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A lipid-based physiologically based toxicokinetic (PBTK) model has been developed for a mixture of six polychlorinated biphenyls
(PCBs) in rats. The aim of this study was to apply population Bayesian analysis to a lipid PBTK model, while incorporating an
internal exposure-response model linking enzyme induction and metabolic rate. Lipid-based physiologically based toxicokinetic
models are a subset of PBTK models that can simulate concentrations of highly lipophilic compounds in tissue lipids, without the
need for partition coefficients. A hierarchical treatment of population metabolic parameters and a CYP450 induction model were
incorporated into the lipid-based PBTK framework, and Markov-Chain Monte Carlo was applied to in vivo data. A mass balance
of CYP1A and CYP2B in the liver was necessary to model PCB metabolism at high doses. The linked PBTK/induction model
remained on a lipid basis and was capable of modeling PCB concentrations in multiple tissues for all dose levels and dose profiles.

1. Introduction

Polychlorinated biphenyls (PCBs) are industrial chemicals
that have persisted in the environment despite widespread
international bans beginning in the 1970s [1]. There are
a total of 209 possible PCB congeners, and many of these
co-occur in the environment based on the composition of
commercially produced PCB mixtures [2]. Mixtures of PCBs
are commonly detected in blood samples of the human
population, with estimated elimination half-lives of up to
10–15 years [3]. Assessing risks from these mixtures is
complicated by the significant variability of toxicological
properties of individual PCBs, the time-varying changes in
the composition of PCB mixtures in the environment [4],
and the metabolic interactions among individual PCBs in the
body [5–7].

Physiologically based toxicokinetic (PBTK) models are
well-established tools for simulating internal doses and bio-
markers of environmental contaminants [8]. PBTK model-
ing for mixtures of chemicals has gained prominence for risk

assessment applications and provides a means for capturing
the various types of metabolic interactions among individual
constituents [9, 10]. However, for complex mixtures, PBTK
models typically need a large number of parameters and
often require significant time and data for model develop-
ment and evaluation. Approaches that minimize the number
of parameters in mixture PBTK models while still capturing
the major interactions can help reduce such data burdens.

For the class of highly lipophilic compounds such as
PCBs and dioxins, one approach for PBTK model reduction
is the use of lipid-based models, which assume contaminants
only accumulate in the lipids of tissues and blood [11,
12]. Lipid-based PBTK models do not require tissue/blood
partition coefficients, which significantly reduces the number
of chemical-specific parameters needed for modeling the
toxicokinetics of complex mixtures. In these models, resi-
dence times in each compartment are assumed to be depend-
ent on tissue lipid volumes and lipid flow rates, which
are chemical-independent. Under such scenarios, chemical-
specific parameters are limited to absorption, metabolism,

mailto:sastry@ccl.rutgers.edu


2 Journal of Toxicology

Table 1: Lipid content of rat tissues [11, 14].

Tissue NLE† NLE/total lipid

Blood 0.0019 0.576

Plasma 0.0009 0.748

Fat 0.8536 0.998

Liver 0.0425 0.710

Rapidly perfused 0.0425 0.710

Poorly perfused 0.0120 0.632
†Neutral lipid equivalent ratio (mL NLE/mL tissue).

elimination, and metabolic interactions. Lipid-based PBTK
modeling provides a generalized treatment of highly lipo-
philic chemicals, leading to more efficient modeling of com-
plex mixtures (e.g., Emond et al. [11]).

However, parameterization and optimization of lipid-
based PBTK models present challenges due to the reduced
degrees of freedom, since partition coefficients for each
tissue-chemical combination are not considered. This de-
creased flexibility requires the use of sophisticated parameter
estimation techniques for reducing model errors, especially
when experimental data include substantial population vari-
ability. Bayesian parameter estimation techniques are highly
useful in handling such complex population parameter esti-
mation and optimization problems [13]. To date, lipid-based
PBTK models for mixtures of chemicals have not been wide-
ly used. This study involves the development of a lipid-
based PBTK model for a mixture of PCBs, and subsequent
model parameterization, refinement, and optimization using
Bayesian parameter estimation techniques.

