Section J). As an initial step, we
extracted beta-coefficients of within-network functional connectivity
disruptions in brooding for each participant, and then regressed these
coefficients against whole-brain white-matter on an FWE-corrected

Fig. 3. The image depicts the fECN (left) and pDMN (right) whose inverse
correlation was associated with brooding severity. (For interpretation of the
references to color in this figure legend, the reader is referred to the web ver-
sion of this article.)
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voxel-wise basis using TBSS. Results showed that pDMN within-net-
work functional connectivity disruptions in brooding were positively
associated with microstructure of the right SLF-T in both samples
(MSE=0.03, Predictive R2=0.24; Discovery: p < .05 FWE;
Replication: p < .05 FWE). 613 voxels along the white matter skeleton
overlapped across samples and were predominantly restricted to the
temporal part of the right SLF (See Fig. 5). Our tractography measures
of the right SLF-T and SLFP further substantiated these findings, again
revealing a robust positive association between the SLF-T and the
pDMN within-network functional connectivity clusters associated with
brooding (MSE=0.03, Predictive R2=0.22; Discovery: adj.
R2= 0.21, F(3, 29)= 3.59, p < .05; Replication: adj. Cond. R2= 0.18,
p < .05). Stepwise regression revealed that the best model, where right
SLF-T microstructure interacts with both the pDMN and fECN in-
dividually, could predict over 40% of the variance in brooding with
minimal error (Predictive R2= 0.42, MSE=0.03).

3.5.2. Microstructure supports ‘between-network’ functional connectivity in
brooding

We next tested whether microstructural associates of brooding were
correlated with the between-network functional connectivity disruptions
of the triple-network in brooding. Although the tractography measure
of the right SLF-T was not significantly associated with between-net-
work functional connectivity when using FA values in FSLnets, average
FA of the cumulative set of brooding-associated clusters identified from
TBSS (i.e. ATR, CST, CCG, Splenium, UF, and SLF) (p= .05 FWE) was
positively associated with pDMN-fECN between-network functional
connectivity (Discovery: p < .05 FDR; Replication: p < .05 FDR).
Although Predictive R2= 0.39 was strong for this association, error was
high (MSE=0.08), perhaps indicating that linear models may fail to
capture the association with optimal generalization.

4. Summary

In sum, both samples revealed: (1) brooding severity was associated
with triple-network intrinsic and extrinsic functional connectivity al-
terations; (2) brooding severity was also associated with auxiliary
clusters of CCG, CST, ATR, Splenium, and UF white-matter, but most
prominently with the SLF-T (i.e. the Arcuate Fasciculus), which we

found to consistently explain over 20% of the variance in brooding
across samples; (3) the right SLF-T was further multimodally associated
with pDMN within-network functional connectivity alterations in
brooding; (4) cumulative brooding-associated microstructural differ-
ences were correlated with pDMN-fECN between-network functional
dysconnectivity in brooding. See Fig. 6 for a visual summary of findings
from all levels of analysis and Table 2 for a comparison of key findings
across Discovery and Replication samples.

5. Discussion

The aim of the present study was to evaluate a multimodal neural
connectivity basis for brooding that might in turn help to clarify its
apparently multifactorial etiology. Towards that end, results converged
across multiple levels of analysis and directly replicated across two
independent samples, revealing at least seven distinct candidate bio-
markers of brooding, two of which were multimodal. Apart from dif-
ferences in depression severity and gender makeup, Discovery and
Replication samples were matched on key behavioral characteristics:
both comprised of predominantly young adults with equivalent mea-
sures of brooding, similar inclusion criteria, and comparable neuroi-
maging acquisition parameters. Using a combination of exploratory
regression analysis and cross-validation, our results first showed that
brooding is associated with various patterns of functional disorganiza-
tion among a trio of resting-state subnetworks—the Precuneal Default
Mode (pDMN), the Cingulo-Opercular Salience (SN), and the frontal
Executive Control (fECN) networks (Thomas Yeo et al., 2011). Building
upon prior work (Wang et al., 2016; Hamilton et al., 2015; Spreng et al.,
2010; Spreng et al., 2013; Hamilton et al., 2011), this initial set of
findings served to isolate key components of these networks, and their
patterns of interaction, that may support a hierarchical system of
neurocognitive mechanisms in brooding. Second, our findings showed
that microstructure of the right Superior Longitudinal Fasciculus (SLF)
can distinguish among varying levels of brooding severity. In unifying
these dimensions of analysis, we then demonstrate that brooding-as-
sociated functional connectivity alterations of the pDMN (both its
within- and between-network profiles) are associated with white-matter
dysconnectivity of the right SLF-T. Ultimately, our findings support the
notion that the interface of right SLF-T microstructural connectivity and

Fig. 4. The mosaic depicts TBSS negative correla-
tions with brooding revealed from the Discovery
sample (p= .01 FWE; blue) and the Replication
sample (p= .05 FWE; red). These findings over-
lapped closely (green) along the right SLF and along
the Splenium of the Corpus Callosum. (For inter-
pretation of the references to color in this figure le-
gend, the reader is referred to the web version of this
article.)