2. Methods

2.1. Data. The data published by Emond et al. [11] consist-
ed of rats receiving oral doses of a mixture of 6 PCB con-
geners: 118 (2,3′,4,4′,5-pentachlorobiphenyl), 138 (2,2′,3′,4,
4′,5-hexachlorobiphenyl), 153 (2,2′,4,4′,5,5′-hexachlorobi-
phenyl), 170 (2,2′,3,3′,4,4′,5-heptachlorobiphenyl), 180 (2,
2′,3,4,4′,5,5′-heptachlorobiphenyl), and 187 (2,2′,3,4,5,5′,6-
heptachlorobiphenyl). The dosing regimen consisted of 3
dose levels (5, 50, and 500 μg/kg body weight of each PCB),
and 4 dose protocols (one dose per day, one dose per week,
consecutive daily doses for 13 days followed by no exposure,
and 13 irregularly timed doses). Rats were either sacrificed at
41 days or 90 days for data collection. PCB concentrations
in total lipids of plasma, liver, and adipose tissue were
measured (adipose tissue concentrations were measured for
only those rats sacrificed at 90 days). Body weight and liver
weight at time of sacrifice were measured. The final data
consisted of approximately six rats for each dose level/dose
protocol/sacrifice day combination (142 rats in total) [11].

2.2. Toxicokinetic Model. The new PBTK model developed
here is an extension of the lipid-based PCB mixture model by
Emond et al. [11]. The original model formulation requir-
ed alternative clearance parameters at different dose levels
and dose protocols, thus increasing the number of para-
meters and creating model discontinuity. The updated

model provides an alternative formulation that incorporates
CYP450 induction, thus facilitating the use of a single set of
parameters for wider applicability of the model.

The model consists of five compartments (blood, adipose
tissue, liver, slowly and rapidly perfused), with mean phys-
iology defined in Table 1. The overall clearance of PCBs is
empirically described in the liver and represented as a func-
tion of CYP450 metabolism (metabolites are subsequently
excreted in urine or feces [18]), which is modeled as a first-
order process [11]. It is assumed that PCBs accumulate only
in the neutral lipid spaces of blood and tissues. Any accu-
mulation outside of the lipid fraction is assumed to be neg-
ligible and is not incorporated into the mass balance. Com-
partment volumes correspond to the lipid volumes in each
tissue, and the total cardiac output is corrected for the frac-
tional lipid content of blood. The PBTK model is based on
chemical concentration in neutral lipid equivalent (NLE)
components of blood and tissues, which can be converted to
concentration in total lipids (the measurable quantity [14]).
The lipid-based mass balances for tissues in the PBTK model
are defined in the same manner as the original model [11]:

dAnlt

dt
= Qnlt(Cnla − Cnlt),

Cnlt = Anlt

Vnlt
,

Ctlt = Cnlt
Vnlt

Vtlt
,

(1)

where Anlt is the mass of chemical in the tissue NLEs (μg),
Qnlt is the flow rate of blood NLEs through the tissue
(mL NLE/h), Cnla is the chemical concentration in the NLE
fraction of arterial blood (μg/mL NLE), Cnlt is the chemical
concentration in the tissue NLEs (μg/mL NLE), Ctlt is the
chemical concentration expressed in terms of total lipids in
tissue (μg/mL of total lipid), Vnlt is the volume of neutral
lipid equivalents in tissue (mL NLE), and Vtlt is the volume
of total lipids in tissue (mL total lipid). Volumes of total
lipids in tissues are measurable quantities, while neutral lipid
equivalents are quantities that are derived by assuming NLEs
are composed of all the neutral lipids and 30% of the phos-
pholipids in tissue [11, 14].

NLE-based volumes in Table 2 are obtained by multiply-
ing conventional values with NLE ratios in Table 1. Flows are
obtained by multiplying conventional values with the blood
NLE ratio. The ratio of NLE/total lipid in Table 2 (Vnlt/Vtlt) is
used to convert concentrations from NLE basis to total lipid
basis. To convert liver, fat, and plasma NLE concentrations to
a total lipid basis, the corresponding values in Table 1 (col-
umn 3) are used.

2.3. Induction Model. High chronic doses of the PCB mixture
caused an increased elimination rate for all PCBs, which was
attributed to CYP450 induction [11]. PBTK models predict-
ing changes in metabolic rate due to CYP450 induction have
been previously implemented for other chemicals [17, 20–
23]. A CYP450 balance in the liver can be defined as

dACYP

dt
= k0 − ke × ACYP + S(t), (2)
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Table 2: Physiological values for a standard 225 g rat (adapted from
[11]).

Tissue Conventional model† NLE-based model

Blood flow rates

Fat 448 mL/h 0.85 mL lipid/h

Liver 1245 mL/h 2.36 mL lipid/h

Rapidly perfused 2540 mL/h 4.82 mL lipid/h

Poorly perfused 747 mL/h 1.42 mL lipid/h

Cardiac output 4980 mL/h 9.45 mL lipid/h

Volumes

Blood 20.0 mL 0.038 mL lipid

Fat 17.5 mL 14.938 mL lipid

Liver 10.0 mL 0.425 mL lipid

Rapidly perfused 12.5 mL 0.531 mL lipid

Poorly perfused 167.5 mL 2.010 mL lipid
†Physiological parameter values obtained from [15, 16].

where ACYP is the mass (per gram protein) of CYP450 in the
liver, k0 is the basal CYP450 production rate (mass/time),
ke is the CYP450 degradation rate (time−1), and S(t) is the
stimulation function for induction exposure response (mass/
time). The initial condition for ACYP is the baseline level
ACYP

0 . In the presence of zero inducer, S(t) is zero and (2)
is at steady state, and, therefore, k0 is equivalent to keA

CYP
0 .

For simplicity, a linear function was adopted for S(t).
While a Hill equation could have been implemented, it
was determined that optimizing Hill parameters with weak
prior information was impractical. The internal exposure-re-
sponse parameters of this particular mixture are highly un-
certain. Furthermore, lipid-based model formulations as-
sume that contaminant concentration outside of the lipid
space is negligible. If only unbound chemical outside of the
lipid space can initiate a toxicological response (i.e., by bind-
ing to a receptor), a lipid model will assume that this exter-
nal/unbound concentration remains low and does not ap-
proach saturation. The initiation of CYP450 induction was
modeled as proportional to the inducing PCB concentration:

S(t) = k0FCIND, (3)

whereCIND is a relative metric for inducer concentration, and
F (≥0) is the induction slope factor defining the increase in
CYP450 enzyme production caused by CIND. The induction
slope is defined as a factor of the basal production rate.

In previous PBTK models for lipophilic contaminants,
the inducer concentration CIND was defined to be the chem-
ical concentration bound to the Ah-receptor [17]. The Ah-
receptor has consistently been demonstrated to be crucial for
CYP450 induction by PCBs [24]. Since only unbound chem-
ical outside of the lipid space can bind to the Ah-receptor
[23], assumptions from the prior PBPK models do not
apply. To maintain the parsimony of the model and main-
tain lipid-based concentrations throughout, CIND was de-
fined as the concentration of the inducing PCB congener(s)
in the neutral-lipid space of the liver. Any additional steps in
the induction process (i.e., concentration gradients between
free and lipid-space PCB, and Ah-receptor binding) were

essentially lumped into the dose response parameter F. Dur-
ing the model development phase, it was observed that intro-
ducing a time-lag into the stimulation function to account
for unspecified processes had a negligible impact on pre-
dicted lipid concentrations. This was likely due to the larger
timescales of dose protocols and simulated data collection
times.

The following relationship between CYP450 levels and
metabolic clearance was determined to be flexible enough to
model the data over a wide range of doses:

vcl = v0
ACYP

ACYP
0

, (4)

where vcl is metabolic clearance as a function of CYP450
concentration (mL/h) and v0 is the basal metabolic clearance
under low exposure and negligible induction conditions
(mL/h).