Fig. 5. The slices depict a positive correlation be-
tween functional the diminished within-network
functional connectivity of the pDMN associated with
brooding and the right SLF, as discovered using
TBSS. The Discovery sample (p= .05 FWE) is again
depicted in blue, whereas the Replication sample
(p= .001) is depicted in red. These findings over-
lapped closely (shown in green outline) along the
right SLF-T. (For interpretation of the references to
color in this figure legend, the reader is referred to
the web version of this article.)
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triple-network functional connectivity captures a crucial and previously
unknown feature that supports brooding in depression (Woody and
Gibb, 2015; Sarin et al., 2005; Scott, 2009; Schmaling et al., 2002; Hilt
et al., 2012).

5.1. A triple-network functional connectivity model of brooding

Among the fully-replicated results, we observed several defining
functional connectivity features associated with brooding. The first of
these was lower functional connectivity of the right Precuneus within
the pDMN—a finding that has also been observed in studies of memory
(Züst et al., 2015; Klaassens et al., 2017) and in the context of the

Fig. 6. The visualization summarizes the replicated microstructural and functional connectivity findings, depicted both independently (center slices) and multi-
modally (outside slices), with brooding across samples. Microstructural correlates of brooding including the right SLF-T and auxiliary pathways revealed from TBSS
and tractography are represented in copper-black heatmap. Each of the pDMN, coSN, and fECN as a whole are here depicted as distinct yet clearly overlapping
networks with blue, green, and red connections, respectively. Regions whose functional connectivity within the pDMN are disrupted in brooding are depicted in blue
blobs, whereas those of the coSN and fECN are depicted in green and red blobs, respectively. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Table 2
The table depicts seven key findings (left column) that directly and fully replicated across the discovery sample (second column) and replication sample (third column),
along with Mean-Square Error (MSE) and Predictive R2 values revealed through cross-validation across samples (fourth column). Each of the second and third columns
states the R2 value from the respective regression models (adjusted in the Discovery sample, adjusted and conditional on random effects in the Replication sample),
the methodology used to estimate that value (e.g. TBSS, tractography, dual-regression, FSLnets), and the directionality of the relationship (neg= negative,
pos= positive).

Regression Findings (Predictor and Outcome) Initial Sample Replication Sample Meta-Analysis

Right SLFT Microstructure and Brooding Severity Tractography (adj. R2= 0.18,
neg)

Tractography (adj. Cond.
R2=0.22, neg)

MSE=0.06
Predictive R2= 0.22

Distributed CST, UF, SLF, CCG, and Splenium Microstructure and Brooding
Severity

TBSS (p < .01 FWE, neg) TBSS (p < .01 FWE, neg) MSE=0.04
Predictive R2= 0.10

pDMN Within-Network Connectivity and Brooding Severity Dual-regression (p < .01, FWE,
neg)

Dual-regression (p < .001, neg) MSE=0.03
Predictive R2= 0.34

fECN Within-Network Connectivity and Brooding Severity Dual-regression (p < .01, FWE,
neg)

Dual-regression (p < .001, neg) MSE=0.05
Predictive R2= 0.12

pDMN-fECN Between-Network Connectivity and Brooding Severity FSLnets (p < .05, FDR, neg) FSLnets (p < .01, FDR, neg) MSE=0.04
Predictive R2= 0.26

Right SLFT Microstructure and Brooding-Associated pDMN Within-Network
Connectivity

Tract. (adj. R2=0.21, p < .05,
pos)
TBSS (p < .05 FWE, pos)

Tract. (adj. Cond. R2= 0.18,
p < .05, pos)
TBSS (p < .05 FWE, pos)

MSE=0.03
Predictive R2= 0.22–0.24

Distributed CST, UF, SLF, CCG, and Splenium Microstructure and pDMN-
fECN Between-Network Connectivity