The rate of metabolism of each PCB is the product of
the PCB concentration in the neutral lipid space of the liver
CnlL(AnlL/VnlL) and the vcl for the particular PCB:

dAn1L

dt
= Qn1L(Cn1a − Cn1L)− v0 · A

CYP

ACYP
0

· Cn1L, (5)

dACYP

dt
= k0 − ke × ACYP + k0FCIND. (6)

PCB induction and metabolism are congener specific and
are functions of structure and classification [2]. Non-ortho
PCBs (“dioxin-like” PCBs with no ortho-substituted chlo-
rines) assume a coplanar position and are strong inducers
of CYP1A. Multi-ortho-substituted PCBs cannot become
coplanar and interact primarily with CYP2B. Mono-ortho
PCBs can assume both planar and coplanar positions and are
considered “mixed-type” inducers [2, 25, 26]. PCB congeners
138, 153, 170, and 180 are di-ortho; 187 is tri-ortho; and 118
is mono-ortho. In the current dataset, PCB 118 shows sig-
nificantly higher clearance than other congeners at the high-
dose level [11].

To model the difference in PCB 118 metabolism at the
high doses, the PBTK model assumes the multi-ortho PCBs
are metabolized through the CYP2B pathway, while PCB 118
is metabolized via CYP1A. It was also assumed that both
types of PCBs induce CYP2B, but induction of CYP1A by
multi-ortho PCBs was negligible. These assumptions were
based on in vitro studies of different classes of PCBs. A study
in rat hepatocytes found that mono-ortho PCBs are pri-
marily metabolized by CYP1A and primarily induce CYP1A
(with CYP2B being induced to a lesser extent) [27]. CYP1A
induction by PCB 118 has also been shown to be orders of
magnitude greater than induction by multi-ortho PCBs [28].
Meanwhile, CYP2B induction from both PCB 118 and multi-
ortho PCBs was the same order of magnitude [25].

Equations (2) through (6) were applied with parameters
to describe both CYP1A and CYP2B kinetics. For each PCB,
(5) was applied using a basal metabolic clearance (v0) specific
to that PCB, with the induction scaling factor dependent
on the PCB classification (mono-ortho or multi-ortho). In-
duced clearance of PCB 118 was dependent on the CYP1A
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Figure 1: Schematic of a hierarchical Bayesian framework (adapted
from [19]).

Table 3: Basal CYP1A/2B parameters [17].

Parameter Symbol Units Value

Initial steady-state CYP1A/2B A0 nmol/g protein 0.1†

CYP1A/2B degradation ke h−1 0.04

Basal CYP1A/2B production k0 nmol/h/g protein 0.004
†Computed from the steady-state mass balance.

ratio, while induction of the others was dependent on CYP2B
ratio. For the induction of CYP1A, CIND in (6) was assumed
to be the concentration of PCB 118 in the neutral lipid space
of the liver. For CYP2B induction, CIND was assumed to be
the total PCB concentration (sum of all 6 PCBs) in the neu-
tral lipid space of the liver. This assumes an additive effect
on CYP2B induction, with each PCB having equal weight.
Separate values for the induction factor F were used to
describe CYP1A and CYP2B induction.

Parameters for baseline CYP450 dynamics were obtained
from literature and are summarized in Table 3. For simplic-
ity, the same parameters were used for both CYP1A and
CYP2B enzymes and were obtained from a model for CYP1A
[17]. Alternatively, CYP2B-specific parameters from a similar
PBTK-induction model can be used [22]. A recent study
in female rats estimated CYP1A content to be a factor of
two greater than CYP2B in the liver [29], which could also
be used to inform the model. It was found that optimizing
the model using separate 1A/2B parameters produced nearly
identical final results, due to the fact that the synthesis and
degradation parameters were proportionally the same. Addi-
tionally, the initial amounts and the synthesis/degradation
rates are not entirely identifiable and are related via the
steady-state mass balance. Since the induction in this model
will only be affected by the increase of CYP450 relative to the
baseline, the actual baseline values are less important, and
some adjustments can be made to those assumptions without
reoptimization of induction factor F.

2.4. Hierarchical Bayesian Model. Interanimal variation ex-
isted in the data which could not be attributed to differ-
ences in physiology or tissue lipid content alone. It was

Table 4: Population-level parameters to be estimated by Bayesian
analysis.

Parameter Unknowns Prior

Basal metabolic rate†
μv0 Wide uniform

Σv0 Inverse gamma

Induction factor
F2B Wide uniform

F1A Wide uniform

Model/data error‡ σ Wide uniform
†One each for PCBs 118, 138, 153, 170, 180, 187, in (mL/h/kg0.75).
‡One each for plasma, liver, and fat.

assumed that this inter-rat variation can be attributed to
basal metabolic clearance v0. A hierarchical model for basal
clearance was constructed to optimize the population distri-
bution of v0 to the observed data (Figure 1).

A generalized population model assumes random vari-
able Ψik (where i denotes an individual within the pop-
ulation, and k denotes the particular variable) is derived
from a distribution of mean μk and standard deviation Σk.
Both random and nonrandom variables are used as inputs
to the PBTK model to predict Yi. The likelihood function L
calculates the probability that Yi is an adequate prediction of
data yi given the set of random variables. The prior function
P calculates the probability of all random variable values
conditional on their population assumptions. The posterior
probability is proportional to the product of the likelihood
and prior.

A lognormal error function was implemented as the like-
lihood, which assumes the log of data measurements yi are
scattered in a normal distribution from the log of their cor-
responding model predictions Yi:

log yi = logYi + Nrnd
(
μ = 0, σ

)
. (7)

The population and error parameters to be estimated are
summarized in Table 4. It was assumed that metabolic
clearances at the individual level (v0) were derived from a
lognormal population distribution defined by μv0 and Σv0.
Priors on μv0 for each PCB were set as wide and non-
informative. The priors for population variances Σv0 for
each PCB were assumed to be inverse-gamma with a shape
parameter of 1 (indicating large uncertainty), and a scale
parameter of 0.8 (the initial assumption on the lognormal
Σ). The prior probabilities of individual-level parameters
were calculated using the values of population μ and Σ for
each parameter at the current iteration. Upper and lower
limits for the uniform priors on mean population basal
clearances (μv0) were set by observing model behavior at
extreme values. It was determined that scaling the basal rate
by body-weight0.75 slightly improved convergence and model
fit, due to the increasing body weight over the 90-day period,
and variation in body weight of the studied population. Non-
informative distributions were used for the priors on σ . Since
three tissues were measured (plasma, liver, and fat), three
separate values for σ were optimized.

During the testing phase of the optimization, interindi-
vidual variation in cardiac output, fractional organ volumes,
and blood flow rates were incorporated by using informative
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population priors based on standard literature values for
Sprague-Dawley rats. This involved optimizing individual-
level physiology while holding population-level distributions
constant. It was found that nearly identical final results
were obtained regardless of whether variation in physiology
was incorporated into the model. In order to improve con-
vergence, mean values for organ physiology were used. In-
dividual-level data of measured liver weight ratios and the
change in body weights over the course of the study were still
incorporated into the PBTK model during the optimization.

2.5. Computational Implementation. The PBTK model was
developed in the MATLAB software environment [30], while
implementing an open-source Metropolis-Hastings toolbox
[31]. The PBTK model is available from the institute website
(http://www.ccl.rutgers.edu/onlineCodes/PCBmixturePBPK)
and is also provided as a supplemental file. Markov-Chain
Monte Carlo (MCMC) with Metropolis sampling was used to
iteratively converge to the posterior distribution. The num-
ber of PBTK model parameters for each of the 142 rats, added
with population and error parameters, leads to over 1000
parameters in total. Convergence issues arise with such high
dimensions and noninformative priors. Additionally, each
Metropolis step requires the solution of over 800 systems of
differential equations, and multiple independent Markov
chains are required to assess convergence. Since the system
might not converge for 100,000 iterations, it was necessary
to apply simplifying assumptions to reduce model evalua-
tions and improve convergence.

Because a minimal induction effect was observed at the
lowest dose [11], the parameter optimization was decom-
posed into two steps. For the first step, induction was neg-
lected and the model was optimized using only the low-
dose data in order to obtain the basal metabolic rate (v0) for
each PCB. The resulting population distributions were then
used as informative priors in the second step. For step 2, in-
duction was incorporated in the model, and parameters were
optimized using only data for the two high doses. While
MCMC was still performed on the individual-level values
for v0 in step 2, they were defined by stronger population
priors than in step 1. The population mean and variance for
v0 were not updated in step 2, since the final distribution
of all individual-level clearances from step 2 remained con-
sistent with the population priors. Had any anomalies
been identified (i.e., many individual-level parameters being
optimized at the upper or lower limits), the population
parameters would have been reoptimized in the second step.
The model/data error parameters (σ) were optimized in both
steps, since it was observed that allowing these parameters to
freely explore the space improved convergence.