FSLnets (p < .05 FDR, pos) FSLnets (p < .05 FDR, pos) MSE=0.08
Predictive R2= 0.39
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disorganized thinking of Schizophrenia (Utevsky et al., 2014; Wang
et al., 2017). Our functional connectivity analyses also indicated that
brooding is associated with alterations of the coSN, particularly with
respect to clusters of the left Precentral Gyrus and Broca's Area. Mir-
roring observations from other studies of the coSN in rumination
(Ordaz et al., 2016; Hamilton et al., 2011), however, this effect was
confounded by gender and depression severity, both of which varied
across samples, and will therefore require larger, heterogeneous sample
sizes to confirm. More cogently, we discovered greater fECN-Para-
hippocampal connectivity in association with higher brooding severity
in both samples, echoing similar connectivity patterns to those some-
times observed in abnormal context suppression (Phelps and Sharot,
2008). Adjacently, brooding severity was positively associated with
fECN within-network connectivity of the left Amygdala. This heigh-
tened fronto-limbic integration would appear to reflect a core faulty
belief in brooding – namely, that recursive replay of depressive
thoughts affords practical insights that can help to alleviate depression
symptoms (Lemoult and Joormann, 2014). Protecting this belief in
brooding's usefulness (Cohen et al., 2016; Watkins and Brown, 2002),
albeit perhaps counterintuitive, would seem to require some form of
repeated suppression, both of the emotional discomfort elicited by the
depressive thoughts themselves and the real-life contexts upon which
those are based. Sustained top-down control via the fECN may well
support such mechanisms.

Relatedly, brooding severity was negatively associated with a be-
tween-network inverse correlation of the pDMN and fECN across sam-
ples. That relationship reiterates a well-established pattern of asyn-
chrony between self-referential and cognitive control systems as a
defining feature of brooding (Wang et al., 2016; Spreng et al., 2010;
Hamilton et al., 2011). Our study extends that understanding, however,
by considering abnormal pDMN-fECN segregation against the backdrop
of the replicated within-network pDMN-Precuneal dysconnectivity and
fECN-limbic connectivity findings as well. Collectively, these findings
would appear to support the Impaired Disengagement Hypothesis
(Grafton et al., 2016; Koster et al., 2011) of brooding, which holds that
the processing of self-referent material becomes elaborative (i.e. ru-
minative) when attentional faculties fail to disengage from the negative
aspects of that material. Correspondingly, reflexive pDMN processing
may become elaborative when the fECN fails to disengage from the
negatively salient features of that processing, perhaps in part due to
poor vigilance titration by the coSN. By this framework, brooding
would seem to entail both independent and overlapping neurocognitive
mechanisms of impaired disengagement, recruiting both intrinsic and
extrinsic properties of the triple-network RSN's. This need not imply
exclusivity of these RSN's alone in brooding – other networks may be
relevant; what is clear is that this hierarchical system is distinctly re-
producible across various brain models of brooding (Ordaz et al., 2016;
Rosenbaum et al., 2017; Hamilton et al., 2015; Zheng et al., 2015;
Hamilton et al., 2011; Dutta et al., 2014; Menon, 2011).

5.2. A microstructural connectivity model of brooding

Studying connectivity dynamics of the triple-network can illuminate
functional processes that characterize brooding and allow for hypoth-
esis formulation with respect to component cognitive mechanisms. An
exclusive focus on patterns of brain function, however, fails to explain
why these mechanisms exhibit trait-like persistence over time, and why
they become pathological for some, but not all, brains (Nolen-
Hoeksema and Davis, 1999; Nolen-Hoeksema et al., 1993). To explore a
possible neuroanatomical basis for the trait dimension of brooding –
what Nolen-Hoeksema once called a ‘Response Style’ – we next in-
vestigated its microstructural correlates using dMRI. Those results re-
vealed robust associations with the Superior Longitudinal Fasciculus,
along with additional clusters scattered throughout the Cingulum,
Corticospinal Tract, Splenium, Uncinate Fasciculus, Anterior Thalamic
Radiation, and Corona Radiata. Although these white-matter correlates

cumulatively replicated across samples, tractography revealed that the
microstructure of one global white-matter pathway in particular – the
temporal part of the Superior Longitudinal Fasciculus (SLF-T) – could
explain over 20% of the variance in brooding severity on average across
samples. Not only did this biomarker replicate at Bonferroni-corrected
thresholds across samples, it did so with consistent right-dominant
hemisphere asymmetry.