Splitting the problem into two steps helped to reduce
convergence problems, since basal and induced metabolic
clearances are inherently nonidentifiable. Interindividual
variation of the induction factor F was neglected in step 2
(i.e., the prior probability on ΣF was assumed to be extremely
small). Assuming negligible variation on F eliminates the
need to estimate individual-level values for each rat and can
prevent poor mixing of the Markov chains. Interindividual

variation in metabolism would be accounted for by varia-
tions in basal clearance. Two induction factors (one each for
1B and 2A induction) would be optimized to fit the entire
population.

For both step 1 and step 2 of the parameter optimization,
three sets of independent Markov chains were initiated
using over dispersed initial guesses. After adjustments in the
random-walk parameters to optimize the acceptance rate (it
was determined that the optimal acceptance rate for this
system was approximately 10% [32]), the chains were run
for 50,000 iterations. The chains were considered conver-
ged if the Gelman-Rubin convergence statistic was close to 1
for the parameters from all three independent sets of chains
[33]. The PBTK models and Metropolis sampler were imple-
mented in MATLAB on a cluster of multi core processors.
Convergence of the Markov chains typically occurred after
80,000 iterations and three days computational time.

3. Results and Discussion

3.1. Posterior Distributions. Results are summarized in
Table 4. Mean basal clearances ranged between 0.017 and
0.038 mL/h/kg0.75. The population lognormal standard devi-
ations for basal clearances (Σv0) were reduced by over half
for most of the PCBs, and metabolic clearance was predicted
to deviate from the mean by a factor of 2 in the population.
Congener 187 was the only PCB to have a lognormal stand-
ard deviation greater than 0.5 for basal clearance. PCB 153
clearance had exhibited poor convergence, as indicated by the
Gelman-Rubin statistic, despite repeated optimization at-
tempts. The mono-ortho congener 118 had the highest basal
clearance, which may be due to a slight induction effect at the
lowest dose. Since distributions for basal metabolic rate of all
6 PCBs were relatively similar, an additional MCMC analysis
was performed for step 1 assuming a single population dis-
tribution for all PCB clearances vall

0 . The population distri-
bution of vall

0 was in agreement with those determined for
the individual PCBs and represents a condensed posterior
distribution for all six PCBs. Additionally, better convergence
was achieved for the lumped standard deviation. Step 2 of the
MCMC analysis (determination of induction parameters)
was performed using the 6 separate PCB distributions.

3.2. Model Evaluation. Monte Carlo simulations consisting
of 1000 model runs using parameters randomly sampled
from the posterior distributions (Table 5) were performed to
assess the behavior of the population model. For these simu-
lations, median population μ and Σ were used to randomly
generate individual-level clearance parameters so that the
effect of parameter variability could be observed. Figure 2
illustrates the variation of the population model and ex-
perimental data at the 5 μg/kg dose level. At this low dose
level, data and model predictions for both classes of PCBs
(multi-ortho and mono-ortho) are similar across dose pro-
tocols and tissue type. The variation in model outputs as
a function of parameter variability was in agreement with
the amount of scatter observed in the data. At the highest
dose level, metabolic clearance differs between PCB 118 and
the multi-ortho PCBs (Figure 3). The magnitude of this

http://www.ccl.rutgers.edu/onlineCodes/PCBmixturePBPK
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Figure 2: Model predictions and data for all PCB concentrations in tissue lipids at the 5 μg/kg dose level, and the four dose protocols ((a)
Daily, (b) weekly, (c) daily to day 13, (d) nonperiodic). Data points represent the median of all PCBs for all rats at time of sacrifice, and error
bars represent the minimum and maximum measured values. Modeled results represent the median and 95% confidence interval of 1000
model runs using parameters randomly sampled from the posterior distributions.

difference was also a function of dose protocol. The model
was also able to capture differences in the time profiles be-
tween tissues that were due to lipid content (Figure 4).

The performance of the induction model remained con-
sistent with previous observations by Emond et al. [11]. At
the highest continuous dose level, metabolic clearance of
the multi-ortho PCBs may increase by a factor of 3, while
clearance of PCB 118 may increase by a factor of 5. In-
creases in metabolic rate varied by dose protocol, due to
the dynamic behavior of the CYP450 balance. The induction
effect is the greatest, and the difference between PCB 118
and multi-ortho PCB concentrations is the largest, when
doses occur daily as opposed to sporadically (Figure 3). At
the lowest dose, the induction model predicts negligible in-
crease in metabolic clearance for both PCB groups. The
model was able to simulate induction as a consistent and con-
tinuous function across all dose levels and protocols, while

reproducing observed data. A scatter plot comparing all
data with model results (using the individual-level posterior
values sampled from the converged Markov chains) is pre-
sented in Figure 5, along with the condensed posterior dis-
tribution of basal metabolic clearance of all PCBs.

The lipid-based toxicokinetic model does have inherent
limitations. Because these models do not include partition
coefficients for each PCB/tissue combination, they cannot
capture differences in the ordering of PCB concentrations
that are observed between different tissues of the same rat.
While PCB 118 is observed as having the lowest concentra-
tion in all tissue lipids for most of the rats, there is a slight
tissue dependency among the ordering of multi-ortho PCBs.
For example, PCB 180 was usually observed to have the
second-highest PCB concentration in fat lipid but had either
the lowest or second-lowest concentration in plasma and
liver lipids. PCB 187 usually had the highest concentrations
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Figure 3: Model predictions and data for all PCBs at the 500 μg/kg dose level and the four dose protocols. Data represents the median
measurements across rats at time of sacrifice (grey circle: all multi-ortho PCBs, black triangle: PCB 118). Modeled results are for the median
over all multi-ortho PCBs (grey line), and the median results for PCB 118 (black line), resulting from 1000 model runs using parameters
randomly sampled from the posterior distributions.

in plasma and fat, but not liver. The magnitude of the differ-
ences between multi-ortho PCB concentrations was relative-
ly small. However, the effect is somewhat visible in the
model/data scatter plot (Figure 5(b)), where trends exist in
each cluster due to a consistent over- or underprediction
of specific PCB-tissue combinations. Slight correlations be-
tween the clearance parameters are also inherent in the
model, and an attempt was made to use the multivariate pri-
or distribution from step 1 in the step 2 optimization. How-
ever, convergence issues and the lack of congener-specific
tissue affinity parameters ultimately made an accurate cha-
racterization of these correlations infeasible.

The other modeling simplification involves the estima-
tion of a basal metabolic rate based on the low-dose data. If
the metabolic rate is significantly increased at low exposures
due to induction, optimizations at the higher doses will be
biased. For low doses of PCB 126 (a potent dioxin-like PCB)

in rats, in vivo studies have shown significant increases in
EROD (7-ethoxyresorufin-O-deethylase) activity (which is
indicative of CYP1A). A 10-fold increase in EROD activity
has been observed after a single 7.5 μg/kg dose [7], and a
95-fold increase was observed for 1 μg/kg/day exposure [34].
Low-dose induction of CYP2B, indicated by PROD (7-pen-
toxyresorufin-O-dealkylase) activity, has been observed due
to mixtures of mono-ortho and multi-ortho PCBs [25]. Rats
orally exposed to PCB 153 (one of the congeners in the
current study) showed a 4-fold induction of CYP1A and a
20-fold induction of CYP2B at 3 mg/kg [35]. Since the cur-
rent work concerns doses at the μg/kg level of the relatively
low potent PCBs, the CYP induction implemented here
(maximum of about 5-fold) does not contradict earlier
studies. Additionally, since the increase in metabolic rate
between the 5 and 50 μg/kg dose levels was very small in this
study, the assumption of negligible rate increase between the



8 Journal of Toxicology

0 10 20 30 40 50 60 70 80 90

Time (days)

μ
g/

g 
lip

id
)

10−1

100

101

102
P

C
B

 1
18

 c
on

ce
n

tr
at

io
n

 in
 fa

t 
(

(a)

0 10 20 30 40 50 60 70 80 90

Time (days)

μ
g/

g 
lip

id
)

10−1

100

101

102

P
C

B
 1

18
 c

on
ce

n
tr

at
io

n
 in

 fa
t 

(

(b)

Figure 4: Model predictions for PCB 118 in liver (a) and fat lipids (b) for the nonperiodic dose scenario at the 50 μg/kg dose level. Data
for all rats are shown (black triangles), and measurements for each rat at time of sacrifice have been shifted slightly on the x-axis. Modeled
results are the median and 95% confidence interval of 1000 model runs using parameters randomly sampled from the posterior distribution.
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Figure 5: Population distribution of consolidated basal metabolic clearance vall
0 (a), and scatter plot of PBTK model predictions versus

measured data using the optimized individual-level values of the Markov chains (b).