By employing both tractography and TBSS methodologies in tandem
(Urgerl et al., 2013), moreover, we were also well-positioned to explore
specific subdivisions of the SLF that were most closely associated with
brooding (Makris et al., 2005). Using tractography, for instance, we
learned that brooding was globally associated with a portion of the SLF
connecting the middle/superior Temporal Gyrus with ipsilateral Pre-
central/Cingulo-Opercular areas. This SLF-T subdivision, also known as
the Arcuate Fasciculus, supplies bidirectional connections throughout
temporal, parietal, and frontal lobes. Although it is a bilateral asso-
ciation tract, the SLF-T of the dominant hemisphere also critically
connects Wernicke's area for speech production and Broca's area for
language comprehension. Given its highly specialized functional neu-
roanatomy, dysconnectivity of the SLF-T in the context of brooding
could be associated with abnormal language and memory systems in
the brain, and specifically those responsible for maintaining ongoing
phonological awareness (Jenkins et al., 2016; Oechslin et al., 2009).
Research on the microstructural basis of conduction aphasia has shown,
for instance, that differences in SLF-T microstructure may be related to
disrupted awareness of speech repetition (Bernal and Ardila, 2009). In
fact, stutterers exhibit lower integrity of the SLFT relative to non-stut-
terers (Cieslak et al., 2015). As TBSS also indicated, the most prominent
SLF-T disturbance was in a medial-temporal/inferior-frontal cluster of
white-matter that may be particularly relevant for the circulation of
words and speech sounds in the service of short-term memory (Baldo
et al., 2012). Future work should therefore explore whether these mi-
crostructural abnormalities of the SLF-T are specifically associated with
repetitive, perseverative thinking and recall in brooding.

Across both samples, microstructural connectivity of the right SLF
was also significantly lower in females relative to males, and negatively
correlated with age. Hence, SLF asymmetry may be a critical neurode-
velopmental biomarker of brooding (Shi et al., 2013; Westlye et al.,
2010; Agarwal et al., 2016; Klingberg et al., 1999; Ugwu et al., 2014),
albeit future longitudinal dMRI studies will be needed to confirm this.
Still, abnormal cerebral lateralization has been hypothesized as far back
as Martin's 1989 Goal-Progress Theory of brooding (Martin and Tesser,
1989; Martin et al., 2008) even though this has never been shown using
measures of white-matter microstructure specifically. In both of our
samples, the asymmetry was distinctly right-lateralized, which might
lend to several interpretations grounded in theories of cerebral spe-
cialization (Gazzaniga, 2000). For instance, cortical areas connected by
the right SLF-T, such as the right temporoparietal junction and right
superior temporal gyrus, have been implicated in monological speech
(Geva et al., 2011; Alderson-Day and Fernyhough, 2015) and may ex-
hibit grey-matter differences in brooding (Machino et al., 2014). Stu-
dies of Schizophrenia have likewise reported SLF-T asymmetry in as-
sociation with auditory hallucinations and disorganized speech (De
Weijer et al., 2011). Conversely, greater connectivity of the left SLF-T
has been observed in the brains of long-term meditators who are pre-
sumably trained to ‘suspend’ ruminative thinking (Luders et al., 2011).
In sum, SLF-T asymmetry is a key white-matter biomarker of brooding
that may reflect atypical patterns of language development critical for
monological speech repetition and phonological short-term memory.

5.3. A microstructural-functional connectivity model of brooding

Although the triple-network functional connectivity model of
brooding may provide insight into how brooding unfolds (i.e. through
dysregulated, negatively-biased self-referential processing), it does not
offer an account of why it occurs recursively or persists as a stable trait.
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By exploring functional connectivity correlates (a neuromechanistic
perspective) alongside structural connectivity correlates (a neurodeve-
lopmental perspective), and then fusing those investigations together
using simple regression models with multimodal features, we were
thereby positioned to begin testing these overarching questions more
directly. Our multimodal analysis accordingly revealed that micro-
structure of the right SLF-T was moderately associated with pDMN
within-network functional connectivity in both samples. Hence, re-
cursive self-referential processing in brooding may be largely main-
tained by asymmetric development of phonological memory and lan-
guage repetition via the SLF-T, but additional studies will be needed to
confirm this. Beyond the SLF, the cumulative influence of distributed
microstructural associates of brooding were further weakly correlated
with the between-network pDMN-fECN inverse correlation in both
samples. This finding clarifies that candidate mechanisms of brooding
like impaired-disengagement may be at least partially trait-sustained.

Based on these multimodal findings, we posit that functional triple-
network disorganization, together with microstructural inefficiency of
the SLF and auxiliary white-matter, captures a duplexity of brain fea-
tures with mutual relevance to the etiology of brooding. The neurode-
velopmental evolution of this microstructural-functional connectivity
phenotype remains largely unclear, however. Nevertheless, we might
appeal to theories like the “perseverative cognition hypothesis”
(Brosschot et al., 2006) which holds that perseverative cognitive pro-
cesses like brooding lead to a prolonged stress response—a systemic
change that may alter myelination patterns in both developing and
mature brains (Nugent et al., 2015; Sheikh et al., 2014). To the extent
that the perseverative cognition of brooding involves repetitive cogni-
tive processing that may accompany stress response, irregular myeli-
nation trajectories might accumulate in brooding-associated pathways
to support the added cognitive load. In fact, recent evidence has shown
that chronic stress in depression can systematically disrupt axon-myelin
adhesion in specific pathways like the Corpus Callosum by suppressing
metabotropic glutamate receptor activation in oligodendrocytes
(Miyata et al., 2016). Still, a precise understanding of how distributed
brain structure and function evolve together in the context of brooding
will be the work of future longitudinal studies.

5.4. Limitations and generalizability

By validating our findings with a replication sample, our study
contributes the first verifiably generalizable brain model of brooding to
the larger corpus of depression literature (Evans, 2017; Eklund et al.,
2016). We interpret the relative success of our replication attempt as
indicative that under conditions of sufficient sample uniformity, neu-
roimaging analysis can detect reproducible patterns of brain structure
and function associated with brooding severity. Although suboptimal
sample sizes may be susceptible to effect-size inflation (Eklund et al.,
2016; Cremers et al., 2017), our study further demonstrates that pre-
dictive test-error can be used to directly measure the extent of that
inflation (Szucs and Ioannidis, 2017). Above all, we demonstrate how
direct replication with open-datasets can serve as a powerful, data-
economic (de Haas, 2018) tool for cross-validating scientific discovery.

One limitation of the present study may be that the candidate neural
biomarkers that it uncovered are not purely attributable to brooding.
Given the high co-occurrence of brooding with depression, however,
there are fundamental obstacles to establishing specificity of brooding
biomarkers to depression (Beck et al., 1996). Although some specificity
can be assumed (Smith and Alloy, 2009), there is an unavoidable re-
stricted range of brooding extent (i.e. severity) among non-depressed
individuals (Bagby et al., 2004; Roelofs et al., 2006). Nevertheless,
participants included in our more heterogeneous Replication sample
exhibited a variety of dysphoric and/or depression backgrounds,
thereby enabling us to at least broadly infer that the replicated neural
correlates of brooding are reproducibly observable across a relatively
heterogeneous depressive sample.

6. Conclusion

In the present study, we aimed to both identify and unify candidate
biomarkers of brooding, which we achieved in the form of seven fully-
replicated microstructural and functional connectivity correlates that
were cross-validated across two independent samples. Results from
both datasets first supported a functional network model of brooding;
that is, brooding severity is associated with disorganized patterns of
resting-state functional connectivity of the ‘triple-network’ consisting of
subnetworks of the DMN, SN, and ECN. These networks have both in-
trinsic and extrinsic connectivity properties that may underlie a triple-
cognitive process model of brooding mechanisms— recursive self-re-
ferential processing, negatively-biased thought appraisal, and impaired
attentional disengagement. Converging across multiple methods of
analysis applied to both datasets, our results showed that individual
differences in Superior Longitudinal Fasciculus and auxiliary white-
matter microstructure may largely account for the severity of trait
brooding. Finally, the discovery of multimodal associations between
microstructural and functional connectivity correlates of brooding
provides a fresh avenue for reconciling cognitive process models with
trait developmental models. Most centrally, individuals with asymme-
trical development of language pathways may be uniquely prone to the
biased, recursive, self-referential processing that would seem to largely
define brooding.

By cross-validating multimodal discovery with out-of-sample pre-
diction, our study leverages reproducibility as a tool for testing broader
theories of brooding, such as a fusion of etiological perspectives in the
spirit of Nolen-Hoeksema's Response Styles Theory (Nolen-Hoeksema
et al., 1993). Our hope is that the findings presented will help to ac-
celerate neuroscientific understanding of a key maintaining factor in
depression, perhaps easing our own brooding as clinical scientists in the
process. Equipped with the certitude that such knowledge can provide,
we might in turn refine the individualized depression treatments of
tomorrow—based on multimodal brain biomarkers whose reproduci-
bility is known.
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