“true” basal rate and the rate estimated at low-dose appears
to be rational.

Other simplifying assumptions include linearization of
the biological exposure response, neglecting Ah-receptor
binding, and discretizing the induction model into 2 PCB
groups (multi-ortho and non-ortho) and 2 enzyme groups
(CYP1A and CYP2B). Competitive inhibition for P450s [5],
regional hepatic CYP450 induction [6], and induction of
Phase-II metabolic enzymes [7] were also neglected. Such
model complexities lie outside the scope of this work and
would have made MCMC analysis infeasible due to weak
prior information and nonidentifiable parameters. While
the Bayesian framework implicitly incorporated these and
other discrepancies into the model/data error for each tissue,

the actual model/data error can never be truly known. It
is typically assumed that the collection of additional repli-
cates will reduce the uncertainties. However, there is a point
where additional replication will not yield model improve-
ments. An observation to this effect occurred during an ini-
tial testing phase of the Bayesian framework. The model opti-
mization results were originally evaluated by a “data-split-
ting” technique, where one rat from each dose-level/dose-
protocol/sacrifice-time was omitted from the optimization
dataset. The optimized model was then tested against this
omitted data to assess performance. It was later found that
optimizing the model to the full data set produced near-
ly identical posterior values (including model/data error)
as optimizing to the dataset containing approximately 17%
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Table 5: Population posterior distributions.

Parameter∗ μ (CV/R)† Σ (CV/R)

v118
0 0.038 (0.02/1.0) 0.24 (0.13/1.2)

v138
0 0.026 (0.02/1.2) 0.35 (0.17/1.1)

v153
0 0.025 (0.02/1.3) 0.35 (0.16/1.5)

v170
0 0.029 (0.02/1.0) 0.38 (0.16/1.0)

v180
0 0.035 (0.02/1.1) 0.31 (0.15/1.0)

v187
0 0.017 (0.02/1.1) 0.55 (0.25/1.0)

vall
0 0.027 (0.03/1.0) 0.43 (0.08/1.1)

F2B 0.0025 (0.01/1.0)

F1A 0.045 (0.02/1.2)

σfat
0.30 (0.06/1.0)‡

0.23 (0.04/1.0)

σplasma
0.19 (0.04/1.2)
0.23 (0.03/1.3)

σliver
0.40 (0.05/1.1)
0.36 (0.03/1.0)

∗Units for v0 are (mL/h/kg0.75); F is unitless.
†CV: coefficient of variance of chain, R: Gelman-Rubin.
‡One value each for step 1 (top) and step 2 (bottom).

fewer rodents. Future studies involving mixtures of contam-
inants having very similar toxicokinetic properties would
benefit from a value-of-information analysis at the experi-
mental design phase, in order to reduce the number of test
rodents needed to develop a mixture model.

4. Conclusions

This is the first application of a large-scale population
Bayesian analysis to a mixture PBTK model. Despite the lack
of partition coefficients and reduced degrees of freedom, the
optimized model was capable of reproducing experimental
data in multiple tissue lipids for a wide range of PCB dose
levels and protocols. The application of a linear induction
dose-response model, and the use of lipid-based concentra-
tions, illustrated parsimonious alternatives to highly complex
nonlinear models containing large numbers of parameters.
While the current modeling effort sought to avoid the issue of
nonidentifiability or overparameterization, further improve-
ment could be made by incorporation of a fully mechanistic
model for CYP450 induction. However, such a model would
likely require predictions of PCB concentrations outside of
the lipid space, and the type of additional data needed would
depend on the aims and scope of the proposed mechanistic
model.
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